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Abstract—The construction of a continuous probability density
function (pdf) that fits a set of samples is a frequently occurring
task in statistics. This is an inherently underdetermined problem,
that can only be solved by making some assumptions about the
samples or the distribution to be estimated. This paper proposes
a density estimation method based on the premise that each
sample represents the same amount of probability mass of the
underlying density. The estimated pdf is parameterized as the
square of a polynomial spline, which makes further processing
of the estimated density very efficient. This pdf is inherently non-
negative, ensuring a monotone cumulative distribution function,
which makes it easy to generate samples from it through inverse
transform sampling. Furthermore, it is cheap to evaluate and
easy to integrate, making moment calculations fast. To find
the coefficients of the polynomials that make up the spline, an
optimization problem is derived. The Fisher information is used
as a regularizer in this problem to select the solution that contains
the least amount of information. The method is shown to work on
samples from a variety of different one-dimensional probability
distributions.

Index Terms—Density estimation, splines, polynomials, Fisher
information, deterministic sampling.

I. INTRODUCTION

Random variables and their associated probability distribu-
tions are an elemental building block in robotics to model
uncertainty in sensor measurements and mismatch between
ideal and real-world models. Probability distributions can be
uniquely described by their probability density function (pdf)
or cumulative density function (cdf).

Real-world systems are often too complicated to analytically
derive the probability distribution of their output values given a
distribution of inputs, but a single input value can be propagated
through the system to yield a single output value. In these
cases, the input distribution can be replaced by samples drawn
from it. The samples are then put through the system to get
a sample representation of the output distribution. This kind
of processing is used for example in particle filters, stochastic
simulation, and Bayesian neural networks.

A very common method is to draw samples from a given
input distribution at random. This requires a rather large amount
of samples to accurately match the distribution. In contrast,
deterministic sampling tries to find an optimal set of samples
to represent the distribution and needs fewer samples than
random sampling to achieve the same accuracy [1], [2].
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Fig. 1: Upper: The pdf (blue) estimated from four sam-
ples (black) with the proposed method. Lower: The according
estimated cdf (blue) and empirical cdf (black).

If the cdf F (x) of a one-dimensional probability distribution
with pdf f(x) is known, inverse transform sampling is a
straightforward way to sample from this distribution. To draw N
samples, the first step is to generate N samples from a uniform
distribution between 0 and 1. These are then propagated
through the inverse cdf F−1(x) of the target distribution,
which transforms them into samples that follow this distribution.
While this method can be used to generate random samples,
it is especially easy to use for deterministic sampling, as the
uniform samples can be given in closed form in this case,
yielding the final samples ξi

ξi = F−1
(
(2i− 1)/2N

)
, (1)

for i = 1, . . . , N .
Density estimation is essentially the inverse operation of

sampling from a distribution. It is an inherently underdeter-
mined problem, as samples do not contain enough information



to reconstruct a continuous distribution uniquely. This becomes
especially noticeable when working with small numbers of
samples, particularly when they are random samples. This
means that some assumptions either about the samples or
about the underlying density have to be made to select a single
solution from all the possible distributions that a set of samples
could originate from. When selecting specific restrictions to
impose on the estimated density, it is important to keep in mind
why the density is estimated in the first place and what further
processing steps are planned based on the density estimate. For
example, it might be a good idea to use a Gaussian mixture
density to visualize data, but generating deterministic samples
from this mixture is not straightforward.

This paper introduces a novel method for density estimation
based on polynomial splines. After a brief review of the existing
literature, the problem of density estimation is framed as the
inverse operation to inverse transform sampling. This leads to
a set of constraints that the cdf of the estimated density should
fulfill.

Squared polynomial splines are presented as a suitable
form of parametrization of the estimated density. Their main
advantages compared to other representations like Gaussian
mixtures are, that they can be integrated in closed form and
the cdf of the estimated distribution is comparatively easy to
invert.

To select the smoothest solution fulfilling all constraints
the Fisher information is added as an objective function.
By working with squared functions it is possible to use a
reformulation of the Fisher information, that considerably
simplifies its calculation.

Finally, the proposed method is applied to some examples
from different distributions to demonstrate possible results.

II. STATE OF THE ART

A. Parameter Estimation

If the family of distributions, which the samples are drawn
from, is either known or assumed to be known, the free
parameters of the density function need to be estimated. These
parameters could be the mean and variance of a Gaussian
pdf or the rate of decay of an exponential distribution. This
is called parametric density estimation, and there is only a
relatively small number of parameters to be estimated. The
classic maximum likelihood estimator finds the parameters that
maximize the likelihood that the samples were drawn from the
according distribution. It is particularly straightforward to apply
if the samples are independent and identically distributed. A
different approach to this is called maximum spacing estimation
[3]. It makes use of the same notion as inverse transform
sampling, that a cdf should map the samples drawn from
its distribution to uniform samples. This can be achieved by
maximizing the geometric mean of the distances between values
of the cdf at consecutive samples.

B. Kernel Methods

Kernel methods for density estimation have been indepen-
dently introduced more than five decades ago by Parzen [4]

and Rosenblatt [5] and are still widely in use today. The
estimated density is represented as a sum of kernels centered
at the locations of the random samples. Gaussian kernels are
a popular choice and many methods have been proposed to
select the variance or bandwidth of the kernels to minimize
the estimation error. A popular heuristic for this is Silverman’s
rule of thumb [6], which is relatively easy to calculate. But
as it assumes an underlying Gaussian pdf, it can easily break
down when the data is multimodal. Other bandwidth selection
methods are based on error metrics and minimize their expected
value under different premises [7].

C. Spline-based Methods

Spline-based methods approximate the pdf by a sum of
piecewise functions, each one defined on an interval. These
intervals may either be defined a priori as a grid or constructed
from the sample positions, in which case the estimation of the
density boils down to some kind of spline interpolation. Popular
families of spline functions are polynomial and exponential
functions. In [8] so-called exponential epi-splines are used,
as they can match important distributions like Gaussians
exactly. This property comes with the disadvantage that these
splines are in general difficult to integrate. The spline is fitted
to the samples using maximum likelihood estimation under
some optional constraints to guide the optimization based on
additional information about the density.

Huber dealt with the problem of finding the pdf that
minimizes the Fisher information, given some values of the
corresponding cdf [9]. He showed that there is a unique solution
to this problem and gave a general form of the solution.
The result is a “curious and rather non-trivial type of spline
interpolation” [9].

D. Fisher Information as Regularizer

If, after applying all the constraints and premises to the
density estimation problem one is willing to use, there are still
some degrees of freedom left, an objective function can be
introduced to select a unique solution. This was done in [10],
where the Fisher information was used in conjunction with
maximum likelihood estimation to fit a pdf to observations.
They expressed the density as a sequence of orthogonal Hermite
polynomials. The Fisher information was added as a roughness
penalty to the maximum likelihood estimation, to ensure that
the result would be as smooth as possible. The same notion of
Fisher information as roughness penalty was used in [11], to
find the smoothest possible Gaussian mixture density fulfilling
a set of general constraints.

III. PROBLEM FORMULATION

A. Assumptions on Samples

We consider the estimation of a pdf f(x) from a set of
N > 1 one-dimensional samples ξi, i = 1, . . . , N of an
unknown underlying probability distribution f̃(x). The samples
are expected to be distinct from each other and sorted in
ascending order

−∞ < ξ1 < ξ2 < · · · < ξN−1 < ξN < ∞ . (2)



Additionally, each sample is interpreted as a Dirac delta
function that represents an equal amount of the probability
mass of the continuous underlying distribution f̃(x). This leads
to the assumption that the intervals defined by the locations of
the samples should also contain the same amount of mass of
f̃(x) ∫ ξi+1

ξi

f̃(x) dx =
1

N
i = 1, . . . , N − 1 (3)

and the two border intervals should contain half the mass∫ ξ1

−∞
f̃(x) dx =

∫ ∞

ξN

f̃(x) dx =
1

2N
. (4)

In terms of the cdf F̃ (x) this is equivalent to

F̃ (ξi) =

∫ ξi

−∞
f̃(x) dx =

2i− 1

2N
i = 1, . . . , N , (5)

which gives the formula for inverse transform sampling when
solved for ξi. These assumptions cause the estimated cdf to
map the samples to equidistant values on the ordinate. This is
similar to the procedure in maximum spacing estimation where
the distances between the cdf values of consecutive samples are
maximized to achieve the mapping to a uniform distribution.

Regardless of the method used to generate the samples, it
is assumed that they approximately satisfy (3) to (5). Samples
obtained from inverse transform sampling are drawn to do this
by design. Unfortunately, this is not true for random samples,
which can lead to some unexpected results, when using them as
input to our proposed method. For example, the pdf estimated
from a set of random Gaussian samples approaches a Gaussian
density only with a relatively large number of samples. To
mitigate these effects from randomness, we propose to smooth
out random samples before applying our method for example
by replacing them with fewer samples, that encode the same
distribution. A fast way to do this is to replace the original set
of samples with its qi-quantiles where qi = (2i− 1)/(2N). A
more accurate, but computationally more demanding alternative
would be to use Dirac mixture reduction techniques based on
Localized Cumulative Distributions (LCDs) [12].

B. Density Representation

We seek to parameterize the estimated pdf f(x) in a way
that lends itself to further processing like moment calculation
or sampling, while still being able to approximate arbitrary
density functions accurately.

These requirements are fulfilled very well by polynomial
splines. A polynomial spline is defined as

S(x) =

M−1∑
i=1

si(x) (6)

with functions si(x) defined on consecutive intervals between
knots m1, . . . ,mM+1

si(x) =

{
pi(x) if mi < x ≤ mi+1

0 else
i = 1, . . . ,M (7)

and polynomials of fixed degree d with coefficients ci,k

pi(x) =

d∑
k=0

ci,k x
k . (8)

In contrast to exponential epi-splines [8] or the spline functions
proposed in [9], polynomial splines are straightforward to
integrate, enabling the efficient calculation of the cdf and
moments of the distribution. Also, polynomial root finding is a
well-studied area of mathematics making fast inverse transform
sampling possible, which is more complex for mixture models
as used in [11]. Lastly, the number of degrees of freedom
and with that the expressiveness of the representation can be
adjusted by adjusting the degree of the used polynomials.

However, one of the necessary conditions of a pdf is that
it needs to be non-negative. This means that each polynomial
p
(d)
i (x) needs to be non-negative on its relevant interval. For

polynomials of low degree, some constraints of the coefficients
can be found to ensure this [13]–[16]. To avoid these additional
constraints in the final optimization problem and to be able
to easily change the degree of the used polynomials without
also adapting the constraints, we chose to work with squared
polynomials

pi(x) =
(
ri(x)

)2
, (9)

that are completely defined by the polynomials ri(x). This has
the advantage that the resulting spline is non-negative without
needing to enforce further constraints, at the cost of sacrificing
some degrees of freedom of the original polynomials.

We define the knots for the spline function based on the
given samples (2). First, two additional artificial points ξ0 < ξ1
and ξN+1 > ξN are added to the sample set. These two points
serve as outer bounds for the support of the spline. As all
polynomials tend to ±∞ for x → ±∞, these bounds are
required to ensure that the integral over the spline is finite. We
can then set

mi = ξi−1 i = 1, . . . , N + 2 (10)

to get M = N+2 knots and the corresponding N+1 intervals
and polynomials defined on these intervals.

To find the desired pdf f(x) given the samples mi, the
spline function is fit to the samples fulfilling (5) and making
sure that the pdf and its first derivative are continuous. This
gives a system of nonlinear equations consisting of∫ ξ1

ξ0

pi(ξi) dx =
1

2N
, (11)∫ ξi

ξi−1

pi(ξi) dx =
1

N
for i = 2, . . . , N , (12)∫ ξN+1

ξN

pi(ξi) dx =
1

2N
, (13)

and the continuity constraints

pi(ξi) = pi+1(ξi) ∀i ∈ 1, . . . , N , (14)
p′i(ξi) = p′i+1(ξi) ∀i ∈ 1, . . . , N . (15)



These constraints on pi(x) directly result in a set of constraints
on ri(x) with 3N+1 equations to be solved for (d+1)(N+1)
coefficients of all the spline polynomials. This means that
polynomials of degree two or higher have to be used for ri(x)
to have enough degrees of freedom to get feasible solutions,
which results in squared polynomials of at least degree four.
The system then has more coefficients than equations making
it underdetermined. This is addressed by introducing the Fisher
information as a regularizer to select the least informative
solution from the feasible set. This solution contains the
minimum amount of additional information compared to the
original samples, while simultaneously fulfilling the given
continuity constraints.

C. Fisher Information

Fisher information is commonly used as a roughness measure
for pdfs in the literature [10], [11], [17]. It is based on the
information-theoretic notion that pdfs become more informative
the more peaks they have, and the more pronounced these are.
It is commonly defined as

IF
(
f(x)

)
=

∫ ∞

−∞

(
f ′(x)

)2
f(x)

dx . (16)

This integral typically is not solvable in closed form. By setting
g(x) =

√
f(x) with f(x) ≥ 0 and exploiting

g′(x) =
(√

f(x)
)′

=
f ′(x)

2
√
f(x)

(17)

the Fisher information can be reformulated as

IF
(
f(x)

)
= IF

((
g(x)

)2)
= 4

∫ ∞

−∞

(
g′(x)

)2
dx . (18)

This reformulation eliminates the division by f(x) from the
integral but requires the square root of the function. As we
plug the proposed squared polynomial spline into the Fisher
information we discover another reason that we chose to work
with squares of the polynomials in (9), as this form is perfectly
suited to be used with (18).

D. Final Optimization Problem

We model the desired pdf f(x) as the square of a polynomial
spline, that is itself a polynomial spline of higher degree.
The unsquared spline r(x) is parameterized by the vector of
coefficients C = [c1,0, . . . , c1,d, . . . , cN+1,0, . . . , cN+1,d]

⊤ of
its constituent polynomials ri(x). We now find the vector of
coefficients C∗, that minimizes the Fisher information (18),
while fulfilling the constraints (11) to (15) imposed on the
squared spline. The optimal coefficients of r(x) are obtained
by solving the optimization problem

C∗ = argmin
C

IF

((
r(x;C)

)2)
(19)

subject to (11) to (15). The corresponding coefficients of the
squared polynomials pi(x) can then easily be calculated from
these, yielding the final pdf f(x;C).

When using unsquared polynomials of degree two the
constraints admit only one solution when the two border points

ξ0 and ξN+1 are fixed, as the number of parameters is exactly
equal to the number of equations. If the borders are part of
the optimization parameters or a higher-order polynomial is
used, the system is underdetermined and the Fisher information
selects the unique least informative solution.

It is possible to introduce additional constraints to the
optimization problem if more details about the shape of
the unknown underlying density are known. This could for
example be function values or derivative information. In [8]
this additional information is called soft information.

IV. EXAMPLES

The proposed method was implemented in Julia using the
JuMP framework [18]. The type of results that were produced
are visualized in Fig. 1. The empirical cdf given by the samples
is smoothed by the squared polynomial spline, intersecting the
cdf at the values specified in the constraints (11) to (13).

To show the usefulness of the proposed density estimation
method, it was tested on samples from four different probability
distributions. The samples were generated from these distribu-
tions with inverse transform sampling based on deterministic
uniform samples. It is important to note that the only inputs
to optimization are the positions of the samples. The function
that was used to generate the samples is completely unknown
to the optimizer. For all experiments, polynomial splines with
d = 3 were used and the border points ξ0 and ξN+1 were part
of the optimization parameters and not fixed beforehand.

The first two distributions showcased are a Gaussian distri-
bution with zero mean and unit variance (Fig. 2) as well as a
Laplace distribution with zero mean and scale of one (Fig. 3).
Even for a low number of samples the estimated pdf matches
the underlying density closely and for N = 10 samples there
is almost no difference between them. For one, this shows the
power of deterministic samples to accurately represent densities
with few samples, but also that our method makes good use
of this power by enforcing (5).
Next, we have a look at a multimodal pdf as it may arise

in the filter step of a Bayesian filter. The example in Fig. 4
results from multiplying a Gaussian prior with the likelihood
associated with a quadratic measurement equation. Our method
manages to give good estimates for the density that produced
these samples. As the least informative estimate given by our
method is quite different from the actual underlying density
for 5 samples, it is clear this number of samples is insufficient
to capture all the information of the underlying density. With
10 samples, however, the original density is matched much
more closely as more information is available.

As a last distribution, we have a look at the Gamma
distribution with shape parameter 2 and scale 1, see Fig. 5.
The special feature of this distribution is, that it is only
defined for positive numbers. We built this information into
the optimization by fixing the left border point x0 = 0.0.
While the falling flank of the density is estimated relatively
accurately, there are some deviations on the rising flank and
around the maximum of the distribution. Through numerical
experiments, we could validate, that these are not errors of the
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Fig. 2: The estimated pdf (yellow) with N = 5 and N =
10 samples (black) deterministically drawn from a Gaussian
distribution (blue) as input.
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Fig. 3: The estimated pdf (yellow) with N = 5 and N =
10 samples (black) deterministically drawn from a Laplace
distribution (blue) as input.

proposed method. It seems, that these are the functions with
the lowest Fisher information satisfying the set of constraints.
As the code was not optimized for speed and the time to
solve the optimization problem seems to depend heavily on
the exact sample positions, the initial guess, and the degree of
the polynomials used, no detailed benchmarking regarding the
execution time was performed. All example problems discussed
in the paper terminated after about 100ms on one core of an
AMD Ryzen 7 PRO 4750U notebook CPU.

V. CONCLUSION

We introduced a new method to estimate a pdf from a set of
samples. The density is represented by a squared polynomial
spline, which facilitates further processing of the estimated
pdf. Specifically, it is guaranteed to be non-negative, fast to
evaluate, and easy to integrate. The fitting is done by imposing
constraints on the cdf of the solution and selecting the least
informative solution based on Fisher information. The method
can be applied to deterministic and, with suitable preprocessing,
random samples. The results show that even polynomials of
relatively low degree can approximate the optimal solution
very well.

Using different objective functions and additional constraints
can be used to guide the optimization to different solutions.
The impact that specific objectives or constraints have on the
solution is still to be investigated. We also hope to extend the
proposed method to two or more dimensions, though this is

a challenging problem to solve. The key component for it is
to find a high-dimensional analogue to the intervals between
samples.
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