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Abstract—The earth’s magnetic field along railway tracks is
strongly distorted by magnetic material in the vicinity, e.g., steel
in rails and reinforced concrete. The resulting magnetic distor-
tions are persistent in time and characteristic for a certain part of
the track. Thus, these distortions can be seen as fingerprints that
enable localization when a map of the magnetic field is available.
This is particularity interesting for areas where global navigation
satellite system (GNSS) signals are not available, such as tunnels.
Unfortunately, creating the magnetic map in a GNSS-denied
area requires a position reference system that is most likely not
available. This paper addresses this problem with a graph-based
simultaneous localization and mapping (SLAM) algorithm that
uses only odometer and magnetometer measurements. The key
idea of the proposed algorithm is to use the magnetic field to
detect loop closures and to calculate the relative transformation
between different nodes in the pose-graph.

The algorithm is evaluated based on a data set recorded with
the advanced TrainLab of the Deutsche Bahn traveling on a track
in Berlin. Results show that the graph SLAM algorithm together
with the magnetic loop closure detection reduces and bounds the
position error of the odometry.

I. INTRODUCTION

Magnetic field-based train localization has the potential
to enable localization also in areas where global navigation
satellite systems (GNSS) are not available without the need
to install track-side devices dedicated for localization such
as balises or radio beacons [1]. Magnetic localization is a
fingerprinting method and requires a map that relates a certain
magnetic fingerprint or pattern to the position where the
pattern is located. Unfortunately, creating the map requires a
position reference leading to a chicken and egg problem: Mag-
netic localization requires a map and map generation requires
a reference position. This kind of problem is encountered in
many applications, e.g., in robotics where a mobile robot has to
create a map of an unknown environment for self-localization.
Over the last years this led to the development of a large
variety of simultaneous localization and mapping (SLAM)
algorithms [2], [3], [4], [5].

Initially SLAM was based on Bayesian filters, such as
extended Kalman filters [2] and particles filters [3]. Filter-
based SLAM also has been applied to magnetic field mapping
[6], [7]. These algorithms express the posterior density of the
localization part of the SLAM problem with a particle filter
and combine them with Gaussian processes (GPs) to represent
the magnetic maps. For railway tracks with lengths of multiple
kilometers this combination causes two issues. The first issue

is related to the particle filter that represents the localization
related posterior by a weighted set of particles. If a train travels
back and forth on a long track, the time until it reaches the
same position again, and therefore the time until a loop closure
can be detected, is long. This results in a potentially high
location uncertainty and a high number of particles to represent
the uncertainty. The second issue is related to the GP for the
magnetic field maps. A naı̈ve implementation of the GP scales
cubically with the amount of incorporated measurements. Even
though there exist more efficient approximations for GPs, e.g.,
reduced-rank approximations [6], the complexity is still high
when an accurate approximation of the GP is desired.

In this paper, we thus propose to not use filter-based
methods but graph-based methods that are better suitable for
the mapping of large-scale environments [4]. Graph SLAM
poses the SLAM problem as an optimization problem, where
the goal of the optimization is to find a sequence of locations
that explain the available measurements as well as possible. To
achieve this goal, a cost function is constructed and minimized.
The cost function consists of multiple constraints, where each
constraint is derived from the available measurements. Typi-
cally, constraints describe spatial relationships between differ-
ent nodes in the graph. A common example for a constraint
is obtained from an odometer measurement and expresses the
distance between two consecutive nodes. Another constraint is
introduced by loop closures. When a loop closure is detected,
a spatial relation between two, not necessarily consecutive,
nodes is added to the graph. How the loop closures are detected
strongly depends on the used sensor setup. Popular methods
for SLAM use lidar scans or camera images to identify already
visited locations [8], [9]. In contrast to this, we propose the
use of the magnetic field to detect the loop closures. The
algorithm developed in this paper is inspired by the work
in [10], where the magnetic field is used to detect loop
closures for localizing a wheeled mobile robot. Our algorithm
differs from the one in [10] in the way the loop closures are
detected and how the magnetic field is represented. Instead of
having a single node for each magnetometer measurements,
we create a local map for each node from multiple odometer
and magnetometer measurements. A local map is a dense
representation of the magnetic field around the corresponding
node, e.g., the magnetic field of the last 100 m of track before
the node was created. In this way we use a dense representation
of the magnetic field for loop closure detection while keeping



the number of nodes, that are optimized, low. Furthermore, the
optimization algorithm is specifically adapted to and evaluated
in the railway environment.

II. GRAPH SLAM

Graph-based SLAM algorithms formulate the SLAM prob-
lem as an optimization problem. Therefore, a cost function
has to be defined. Here the cost function is the full posterior
probability density function (pdf) of a sequence of train poses
x0:k

p(x0:k|Z,Y) , (1)

where x0:k is a vector containing the poses and Z and Y
are two sets of observations. A pose xi in the vector x0:k

is here simply the scalar along-track position that describes
where the train is on the track. Set Z contains observations
zij ∈ Z that describe how two along-track positions xi

and xj with i ̸= j in the vector x0:k are related to each
other. This kind of measurements can be obtained from an
odometer that measures the distance the train has driven
between two positions or, as will be explained in more detail
in the next sections, this information can be also obtained from
the magnetic field. In contrast to the set Z , the set Y contains
absolute information about a certain position. Therefore, an
element yi of Y is only related to a single position xi. In
the following, we will refer to a position xi also as node
and observations will be referred to as edges. The meaning
of this will become clearer after the derivation of the cost
function. The goal of the optimization is to find the maximum
a-posteriori (MAP) estimate

x̂0:k = argmax
x0:k

p(x0:k|Z,Y) . (2)

To perform the optimization, it is beneficial to decompose the
posterior into a more convenient form. First, Bayes’ law is
applied to the posterior to obtain

p(x0:k|Z,Y) ∝ p(Z,Y|x0:k)p(x0:k) . (3)

Note, the right hand side above is only proportional to the
posterior but since we only seek the maximum we can ignore
the normalization constant. Second, the right hand side in (3)
is further decomposed into

p(Z,Y|x0:k)p(x0:k) = p(Y|x0:k)p(Z|x0:k)p(x0:k)

= p(x0:k)
∏
i∈CY

p(yi|xi)
∏

{i,j}∈CZ

p(zi,j |xi, xj) ,

(4)

assuming independence between all the observations. The
elements of set CZ are pairs of node indices for which relative
observations are contained in Z and set CY contains the
indices of positions for which absolute observations exist.
To not overload the notation, only one relative observation
per pair of nodes and one absolute observation per node is
considered here but the extension to multiple observations is
straightforward.

The last two terms in (4) are the product of the likelihoods
of the individual observations. For each of the observations
the likelihood is considered to be Gaussian. For the relative
observations in Z the likelihood is

p(zi,j |xi, xj) = N
(
zi,j ; z̃(xi, xj),Ω

−1
ij

)
, (5)

where Ω−1
ij is the variance of the measurement noise and the

mean is given by the predicted observation z̃(xi, xj). The
likelihood of the absolute observations in Y , and therefore
its mean ỹ(xi), depends only on a single position

p(yi|xi) = N
(
yi; ỹ(xi),Ω

−1
i

)
, (6)

where Ω−1
i describes once more the measurements noise

variance. For the prior pdf p(x0:k) we assume that we only
have information about the first node so we simply set it to

p(x0) = N (x0; x̃0,Ω
−1
0 ) . (7)

Setting the precision Ω0 to a high value anchors the node at
mean value x̃0 of the prior. This mean can be obtained, e.g.,
from GNSS before the train enters a tunnel, or it can be set
simply to zero to define the origin of the track coordinate
system when no absolute position information is available.

For optimization, we simplify the cost function
p(Z,Y|x0:k)p(x0:k) defined in (4)-(7) by first taking the
logarithm, removing all constant terms, and then multiplying
the result by −2. The multiplication with −2 turns the
maximization problem into a minimization problem

x̂0:k = argmin
x0:k

c(x0:k) , (8)

with the cost function

c(x0:k) = ep(x0)
2Ω0+

∑
i∈CY

ea,i(x0:k)
2Ωi+

∑
{i,j}∈CZ

er,ij(x0:k)
2Ωij .

(9)

In (9) the functions ep(·), ea,i(·), and er,ij(·) are the error func-
tions related to the prior, absolute and relative observations
given by

ep (x0:k) = x0 − x̃0 (10)
ea,i(x0:k) = yi − ỹ(xi) (11)
er,ij(x0:k) = zi,j − z̃(xi, xj) . (12)

The cost function c(x0:k) can be visually represented by a
graph, where each edge represents a constraint given by one
term of the cost function and each node is a pose xi. An
example of a graph, as it is encountered in the railway envi-
ronment, is shown in Fig. 1, where the different types of edges
are highlighted with different colors. To better see the structure
of the graph and to avoid overlap of nodes and edges, we
introduce a second dimension for visualization that indicates
how often the train changes its driving direction before the
node is created. The graph in Fig. 1 shows the example of a
train running forth and back on a single track. Two neighboring
nodes are always connected with an odometer observation
(blue edge). In addition, two non-consecutive nodes can be
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Figure 1. Example of a small graph with color coded edges. Black loops
indicate that prior information is available for that node and red loops
indicate an absolute observation. Blue and green edges correspond to a relative
observation between two nodes. In this paper, relative observations are either
related to an odometer measurement (blue edges) or a magnetic loop closure
(green edges).

connected with a loop closure (green edges). Prior information
is indicated by a black loop from a node to itself. Similarly,
absolute information is represented by a red loop.

III. GRAPH GENERATION

In the previous section, the general idea of the graph-based
SLAM approach was explained on a rather abstract level. For
clarity, this section explains how the graph is generated and
how the different observations used in this paper are obtained.

A. Node Creation

To keep the number of nodes at a reasonable level, we do not
create a node with each new observation from the odometer
or magnetometer but instead we create a node every time the
train has traveled a certain distance relative to the last created
node. At creation time, the node position is initialized with
the position of the previous node plus the traveled distance
measured with the odometer. Even though nodes are created
only sparsely, all observations are considered in the SLAM
algorithm and are used to create local magnetic field maps at
the moment a new node is created. Each node therefore has its
own local map. As will be explained in the following, these
maps play a crucial role for loop closure detection.

B. Odometer Edges

As shown in the example graph in Fig. 1, there is an edge
between consecutive nodes. The observations zi,j for edges
between consecutive nodes are here obtained from an odome-
ter. The odometer directly measures the relative position, thus
the error function for odometer edges is linear

er,ij(x0:k) = zi,j − (xi − xj) . (13)

In railways, the odometer observations are typically obtained
from integrating the speed of a wheel speed sensor or a
Doppler radar. Under nominal conditions, these sensors work
quite well but there are also known issues that degrade their
performance. For axle mounted rotary encoders, slipping and
sliding of the wheel can lead to erroneous speed measurements
and Doppler radar-based speed sensors are susceptible to
environmental conditions such as snowfall.

Magnetometer
Odometer

Relative position / m
0dmap dLC

driving direction

Figure 2. Example of a local map. The position is measured always relative
to the current magnetometer position during node creation. Note, the map
always describes the magnetic field on the part of the track that was passed
before the node creation.

C. Loop Closure Edges

Loop closures are relative edges between non-consecutive
nodes. A loop closure can be detected when a train revisits a
position on the track. The benefit of a loop closure edge is that
it links freshly added nodes, which have a high uncertainty,
to old nodes, which are more certain. Loosely speaking,
these links between new and old nodes constrain the overall
trajectory of the train over the track and therefore can reduce
the position error compared to the pure odometer.

The main contribution of this paper lies in the loop closure
detection. Here, the loop closures are detected based on local
magnetic field maps. Each node has its own map that describes
the magnetic field in its surroundings. A magnetic field map is
a function that maps the along-track position to the magnetic
vector field at that position. For local maps the position is
always relative w.r.t. the position of the corresponding node.
Whenever a new node is added to the graph, the local maps are
used to detect loop closures. The detection consists of three
steps

• Find the set L of nodes that are in a predefined search
radius around the freshly created node.

• Compare the magnetic field recorded on the last dLC
meters preceding the new node’s position with the local
maps of all nodes in L and find the position within these
maps where it best fits.

• Add an edge between the current node i and a node
j ∈ L when the similarity between the current magnetic
field and the local map is above a defined threshold TLC.
The relative observation zi,j of the edge is given by the
relative position where the current magnetic field fits best
to the local map of node j. The error function for loop
closure edges is identical to the one for odometer edges
given by (13).

In the following, the map creation and the similarity calcula-
tion is explained in more detail:

1) Local Maps: For the local maps, the magnetometer and
odometer measurements of the train are stored in a buffer.
From that buffer, a local map is created whenever a new
node is created. In the map creation, the buffered speed is
integrated, starting with the newest available measurement.
The integrated speed is then basically the along-track position
measured relative to the freshly created node. By associating
the relative positions to the magnetometer measurements in
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Figure 3. Match found from the correlation of a 50 m long magnetic signature
(red line) with a 100 m long local map (blue line). This example shows only
the matching for a single component of the vector field but for finding the
shift all components were considered.

the buffer a first map is obtained. The distance between two
relative positions from the speed integration varies depending
on the train’s motion during the measurements. Since this
would complicate further processing, the unequally spaced
map is interpolated on an equidistant grid. An example of
a local magnetic map is shown in Fig. 2. The map length dmap
can be chosen freely but with an increasing length also the
speed integration error increases. Thus, the length of the map
is a trade-off between maximizing the number of loop closures
between nodes and the accuracy and reliability of the loop
closures.

2) Similarity Calculation: If a new node is created, we also
create its local map and store it with the node. Then we cut out
a segment with length dLC from the map that we call magnetic
signature. The signature is cut from the start of the map as
indicated by the gray area in Fig. 2. In general, the signature
length is smaller than the length of the map dmap > dLC. This
ensures that loop closures can be found between nodes that
are not at the exact same along-track position. As similarity
measure between the signature and a local map of a node in
L, the correlation coefficient ρ(d) is used

ρ(d) =

N∑
k=1

(mk,d − m̄d)(sk − s̄)√
N∑

k=1

(mk,d − m̄d)2

√
N∑

k=1

(sk − s̄)2

, (14)

where sk is the k-th sample of the signature and mk,d is
the k-th sample of a local map cutout between the relative
position d to d + dLC. In the correlation coefficient, s̄ and
m̄d represent the sample mean of the signature and map
cutout. Per definition the correlation coefficient is limited to
values between ±1. Because the map is longer than the signa-
ture, the correlation coefficient is evaluated for all possible
positions d of the signature in the local map. In addition,
the correlation coefficient is calculated separately for each of
the three components of the magnetic vector field. To make
the loop closure detection more robust in the presence of
erroneous magnetometer measurements, the detection is based
on the combination of the correlation coefficients of multiple
components of the magnetic vector field. In total four combina-
tions of correlation coefficients are considered. The first three

are the sum of the coefficients obtained from two different
magnetic field components and the fourth combination is the
sum over all components. Each combination is then divided
by the number of values in the sum such that that result is
limited again to ±1. We then find the highest value ρmax of
all combinations and store the corresponding position dmax, at
which the map cutout starts. If ρmax > TLC is fulfilled, a loop
closure is detected between the newly created node and the
node that corresponds to the local map used in the correlation.
From dmax, the relative position zi,j between the two nodes is
calculated and the loop closure edge is inserted into the graph.

An example for a local map and a signature for which a
loop closure was detected is shown in Fig. 3. In Fig. 3, the
signature was shifted by dmax found from the correlation with
the local map. Note, when a train is running back and forth
on a track, its driving direction during creation of the local
maps and signatures has to be accounted for in the calculation
of the correlation coefficient and in the relative position zi,j
obtained from it.

D. Absolute Edges

Absolute edges will not be used in this paper but for
completeness we wanted to mention how the corresponding
observations can be obtained in the railway domain. Two pos-
sible sources for absolute position information are balises and
GNSS. Balises are placed in the middle of the track between
the two rails and are comparable to an RFID tag. When a
train passes over a balise, the balise transmits information to
the train related to its position. The observations retrieved from
a balise are already in the 1D domain of the track coordinate
system and can be used directly to create an absolute edge.
In contrast, the observations obtained from a GNSS receiver
describe the position of the train in the three-dimensional
space, e.g., in the ECEF coordinate system. To create an edge
for GNSS observations, the observations first have to be related
to the 1D track coordinate system. This requires a map of
the track network that maps each along-track position to its
position in three-dimensional space. In this paper, we do not
use absolute edges because we are mainly interested on how
the proposed SLAM algorithm performs in areas without a
position reference system such as tunnels.

IV. OPTIMIZATION ALGORITHM

Now that the cost function and the graph generation was
introduced, we can have a look on the optimization algo-
rithm. Inspecting (9) shows that finding the MAP estimate of
the trajectory is a weighted least-squares problem. For most
SLAM problems the corresponding least-squares problem will
be nonlinear and requires an iterative optimization, e.g., with
the Gauss-Newton method [5]. In the special case considered
in this paper, the least-squares problem is linear due to the
linear error functions ep(·) and er,ij(·) defined in (10) and
(13). The solution therefore can be calculated directly without
iterations. To keep our optimization algorithm flexible and to
allow for future nonlinear error functions, in the following
we derive the equations for the Gauss-Newton algorithm for



general error functions. Furthermore, we keep the possibility
to account for absolute information in the optimization.

For the derivation, the error functions are represented by
their Taylor series. The Taylor series of the different functions
are given by

el
p(x0:k) = ep(x

∗
0:k) + Jp(x0:k − x∗

0:k)

el
a,i(x0:k) = ea,i(x

∗
0:k) + Ji(x0:k − x∗

0:k)

el
r,ij(x0:k) = er,ij(x

∗
0:k) + Jij(x0:k − x∗

0:k) , (15)

where x∗
0:k is an arbitrary operating point and Jp, Ji, and Jij

are the Jacobians of the error functions w.r.t. the vector x0:k

evaulated at x∗
0:k

Jp = ∇⊤
x0:k

ep(x0:k)|x0:k=x∗
0:k

Ji = ∇⊤
x0:k

ea,i(x0:k)|x0:k=x∗
0:k

Jij = ∇⊤
x0:k

er,ij(x0:k)|x0:k=x∗
0:k

. (16)

Since the error functions are scalar, the Jacobians are row
vectors of dimension k + 1 and the product with the vector
∆x0:k = x0:k − x∗

0:k is a scalar. Note, here the prior and
relative error functions are linear and their Taylor series are
exact and the Jacobians are constant. For nonlinear error
functions this is not the case and the Jacobians have to be
updated when the operating point is changed. Now the Taylor
series representations of the error functions are plugged into
the cost function in (9) which yields

cl(x0:k) = el
p(x0:k)

2Ω0 +
∑
i∈CY

el
a,i(x0:k)

2Ωi

+
∑

{i,j}∈CZ

el
r,ij(x0:k)

2Ωij

= cp(x0:k) + ci(x0:k) + cij(x0:k) . (17)

The least-squares solution is obtained by setting the gradient
of (17) to zero

∇x0:k
cl(x0:k)= ∇x0:k

[cp(x0:k) + ci(x0:k) + cij(x0:k)] =0.
(18)

The gradients of the individual parts of (18) are given by

∇x0:k
cp(x0:k) = 2Ω0J

⊤
p ep(x

∗
0:k) + 2Ω0J

⊤
p Jp∆x0:k

∇x0:k
ci(x0:k) =

∑
i∈CY

(2ΩiJ
⊤
i ea,i(x

∗
0:k) + 2ΩiJ

⊤
i Ji∆x0:k)

∇x0:k
cij(x0:k) =

∑
{i,j}∈CZ

(2ΩijJ
⊤
ij er,ij(x

∗
0:k)+2ΩijJ

⊤
ij Jij∆x0:k) .

(19)

Equation (19) can be expressed as a system of linear equations

−b = H∆x0:k , (20)

with the vector

b = 2Ω0J
⊤
p ep(x

∗
0:k) +

∑
i∈CY

2ΩiJ
T
i ea,i(x

∗
0:k)

+
∑

{i,j}∈CZ

2ΩijJ
T
ij er,ij(x

∗
0:k)

= bp + ba + br (21)

and the matrix

H = 2Ω0J
T
p Jp +

∑
i∈CY

2ΩiJ
T
i Ji +

∑
{i,j}∈CZ

2ΩijJ
T
ij Jij

= Hp +Ha +Hr . (22)

To minimize the cost function, we now solve for ∆x0:k and
then calculate the estimated absolute value of x0:k from it

x̂0:k = x∗
0:k −H−1b. (23)

In the linear case, we can set the operating point x∗
0:k to an

arbitrary value, e.g., the zero vector, and will obtain always
the unique least-squares solution after the first iteration. For
nonlinear problems, multiple iterations of (23) are required.
After each iteration, the operating point is set to the newest
estimate x∗

0:k = x̂0:k. As already mentioned, for nonlinear
functions the Jacobians depend on the operating point and
matrix H and vector b have to be recalculated in each
iteration.

A. Complexity Considerations

The matrix H, that is inverted during optimization, has
dimension (k + 1) × (k + 1). For large vectors x0:k this can
result in a high computational complexity, especially when
nonlinear observations are considered and the inverse has
to be recalculated for multiple iterations. In the most naı̈ve
implementation this would have a complexity of O((k+1)3).
Fortunately, it can be shown that matrix H is sparse by
construction, which allows to use the method also for a large
number of nodes. To see this, we have a look at the structure
of the individual terms in (22).

The prior edge contributes to H over the matrix

Hp = 2Ω0J
T
p Jp , (24)

with Jacobian

Jp =
[
∂ ep(x0:k)

∂x0
|x0:k=x∗

0:k
0 · · · 0

]
, (25)

which has exactly one non-zero component. The product of
Jp with its transpose, and as a result also Hp, only has
one non-zero component at the first position of its diagonal.
Due to (25), the corresponding vector bp is also sparse. For
the absolute observations the Jacobian matrix has a similar
structure, which means that Ha and ba are sparse. For Ha the
non-zero entries are the diagonal elements that correspond to
a node with an absolute observation.

The relative observations introduce links between different
nodes. In H this is represented by non-diagonal elements. This
can be seen once more from the structure of the Jacobian. In
Jij only the elements associated to the derivative w.r.t. xi and
xj are non-zero. The outer product J⊤

ij Jij of the Jacobian for
one relative observation thus has four non-zero elements. Two
at the diagonal and two at the off-diagonal that correspond
to xi and xj . This shows that both b and H are sparse and
computational efficient methods for solving the linear system
in (20) are applicable.



Figure 4. (top) Advanced TrainLab of the Deutsche Bahn. The advanced
TrainLab is a diesel-electric train with a distributed traction concept. (bottom)
Magnetometer array with five sensors. The different sensors are highlighted
with circles. In this paper the sensor in the top middle (green circle) is used.
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Figure 5. Test track between Berlin Grunewald and Halensee (red line) on
which the measurements were recorded. The start and end position of the
train in the evaluation is marked by the green dot. Image data: Google Earth

V. EVALUATION

In this section, the proposed SLAM algorithm is eval-
uated with measurements recorded by sensors mounted on
the advanced TrainLab of the Deutsche Bahn while it was
driving on a track network in Berlin. In the following, first
the measurement setup shown in Fig. 4 and the data collection
process is described, and second the results of the SLAM
algorithm are discussed.

A. Measurement Setup and Data Collection

The hardware setup during the measurements consists of a
low-cost Kionix KMX62 magnetometer, a Septentrio GNSS
receiver, and a rotary encoder from DEUTA. Additional infor-
mation about the measurements and the setup can be found
in [11]. In the SLAM algorithm, only the magnetometer and
encoder data are considered. The observations from the GNSS
receiver serve only as ground truth to assess the error of
the SLAM algorithm. The magnetometer measurements were

recorded at a rate of 200 Hz to ensure a dense sampling of the
magnetic field also when the train is driving at higher speeds.

The used magnetometer was part of a magnetometer array
mounted underneath the train. An image of the advanced
TrainLab and the magnetometer is shown in Fig. 4. The
magnetometer used for SLAM is marked with a green circle
and was mounted in the middle of the train at a height of
≈ 42 cm above the rails.

In the evaluation, we only consider a short part of our
measurements in which the train ran on a single track, as
the SLAM algorithm does not yet take multiple tracks into
account. The test track on which the measurements for the
evaluation were recorded is shown in Fig. 5 and has a length
of 1.68 km. The data used in the evaluation is divided into four
runs. In each run the train drives from the middle of the test
track, marked by the green dot in Fig. 5, to Grunewald, waits
there a few minutes, and then drives all the way to Halensee
and then back to the starting point. Due to some operational
requirements, the train did not stop at Halensee but kept
running towards Tempelhof (to the right in Fig. 5) and it took a
couple of minutes until the train arrived back at the test track.
To keep the data limited to the test track and a single track
scenario, the part of the data between Halensee and Tempelhof
was removed based on the recorded GNSS positions, leading
to a discontinuity in the data. The discontinuity is handled
by constructing a virtual odometer measurement from GNSS
measurements at the discontinuity. When the end of the test
track at Halensee is reached, the virtual odometer measurement
is inserted into the measurements from the rotary encoder.
Besides the discontinuities at Halensee, the data of the four
runs is continuously recorded.

B. Parameters and Initialization

Before the SLAM algorithm is applied to the data of the
four runs described in the previous section, some parameters
have to be set. For loop closure detection the length of the
local maps is set to 100 m and the signature length is 50 m.
The distance between two nodes to be considered in the loop
closure detection is set to 100 m. The threshold the correlation
coefficient has to exceed before a loop closure is added to the
graph is set to 0.97.

A new node is created as soon as the distance to the last
node, obtained from the odometer, exceeds dnode = 25m.
Note, this does not mean that nodes are spaced equidistantly
due to the low odometry sampling rate of 1 Hz. For example,
during the measurements the train was traveling with a speed
up to 15 m s−1. When now the distance to the last created node
is just below dnode, it can happen that a new node is created at
a distance of almost 40 m. If needed, one could use also higher
sampling rates for the odometry to get a more even spacing of
the nodes adding almost no computational complexity to the
SLAM algorithm.

In the cost function and hence in the optimization, the
different types of edges are weighted differently. The odom-
etry edges between two consecutive nodes are weighted by
Ωodo = (1m)−2 and the loop closure edges are weighted



Table I
POSITION ERROR STATISTICS FOR A SINGLE RUN

Odometry SLAM
Run Number RMSE/m Max Error/m RMSE/m Max Error/m

1 1.85 4.52 1.00 3.13
2 1.95 3.77 1.07 2.43
3 2.20 4.66 1.24 2.65
4 1.89 3.90 1.32 2.95

Table II
POSITION ERROR STATISTICS FOR CONSECUTIVE RUNS

Odometry SLAM
Run sequence RMSE/m Max Error/m RMSE/m Max Error/m

1 1.85 4.52 1.00 3.13
1,2 3.11 6.20 1.04 3.11
1,2,3 4.67 10.20 1.10 3.06
1,2,3,4 6.52 12.87 1.06 3.12

with Ωlc = (0.1m)−2. The first node is anchored at the true
along-track position on the test track by adding a prior edge
with high precision Ωprior. The value of Ωprior is somewhat
arbitrary and has to be large enough to avoid that the starting
node is shifted during optimization. The prior edge ensures
that the coordinate system of the SLAM algorithm is aligned
with the track coordinate system and allows us to compare the
result of SLAM to the ground truth obtained from GNSS. It is
important to emphasize that knowing the starting position is
by no means necessary for the SLAM algorithm and is only
required when the SLAM result has to be related to another
coordinate system.

C. Results

In Table I and Table II, the position root mean square
error (RMSE) and the maximum absolute error are listed for
different scenarios. In Table I, the errors are shown when the
SLAM algorithm is evaluated separately for each of the four
runs. In contrast, Table II shows the results when the algorithm
is evaluated for multiple consecutive runs. The values in
both tables are calculated using the position errors of the
nodes. To obtain the position error for each node, the GNSS
position, recorded at the time of node creation, is matched to
a map of the test track which yields the ground truth along-
track position. From the ground truth along-track position, the
position error is calculated by comparing it to the positions
of the nodes obtained from the unaided odometry and the
positions optimized with our SLAM algorithm.

The results in Table I show that for all four runs the
SLAM algorithm can lower the RMSE and the maximum
error considerably. To understand where this improvement is
coming from, we will have a look on the pose-graph after
the first run shown in Fig. 6. In Fig. 6, the x-axis shows the
along-track position of the nodes and the y-axis shows how
often the train has changed its driving direction at the time
of node creation. The first node is indicated by a prior edge
in form of a black loop. From the starting position, the train

Figure 6. Structure of the pose-graph after optimization. Nodes are shown
as gray dots, odometer edges are indicated by a blue line and loop closures
by a green line. The prior edge is shows as a black loop at the first node.
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Figure 7. Position errors of the nodes after all four runs are processed. The
odometer error keeps growing over time while the SLAM algorithm can bound
the error and keep it in the range of a few meters. Note, the higher the node
number, the later the node was created.

travels to Grunewald, where it changes its driving direction
for the first time. From Grunewald, it then travels past the
starting point to Halensee, where it changes direction for the
second time. The graph shows that during the run a couple of
loop closures are detected and inserted into the graph. These
loop closures create constraints between nodes created close
to the beginning, when the odometry only has accumulated
a small error, and nodes that are created at a later stage
where the odometry already accumulated a larger error. In
the optimization, these constraints are then used to find a
configuration of the nodes such that the cost function (9) is
minimized.

From the results in Table II it becomes obvious that the
proposed SLAM algorithm can improve the position error also
over longer time intervals. While the odometry keeps drifting
away from the true position, the SLAM solution bounds the
error and achieves almost constant error statistics independent
from the number of processed runs. This can be seen also in
Fig. 7 where the position errors of the nodes are shown for the
SLAM algorithm and the unaided odometry after processing
all four runs. As for a single run, the errors are bounded
here by loop closures. Within the four runs over 2000 loop
closures are detected creating a rigid graph. This seems to
be a lot compared to the low number of loop closures in
Fig. 6 after one run. But here we have to consider that with
each run we get more nodes for which a new node can
detect a loop closure. Therefore, with more runs the number
of loop closures and number of correlations that have to be
calculated increases quickly. For online processing, this can
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Figure 8. Error in the relative position for each loop closure detected during
the four runs. The error is calculated based on the estimate obtained from the
correlation and the GNSS ground truth.

cause problems because the computation time also increases.
For the evaluation in this paper this was not yet a problem,
i.e., to compute the complete SLAM algorithm for all four runs
took less than 30 sec on a laptop processor. For comparison,
the time the train was moving during these four runs was
above 2000 sec. Nevertheless, for longer data sets it might be
necessary to constrain the number of correlations or to use a
faster correlation method, such as the one proposed in [12].

To also get an impression of how well the correlation can
estimate the relative position of two nodes, the relative position
error of the loop closures found during the four runs is shown
in Fig. 8. It can be seen that the error is rather small and
most of the time well below 2 m and has an RMSE of only
0.45m. Thus, the loop closure detection seems to be accurate
and robust without any wrong loop closures.

VI. CONCLUSION

In this paper, we adapted the idea of graph SLAM to
magnetic field-based localization in the railway domain. The
key idea of the proposed SLAM algorithm is to use magnetic
field distortions along a railway track to detect loop closures
between two nodes in a pose-graph. For the detection, each
node has its own dense local magnetic field map that represents
the magnetic field around the nodes position. The dense map
representation does not only enable the detection of loop
closures but also the calculation of the relative position of
two nodes. By adding the loop closures and the corresponding
relative positions to the graph, the positions of the nodes are
constrained and can be optimized to reduce their position
errors.

To show the feasibility of the proposed algorithm, an
evaluation was performed based on measurements recorded
with the advanced TrainLab of the Deutsche Bahn while it was
driving on a track in Berlin. The results show that SLAM with
magnetic loop closure detection can bound the position errors
of an odometry also for longer distances without requiring any
prior knowledge of the track or the magnetic field.
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