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Abstract—Bayesian Neural Networks (BNNs) offer a sophis-
ticated framework for extending classical neural network point
estimates to encompass predictive distributions. Despite the
high potential of BNNs, established BNN training methods
such as Variational Inference (VI) and Markov Chain Monte
Carlo (MCMC) grapple with issues such as scalability and
hyperparameter dependence. In addressing these issues, our
research focuses on the fundamental elements of BNNs, in
particular perceptrons and their predictive capabilities. We
introduce a new perspective on the closed-form solution for
backward-pass computation for the Bayesian perceptron and
prove that the state-of-the-art solution is equivalent to statistical
linearization. To assess the efficacy of Bayesian perceptrons
and provide insights into their performance in distinct input
space regions, a novel methodology utilizing k-d trees as a space
partitioning method is introduced to evaluate prediction quality
within specific input space regions.

Index Terms—Bayesian Neural Networks, uncertainty quantifi-
cation, statistical linearization, trust regions, calibration, statistical
testing.

I. INTRODUCTION

Bayesian Neural Networks (BNNs) are widely used for
uncertainty quantification in various fields, including reinforce-
ment learning [1] and model predictive control [2] in robotics.
They extend classical neural networks by providing predictive
distributions, which have demonstrated promising predictive
capabilities.

Although BNNs provide an elegant solution to uncertainty
quantification, they have two main issues, as shown in Fig. 1.
Firstly, training BNNs as a complex black box model with
high predictive capabilities lacks an exact solution, just as
with traditional neural networks, making it necessary to use
approximate inference methods such as Markov Chain Monte
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Fig. 1. Illustration of the two main issues associated with BNNs, namely
training and testing, and their relationship. The main objective is to gain
insights into scalable solutions and their predictive capabilities. This paper
examines these issues on a small scale for perceptrons.

Carlo (MCMC) [3], Variational Inference (VI) [4], or Kalman
filtering techniques [5]. As a consequence of approximate
inference in training and prediction, BNNs are error-prone
and therefore, predictions need to be checked. This leads to
the second issue, namely testing, which is about assessing the
quality of the predictions. Unfortunately, testing also poses
challenges because the true data-generating process is generally
hidden, and only a finite amount of realizations is available
as test data. However, there are test measures and strategies



that provide valuable information about model quality, such
as mean squared error, negative log-likelihood, or uncertainty
calibration error (UCE) [6], and their results can be used to
improve the model through techniques such as active learning
or human involvement, which in turn addresses the training
problem. It is therefore of interest to address both of these
issues in order to gain insight into scalable solutions and their
predictive capabilities, which will enable them to be used as
trustworthy systems.

For a deeper understanding, this leads our attention to the
core building block of BNNs, namely the perceptron, to look
at training and testing at a small scale specifically. In the
literature on BNNs, when discussing training of perceptrons, [7]
proposed a closed-form solution for the Bayesian perceptron
that assumes normally distributed weights. However, due to
sources of error such as model assumptions, approximate
inference, and a finite number of training data points, there are
differences in the quality of predictions depending on the input
values [8]. To address this issue, [8] proposed a twofold testing
strategy that first identifies candidate regions in the input space
where test data is available, and then assesses their quality per
candidate region using statistical tests. However, this approach
is limited to single-input, single-output systems, meaning that
only one-dimensional input spaces can be identified and tested.
But generally, BNNs and perceptrons are not limited to one-
dimensional inputs. Thus, we expand the identification of
candidate regions from [8] to multi-input systems, such as
perceptrons with vector-valued inputs.

Contribution: This paper presents a comprehensive anal-
ysis of the basic building block of BNNs, the perceptron, in
terms of its training and predictive capabilities. In addition,
we prove the equivalence of the weight update steps of the
Bayesian perceptron and statistical linearization. Furthermore,
we propose a novel methodology that uses k-d trees as a spatial
partitioning method of the input space of BNNs to identify
candidate regions enabling the evaluation of the quality of
predictions within certain regions of the input space, which
can be assessed with arbitrary test metrics or statistical tests.
We demonstrate the predictive performance of the Bayesian
perceptron for nonlinear regression and binary classification
examples and further show that our proposed candidate region
identification and testing method can pinpoint regions in the
input space with trustworthy predictions.

Notation: Throughout this paper, vectors will be indicated
by underlined letters, e.g., x, boldface letters, for instance, x,
will represent random variables, and boldface capital letters,
e.g., A, will indicate matrices.

II. RELATED WORK

A. Approximate Inference

The gold standard for training BNNs undoubtedly are
MCMC-based approaches, which operate by approximating
the posterior distribution through sampling methods. Since
the initial form of MCMC, i.e., the Metropolis–Hastings
algorithm [9], is notably slow due to the generation of numerous
samples, several extensions have been introduced. These include

Gibbs sampling [10], hybrid Monte Carlo [11], Hamiltonian
Monte Carlo [12], and the No-U-Turn Sampler [13].

Variational Inference (VI) [14] offers an optimization-based
alternative for training an BNNs, using a surrogate function
to approximate the true weight posterior and simplifying
the learning problem into a tractable optimization task. In
BNN training, VI approximates the weight posterior by a
simpler distribution, i.e., the variational distribution, which
typically is a normal distribution, using gradient descent to
minimize the empirical lower bound to the reverse Kullback–
Leibler divergence. Various implementations of VI have been
introduced, such as Stochastic Variational Inference [15] or [16]
that showed that dropout techniques provide a computationally
efficient way of approximating the variational distribution.

Expectation Propagation (EP) [17] minimizes the forward
Kullback–Leibler divergence, deviating from the conventional
reverse Kullback–Leibler divergence optimization utilized in
VI. This departure from VI yields no assured convergence for
EP methods. However, convergence can be established by using
so-called damped versions of EP, such as double-loop EP [18]
or damped EP [19]. Notably, a prominent instantiation of EP
designed for BNNs, termed probabilistic backpropagation [20],
has gained renowned interest in this field. This technique
introduces hyperprior distributions for the weights and is based
on a moment-matching paradigm during the forward pass. For
the subsequent backward pass, it computes gradients of the
marginal likelihood concerning the parameters of the posterior
approximation.

The Bayesian perceptron, as presented in [7], serves as the
foundational concept upon which Kalman Bayesian Neural
Networks (KBNN) [21] later evolved. In this framework, both
the weights and predictions of the perceptron are assumed to be
normally distributed random variables. Analytical formulations
for forecasting the perceptron’s output and for weight learning
are provided, accommodating widely used activation functions
such as sigmoid or ReLU. This methodology obviates the
requirement for computationally intensive gradient calculations
and allows sequential learning.

Tractable Approximate Gaussian Inference (TAGI) [22] and
KBNN exhibit notable similarities, primarily rooted in their
reliance on sequential Bayesian filtering across each layer.
However, they differ in fundamental aspects: TAGI operates
under the mean-field assumption, positing full independence
among weights, while KBNN allows full covariance matrices
within each layer. Additionally, TAGI utilizes the moment-
generating function and linearization, whereas KBNN relies
on moment matching.

B. Calibration Measures

The evaluation of the quality of the predictions includes the
assessment of the accuracy of the prediction distributions in
the representation of the actual data generation process, i.e.,
the measure of calibration. However, this is a difficult problem
due to the lack of ground truth uncertainty estimates. There are
several ways to evaluate the predictions of machine learning
models, for example, calibration plots can be used for both



classification [23] and regression [24] to visually compare the
expected and observed confidence levels across all test data.

In classification tasks, the expected calibration error
(ECE) [25] is widely used to assess calibration, measuring
the difference between the predicted confidence of the model
and its accuracy, using binned test data. The ECE is the sum
of errors over all bins and is given by

ECE =

L∑
l=1

|Bl|
M

|acc(Bl)− conf(Bl)| , (1)

where |Bl| is the size of each bin, |Bl|
M is the empirical

probability of test data falling into the l-th bin, acc(Bl) is the
rate of correct classifications overall classifications per bin and
conf(Bl) is the average predicted probability score per bin,
e.g., the averaged output of the sigmoid function in a logistic
regression setup.

In regression, the quality of uncertainty estimates is usually
measured by scoring rules. For normally distributed univariate
predictions, calibration measures such as the UCE [6] and the
expected normalized calibration error [26] compare predicted
variances with the mean squared error, utilizing their relation-
ship. To measure calibration for arbitrary dimensional normally
distributed predictions [27] proposed the quantile calibration
error, which compares the observed frequencies and the desired
quantile values of the chi-squared distributed errors.

C. Trust Region Identification

Calibration measures typically provide a single score for all
data. To extend these single scores to trust regions for Bayesian
models, i.e., which input space regions lead to calibrated and
trustworthy predictions, [8] proposed a general twofold testing
strategy:

1) The initial step involves identifying candidate regions
where information is present, that is, regions where test
data are available.

2) Based on the identified candidate regions, statistical
tests are used to measure the calibration and assess
uncertainties within these areas using test data. This
step represents the investigation of the local calibration.

Furthermore, [8] proposed a variant for their general strategy
and implemented it for the special case of single-input, single-
output systems, employing a second model as a reference model
in the initial step of identifying candidate regions. It is assumed
that the predictions of the approximate model and the reference
model will differ for the same test input value if not enough
information is available during training. The 1-Wasserstein
distance is used to measure the differences between predictions
of the two models. If the distance exceeds a certain threshold,
the one-dimensional input space is split, resulting in candidate
regions represented by intervals.

The second step of the general testing strategy in their
proposed version is implemented using statistical tests, such
as the binomial test or the averaged normalized estimation
error squared (ANEES) test. Therefore, a binary decision is
made for each candidate region. In the case of significant

deviations between the data and the predictions, the candidate
region is rejected by statistical tests and therefore declared
as untrustworthy. The binomial test enables the testing of
specific confidence intervals and makes no assumptions about
the distribution of predictions and data, and is therefore
categorized as a nonparametric test. E.g., it can be utilised
to verify if the 95% confidence interval of the predictions
truly encompasses 95% of the output test data. For normally
distributed predictions, the parametric ANEES test [28] is
used to test whether the data are consistent with the predicted
distribution. Its test statistic is given by

TANEES =
1

S

S∑
s=1

(ys − µy,s)
2

σ2
y,s

, (2)

where S is the number of considered squared Mahalanobis
distances, also referred to as normalized estimation error
squared, i.e., the number of test points within a candidate region,
µy,s is the predicted mean, σ2

y,s is the predicted variance and
ys is an output data point. For normally distributed predictions,
the average of the squared Mahalanobis distances results in a
chi-squared distributed test statistic whose critical values are
given by

[cl, cu] =
1

S

[
F−1
χ2
k

(α
2

)
, F−1

χ2
k

(
1− α

2

)]
, (3)

where F−1
χ2
k

is the chi-square inverse cumulative distribution
function with k = S degrees of freedom and α is the
significance level. If TANEES is less than the lower critical value
cl, the uncertainty of the estimated normal distribution is greater
than the uncertainty reflected by the data, i.e., the uncertainty
is overestimated. If TANEES exceeds the upper critical value
cu, there may be a significant bias or an underestimation of
uncertainty.

III. LEARNING SETUP

We consider the perceptron in a supervised learning setup
with a training data set D = {(xn, yn)}Nn=1 comprising N
independent and identically distributed (i.i.d.) pairs consisting
of the d-dimensional inputs xn ∈ Rd and the one-dimensional
outputs yn ∈ R. The perceptron is defined by

y = f(a) ,

a = w⊤ · x+ w0 , (4)

with a nonlinear transformation f(.), also known as the
activation function, from the activation a to the output y, where
the activation a is a weighted sum of input x and the bias
w0. For simpler notation, the bias w0 can be included in the
weight vector w =

[
w0 w1 w2 . . . wd

]⊤
by expanding

the input vector by a constant 1, which redefines the input
vector as x =

[
1 x1 x2 . . . xd

]⊤
and therefore (4) to

a = w⊤ · x.
In the probabilistic perspective, we utilize the notation y =

f
(
w⊤x

)
to expand the deterministic perceptron to a Bayesian

perceptron, where all weights are represented by w and are
considered as random variables with a prior distribution of



p(w). In training, the objective is to learn the weight posterior
distribution p(w | D), which is obtained by

p(w | D) =
p(Y | X , w) p(w)

p(Y | X )
,

where p(Y | X , w) is the likelihood, p(Y | X ) is a normal-
ization constant, X = {x1, . . . , xN} and Y = {y1, . . . , yN}
are the input and output data from the training data set D,
respectively. The predictive distribution can be obtained by

p(y | x,D) =

∫
Ωw

p(y | x,w) p(w | D) dw ,

for the given input x, using the learned posterior distribution
p(w | D). However, in general, there is no exact solution of
p(w | D) and p(y | x,D), and in practice we have to use
approximate inference techniques such as those considered
in [7], which we prove in the following to be equivalent to the
statistical linearization of a perceptron.

Note that from now on we omit the training data set D
to simplify the notation. Hereafter, the input x is taken as
given, the predicted output p(y | x) as normally distributed
with N (µy, σ

2
y) and w as normally distributed weights

w ∼ N (µ
w
,Cw) whose posterior distribution is to be

approximated.

IV. STATISTICAL LINEARIZATION OF A PERCEPTRON

Statistical linearization was introduced by [29] and is derived
by minimizing the mean squared error between the nonlinear
function and its linearized version. The calculation of the
output can be split up into two steps, first multiplying w and
x, followed by the application of the activation function. Both
steps use the statistical linearization given by

w⊤x ≈ v⊤
[
w
x

]
+ bv⊤ and v⊤ = c⊤x̃a

[
Cw 0
0 Cx

]−1

,

with c⊤x̃ a =
[
σ2
x̃1a

. . . σ2
x̃d̃a

]
being the covariance vector

of the augmented d̃-dimensional state vector x̃ =
[
w⊤ x⊤]⊤

and a. Employing bv⊤ ∼ N (µa − v⊤µx̃) guarantees an
unbiased linearization. Since the output is a one-dimensional
variable, v⊤ is a row vector. As x is deterministic, Cx = 0.
In theory, this makes the calculation of the inverse impossible.
However, as the input does not need to be updated, one can
simply assume a zero-block there.

The activation function can be linearized as

y = f
(
w⊤x

)
≈ g ·

(
v⊤

[
w
x

]
+ bv⊤

)
+ bg

≈ g v⊤︸︷︷︸
=:h⊤

[
w
x

]
︸︷︷︸
=:x̃

+ g bv⊤ + bg︸ ︷︷ ︸
=:b

h⊤

= h⊤x̃+ bh⊤ , (5)

with g = σ2
ay/σ2

a being a scalar and bg ∼ N (µy − g µa, σ
2
y −

g σ2
a). Note that bh⊤ ∼ N (µy − h⊤µ

x̃
, σ2

y − h⊤cx̃y) is the
bias of the linearization and not of the perceptron itself. The
proof that this linearization is unbiased and does not change
the variance is trivial and will be omitted.

In [30], it was shown how to represent a neural network as
a state space model. Through the linearization the perceptron
is represented as a linear state space model, which can be used
in a Kalman filter for estimation purposes. If one includes the
bias bh⊤ into the row vector h⊤, then the update step for the
augmented state is given by

µ+
x̃
= µ

x̃
+ kx̃ (y − µy) , (6)

C+
x̃ = Cx̃ − kx̃ h⊤ Cx̃ , (7)

with the realization y and Kalman gain

kx̃ = Cx̃ h(h⊤ Cx̃ h︸ ︷︷ ︸
=σ2

y

)−1 .

It does not matter whether one updates w or
[
w⊤ x⊤]⊤

since in the latter case one can easily adjust kw to kx̃ because
in that case, Cx̃ becomes

Cx̃ =

[
Cw 0
0 0

]
.

Hereafter, we update w with kw, and consequently, the
subsequent h⊤ has a different dimension than in (5), but for
simplicity, different notations are omitted.

In the Bayesian perceptron [7], the weights were updated
through a Bayesian approach, resulting in

µ+
w

= µ
w
+ l (µ+

a − µa) , (8)

C+
w = Cw + l ((σ+

a )
2 − σ2

a) l
⊤ , (9)

with l = (Cw x)/σ2
a and

µ+
a = µa + l̃ (y − µy) ,

(σ+
a )

2 = σ2
a − l̃ σ2

ya

with l̃ = σ2
ay/σ2

y.
The main difference between the two update steps is that [30]

formulates and updates BNNs (or, in this case, a Bayesian
Perceptron) as a linear state space model. This means, that
there is a single update step for all weights. However, [7]
updates the weights sequentially for each layer and within
each layer also updates the activation a first. Fortunately, both
procedures result in identical update steps as proven by the
following theorem.

Theorem: Both Bayesian Perceptron formulations, namely
those in (6) and (7), are equivalent to [7], in the sense that they
yield identical update steps for both the mean and covariance
matrix of the weights.



Proof: The equivalence of both mean weight update steps
in (6) and (8) is given by

µ+
w

= µ
w
+ l (µ+

a − µa)

= µ
w
+ l (µa + l̃ (y − µy)− µa)

= µ
w
+ l l̃ (y − µy)

= µ
w
+Cw x (σ2

a)
−1σ2

ay︸ ︷︷ ︸
=h

(σ2
y)

−1

︸ ︷︷ ︸
kw

(y − µy) ,

with l̃ = σ2
ay/σ2

y) being the Kalman gain of [7]. The last
step used the fact, that v⊤ is equal to x⊤ in the appropriate
dimensions. This can be proven by

v⊤ = c⊤x̃ a

[
C−1

w 0

0 Cx

]
= c⊤x̃ a

[
C−1

w 0

0 0

]
cx̃ a =

[
Cwµx

Cxµw

]
=

[
Cwµx

0

]
⇐⇒ c⊤x̃ a =

[
x⊤Cw 0⊤

]
⇒ v⊤ =

[
x⊤Cw 0⊤

] [C−1
w 0

0 0

]
=

[
x⊤ 0⊤

]
.

Similarly, the equivalence for updating the covariance matrices
in equations (7) and (9) is proven by

C+
w = Cw + l ((σ2

a)
+ − σ2

a) l
⊤

= Cw + l (σ2
a − l̃ σ2

ay − σ2
a) l

⊤

= Cw − l l̃ σ2
ay l⊤

= Cw −Cw x (σ2
a)

−1 σ2
ay (σ2

y)
−1︸ ︷︷ ︸

= kw

σ2
ya︸︷︷︸

=σ2
ay

(σ2
a)

−1x⊤

︸ ︷︷ ︸
=h⊤

Cw

= Cw − kw h⊤ Cw .

Given the iterative nature of linearization, it is conceivable
to extend this process to BNNs comprising multiple layers.
Consequently, one can conceptualize a BNN as a linear state
space model, thus facilitating the application of weight esti-
mation methodologies that have been extensively investigated
within this domain. For further exploration of these techniques,
interested readers are referred to the works [31] and [32].

V. CANDIDATE REGION IDENTIFICATION

Typically neither single perceptrons nor entire neural net-
works (composed of perceptrons) in both deterministic and
Bayesian settings are restricted to one-dimensional input spaces.
Therefore, we extend the two-step testing procedure from [8],
to an input space of arbitrary dimension. Our proposed scheme
is shown in Fig. 2.

To efficiently handle higher input dimensions, we use
k-d trees as a space partitioning data structure. The k-d tree
partitions space by hyperplanes along k orthogonal axes using
a binary tree structure, resulting in hyperrectangular space
partitions [33]. Each non-leaf node divides the space of the
tree branch by bisecting the longest side of the hyperrectangular
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Fig. 2. Illustration of our proposed twofold scheme for testing the quality
of predictions from Bayesian models. The first step consists of partitioning
the input space into candidate regions using k-d trees, and the second step
assesses the quality of the predictions per candidate region using a test metric
such as the ANEES.

region into two subspaces. The split point is chosen as the
median of the input data along the longest side to ensure a
balanced tree, i.e., a tree where each leaf node represents a
hyperrectangular region rl with approximately the same number
of data points in it. For more details on splitting methods and
graphical visualization, see [34]. By specifying a maximum
leaf node size M ∈ N>0, each node will be split during
tree construction if the number of points per node exceeds
M . In cases where leaf nodes lead to unbounded regions,
the hyperrectangles are restricted to the actual data range.
Considering the testing context, this is equivalent to avoiding
extrapolation, as predictions can only be checked where test



(a) true mean (b) predicted mean (c) predicted variance

(d) 1-Wasserstein distance (e) 250 test points (f) 1000 test points

Fig. 3. Results of the nonlinear regression using 50 training points. The true mean of the data-generating process is shown in (a). Note that the true variance
remains constant at 0.01 and is not displayed. The predicted distributions are shown in (b) and (c). The 1-Wasserstein distances between the true data-generating
process are shown in (d). The results of our proposed testing method are shown using (e) 250 and (f) 1000 test points. The shaded areas indicate candidate
regions that were rejected and are therefore considered untrustworthy based on the ANEES test statistic and its critical values.

data is available. E.g., region r1 in Fig. 2 is defined by the
lines passing through B and C, and is also limited by the
lowest input values along both coordinate axes, i.e., x1 ≈ −2
and x2 ≈ −2.

The maximum leaf node size M can be adjusted to control
the number of test points per candidate region. This is
particularly relevant in the context of testing, when a minimum
number of test points is required to obtain meaningful results.
When the nodes in a tree are divided, and the resulting leaf
node size exceeds the maximum allowed size M, the actual
leaf node size falls within the range of M/2 ≤ m ≤ M for
balanced trees. Thereby, if one needs at least, say, 20 test data
points per candidate region, one should set M to at least 40.
Note that unlike [8], no reference model is required to identify
candidate regions, saving expensive computation time to train
a second model, which is particularly desirable for scalable
extension to models more complex than single perceptrons.

VI. CANIDATE REGION TESTING

Once the candidate regions are identified, the predictions
and test data points within those regions are compared using
test metrics or statistical tests.

For regression tasks with normally distributed predictions,
we use the ANEES test statistic (2) with its critical values
(3), as is also done in [8]. Note that the ANEES test can also
be used for S = 1, i.e., for candidate regions with only one
test point. However, in this case the critical values are given
by [0.05, 7.38], so only large deviations between predictions

and data can be detected. Therefore, it is recommended to
use more test points per candidate region to make stronger
test statements with more narrowly defined critical values, and
thus the power of the statistical tests can be controlled by
the maximum leaf size. However, larger maximum leaf sizes
also lead to larger candidate regions, resulting in a trade-off
between the resolution in the input space by candidate regions
and the meaningfulness of statistical test results. As an analogy,
this trade-off is comparable to the uncertainty principle in the
short-time Fourier transform, where there is a trade-off between
time and frequency resolution [35].

For classification tasks, we use the ECE (1) without binned
test data. This is because the data within a candidate region
already represents a subset of the test data. Note that candidate
regions can be evaluated using arbitrary calibration or test
measures.

VII. EVALUATION

We now demonstrate the predictive capabilities of Bayesian
perceptrons on a nonlinear regression example and a binary
classification example and assess the quality of predictions
within candidate regions.

A. Nonlinear Regression

In the first experiment, we generate 50 training
points and 250 test points from the noisy soft plus
y = log(1 + eγ

⊤·x+δ) + ϵ, with ϵ ∼ N (0, 0.01), γ⊤ =[
1 1

]
, δ = 2 and x ∈ R2, which can be approximated by a



(a) 500 training points (b) 5000 training points (c) 500 testing points (d) 5000 testing points

Fig. 4. Results of the nonlinear regression show the 1-Wasserstein distances between the true data generating process and the predictions for (a) 500 and (b)
5000 training points. The corresponding tested regions, using 500 and 5000 test points, are shown in (c) and (d), respectively.

(a) predicted mean (b) predicted variance (c) 250 test points (d) 1000 test points

Fig. 5. Binary classification results with predicted mean (a) and variance (b), where the true decision boundary is marked by the dashed line, and tested
candidate regions for 250 (c) and 1000 (d) used test instances.

perceptron with a ReLU activation function. The training inputs
xn ∈ XTrain and the test inputs xn ∈ XTest are drawn uni-
formly from the two-dimensional input space [−1, 1]× [−1, 1]
and [−2, 2]× [−2, 2], respectively. The prior p(w) is chosen as
an isotropic normal distribution with the identity matrix I3 as
the covariance matrix, and the prior mean µ is sampled from
N (0, I3) to avoid a symmetrical weight mean initialization. The
results of the predictions, the 1-Wasserstein distance between
the true data generating process and the tested regions are
shown in Fig. 3, where the candidate regions are calculated
using a maximum leaf size of M = 40 and ANEES is used
as a statistical test with a significance level of α = 0.01 to
compare the predictions with the test data.

The plots in Figs. 3a to 3c show that the predictions converge
to the true data generating process in areas where training data
is available, which is confirmed in Fig. 3d by the 1-Wasserstein
distance between the predictions and the true process. The same
conclusion can be drawn, without the use of information about
the data-generating process, from the results of our presented
test method using the ANEES test. Here, 250 and 1000 test
points are used in Fig. 3e and Fig. 3f, respectively. Note that
the input space is resolved more finely when more test data
is available. To further investigate the effect of more training
and test data, Fig. 4 shows the 1-Wasserstein distance and the
tested regions for 1000 and 5000 test and training samples.
The experiments reveal that despite the increase in the amount
of training data, there are still local differences in the quality
of the predictions. However, our proposed test method can
identify these differences and reject candidate regions with
untrustworthy predictions.

B. Binary Classification

As a second example, we consider a binary classification
problem, where the data is again generated over the two-
dimensional input space x ∈ R2. The two classes are assigned
according to

y =

{
1 , g(x̃1) < x2

0 , otherwise ,

where classes are separated by a quadratic polynomial g(x̃1) =
0.5 · x̃2

1− x̃1−0.5 with x̃1 = x1+ ϵ and ϵ ∼ N (0, 0.05). Note
that ϵ is used to simulate a diffuse boundary between both
classes. For training and testing, we generate 30 and 50 random
samples uniformly from [−1, 1] × [−1, 1] and [−1.5, 1.5] ×
[−1.5, 1.5], respectively. Again, the prior is initialized with an
identity covariance matrix, and the mean is sampled from a
standard normal distribution. Fig. 5 shows the predictions and
evaluated regions using ECE (1) without dividing test data into
bins, and again using a maximum leaf size of M = 40.

The comparison of the mean predictions with the true
separation in Fig. 5a reveals incorrect classifications in the
upper left and lower right corners. Such results are expected
since a single perceptron can only represent a linear separation
between binary classes, and therefore cannot learn a quadratic
polynomial boundary. Fig. 5b illustrates that the variance of the
prediction increases in the areas of misclassification. This can
be seen as reasonable, as the model itself provides a statement
about the increased uncertainty in the prediction in the case
of erroneous classification. Again, the input space is resolved
more finely by candidate regions when more test data is used.
However, candidate regions that lead to misclassification are



recognized by larger error values for both 250 and 1000 test
points.

C. Discussion
By using the 1-Wasserstein distance between the predictions

and the known ground truth, the results show that statistical
linearization leads to good predictions with near-zero distance
values. Furthermore, our proposed testing method, which does
not use exact ground truth information but uses test data points,
is able to first locate appropriate regions and then test data in
these regions. The region identification itself is able to divide
the input space into regions of a sufficient number of data
points. Furthermore, the ANEES test statistic makes it possible
to make binary decisions for each region in the input space,
whereby regions with poor ANEES values according to the
critical values are rejected and thus become untrusted regions.

VIII. CONCLUSION

This paper has shown that the recursive Bayesian weight
estimation of the well-known Bayesian perceptron is equiva-
lent to statistical linearization. Since our proposed statistical
linearization can similarly be applied to multilayer neural
networks, BNNs can be represented as a linear state space
model, thus opening up weight estimation to the powerful
existing research in this area. Furthermore, our proposed testing
method for multi-input systems, which is not restricted to
Bayesian perceptrons, assesses prediction quality by testing
in input space regions and is the next step toward the
trustworthy application of Bayesian models. Future research
directions include statistical linearization of BNNs and testing
methods for multi-input, multi-output systems for regression
and classification tasks. Furthermore, the information about the
trustworthiness of the regions enables the systematic use of
active learning to learn specifically in the regions that promise
more information gain.
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