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Abstract—Accurate uncertainty quantification is critical
for robust and trustworthy predictions in many real-world
applications. Bayesian Neural Networks (BNNs) provide a
principled approach for modeling uncertainty but are often limited
by the computational complexity of Bayesian inference. In this
paper, we introduce a statistical linearization approach for multi-
layer feedforward BNNs. We demonstrate that this statistical lin-
earization is equivalent to the Kalman Bayesian Neural Networks
(KBNN) framework. This equivalence unifies these methodologies,
providing a theoretical foundation for understanding the
relationship between different BNN training approaches.

Index Terms—Bayesian Neural Networks, uncertainty
quantification, statistical linearization.

I. INTRODUCTION

In many practical scenarios, accurately capturing uncertainty
is crucial for robust and trustworthy predictions. Classical
neural networks are powerful universal approximation methods,
e.g., in areas such as time series forecasting [1], [2], yet they
typically generate only point estimates, overlooking inherent
uncertainties in real-world data. For instance, point estimates
fail to account for the full range of possible outcomes,
highlighting the importance of uncertainty quantification.
However, to capture uncertainties in real-world data, Bayesian
Neural Networks (BNNs) extend classical neural networks
by quantifying the uncertainty of predictions as predictive
distributions. For example, univariate Gaussian distributed
predictions not only provide a mean value (equivalent to a
point estimate) but also a variance, serving as a confidence
measure. Providing predictive distributions using BNNs, leads
to well-calibrated predictions that match the uncertainty of
the real-world data-generating process well when sufficient
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training data is available [3], which can be tested using
methods and calibration measures such as in [4], [5], [6].

However, leveraging BNNs for uncertainty quantification
introduces its own set of challenges. Despite their potential for
effective uncertainty quantification, training BNNs involves
learning the weight posterior distribution, which represents
the probability distribution of the network’s weights given the
data. Exact learning is intractable for BNNs, necessitating the
use of approximation methods. These approximation methods
are based on well-known principles of Bayesian inference,
such as Markov Chain Monte Carlo (MCMC) [7], Variational
Inference (VI) [8], Expectation Propagation (EP) [9], Laplace
approximation (LA) [10], or Bayesian filtering techniques [11].

Especially interesting are Bayesian filtering-based BNN
learning techniques such as the Kalman Bayesian Neural
Networks (KBNN), which avoid explicit gradient computation
during training, allowing them to be used for fast sequential
learning. The Bayesian perceptron, proposed in [12], forms the
core building block of the KBNN and provides a closed-form
solution for the forward pass, which computes the output of the
BNN given an input; and the weight update, which adjusts the
weights based on the observed data. Furthermore, [13] formally
proves that training a Bayesian perceptron is equivalent to
first applying statistical linearization to a single perceptron
and then estimating its parameters using a Kalman filter.

However, the proof presented in [13] is limited to the
Bayesian perceptron, and extending it to feedforward BNNs
with multiple layers remains an open question. Addressing
this gap, the present paper explores the extension of the proof
to multi-layer feedforward BNNs.

The main motivation here is that by reformulating BNN
training as an linear state-space model (LSSM), we can exploit
the extensive Bayesian state-estimation toolbox such as the
Kalman filter, the extended- or unscented Kalman filter, and
related variants.

Contribution: This paper briefly reviews the principle
methods for training BNNs and recent training procedures.



Furthermore, we review the KBNN and prove that the KBNN
is equivalent to statistical linearization of feedforward BNNs
with multiple layers.

Notation: In this paper, underlined letters, e.g.,
¯
x, denote

vectors, boldface letters, such as
¯
x, represent random variables,

while boldface capital letters, e.g., A, indicate matrices and
underlined boldface capital letters such as

¯
W denote matrices

consisting of random variables.

II. RELATED WORK

Unlike classical neural networks that employ deterministic
weights, BNNs represent weights as posterior distributions,
which cannot be learned using standard backpropagation.
Learning weight posterior distributions relies on fundamental
approaches of approximate Bayesian inference, which are
detailed in this section.

A. Markov Chain Monte Carlo

MCMC-based approaches are widely recognized for
training BNNs, as they approximate the posterior distribution
through sampling techniques. However, the original form of
MCMC, specifically the Metropolis–Hastings algorithm [7],
is computationally intensive due to the necessity of generating
a large number of samples. To address this limitation,
several extensions have been developed, including Gibbs
sampling [14], Hybrid Monte Carlo [15], Hamiltonian Monte
Carlo [16], and the no-U-turn sampler [17].

To further mitigate the computational costs associated with
these methods, [18] introduced a scalable subsampling-based
MCMC scheme by combining stochastic gradient descent
with Langevin dynamics. This approach was subsequently
extended in [19], [20], providing efficient sampling techniques
for training BNNs.

B. Variational Inference

VI [8] provides an optimization-based method for
training BNNs by employing a surrogate function, i.e.,
the variational distribution, to approximate the true weight
posterior. This approach converts the intractable Bayesian
inference problem into a manageable optimization task by
maximizing the evidence lower bound, thereby minimizing the
reverse Kullback–Leibler divergence between the variational
distribution and the true posterior.

Several implementations of VI have been developed
for BNNs, including Stochastic Variational Inference [21],
Deterministic Variational Inference [22], and the widely
recognized Bayes by Backprop [23].

C. Expectation Propagation

EP [9] minimizes the forward Kullback–Leibler divergence,
which, however, differs from the reverse Kullback–Leibler
divergence optimization employed by VI, resulting in
no guaranteed convergence for EP methods. Nevertheless,
convergence can be achieved by implementing damped versions
of EP, such as double-loop EP [24] and damped EP [25].

A notable variant of EP tailored for BNNs, known as proba-
bilistic backpropagation [26], has attracted significant attention
in the field. This method incorporates hyperprior distributions

for the weights and relies on a moment-matching approach dur-
ing the forward pass. During the backward pass, probabilistic
backpropagation calculates gradients of the marginal likelihood
with respect to the parameters of the posterior approximation.

D. Laplace Approximation
LA [10] is a foundational method for approximate Bayesian

inference. This approach approximates the posterior distribution
around the maximum a posteriori (MAP) estimate using a
Gaussian distribution. Specifically, standard deep learning
techniques are first employed to identify the MAP point
estimate. Around this estimate, LA assumes that the shape of
the posterior distribution can be accurately represented by a
Gaussian distribution. This is achieved through a Taylor-series
expansion of the log-posterior around the MAP estimate
up to the second order. The curvature of the log-posterior
distribution at the MAP point, characterized by the Hessian
matrix of the log-posterior, is utilized to construct a Gaussian
distributed approximation of the posterior. Consequently, LA
can be applied post-hoc to a pre-trained network.

Direct computation of the Hessian is often infeasible for
large neural networks due to its size and computational cost.
Therefore, recent curvature approximation methods [27], such
as the Kronecker-Factored Approximate Curvature, have been
developed to construct a scalable LA for neural networks. Other
approaches efficiently compute a posterior over a subnetwork
by treating only a subset of weights as random variables [28],
exemplified by the last-layer LA [29], which applies Bayesian
learing exclusively to the network’s final layer.

E. Bayesian Filtering
In addition to MCMC and gradient-based optimization

methods, Bayesian filtering approaches offer a means to train
BNNs without requiring explicit gradient computations of
any specific loss function. Typically, Bayesian filtering-based
methods assume that both weights and predictions are
Gaussian random variables. Bayesian filtering approaches vary
in their handling of nonlinearities. E.g., the extended Kalman
filter [30], [31] necessitates analytical linearization of the
network’s nonlinearities, whereas Kalman filtering techniques
such as the unscented Kalman filter [32] and the ensemble
Kalman filter [33] utilize sampling-based methods.

Recent Bayesian filtering-based training methods for BNNs
include Tractable Approximate Gaussian Inference [34], which
assumes independent weights (mean-field assumption), and
KBNN [11], which allows for full covariance matrices per
neuron, representing a less restrictive assumption compared
to Tractable Approximate Gaussian Inference. In the KBNN
framework, analytical formulations are provided for forecasting
each individual perceptron’s output and for weight learning,
accommodating widely used activation functions such as
sigmoid and rectified linear unit.

F. Alternative Training Techniques
While the aforementioned training methods are grounded

in the fundamental principles of Bayesian inference, they
are often computationally intensive and more complex
to implement compared to conventional neural network
training. Consequently, some approaches aim to offer simpler



implementations and computationally efficient approximations
of the weight posterior. Examples include the dropout technique
proposed by [35], which serves as an approximation of VI [36],
[37]; ensemble methods consisting of different models trained
for the same purpose [38], [39], [40], also referred to as deep
ensembles; and the Stochastic Weight Averaging Gaussian [41].

III. LEARNING FRAMEWORK

We consider a supervised learning framework where the
training data set D = {(

¯
xn,

¯
y
n
)}Nn=1 comprises N input-output

pairs. Each pair consists of an input vector
¯
xn ∈ Rdx and

its corresponding output realization
¯
y
n
∈ Rdy generated by

the underlying noisy data-generating process. Typically, the
true data-generating process and the precise mapping between
inputs and noisy outputs are unknown, making the primary
objective of the supervised learning framework to accurately
infer this mapping using the available training data.

To achieve this, we utilize a feedforward BNN to model
the relationship between inputs and outputs, defined by

¯
y = f(

¯
x,

¯
w) +

¯
ε with

¯
ε ∼ N (0,C

¯
ε). Here,

¯
x is the

deterministic dx-dimensional input,
¯
w denotes the random

weight vector encompassing all network weights, and
¯
y

represents the dy-dimensional output as a random vector. The
weight vector

¯
w is constructed by flattening the random weight

matrices
¯
Wl from each layer l = 1, . . . , L into vectors

¯
wl, and

then concatenating these vectors into a single dw-dimensional
column vector

¯
w. The weight posterior p(

¯
w | D) as well as

the predictive distribution p(
¯
y |

¯
x,D) are given by

p(
¯
w | D) =

p(Y | X ,
¯
w) p(

¯
w)

p(Y | X )
, and

p(
¯
y |

¯
x,D) =

∫
Ω

¯
w

p(
¯
y |

¯
x,

¯
w) p(

¯
w | D) d

¯
w ,

where Ω
¯
w ⊆ Rdw is the sample space of the weights,

p(
¯
w) is the prior, p(Y | X ) =

∫
Ω

¯
w
p(Y | X ,

¯
w) p(

¯
w) d

¯
w is

the normalization constant, and X = {
¯
x1, . . . , ¯

xN} and
Y = {

¯
y
1
, . . . ,

¯
y
N
} are the sets of input and output data of the

training data set D.
Typically, output data

¯
y
n

are assumed independent given
deterministic

¯
xn and therefore the likelihood is given by

p(Y | X ,
¯
w) =

∏N
n=1 p(

¯
y
n
|
¯
xn, ¯

w). For the remainder of
this paper, we assume that the likelihood is Gaussian, i.e.,
p(
¯
y
n
|
¯
xn, ¯

w) = N (
¯
y
n
|f(

¯
xn, ¯

w),C
¯
ε).

It should be noted that there is no tractable solution available
for training or prediction. Therefore, in practice, approximation
methods must be applied, as described in Sec. II. Throughout
the remainder of this paper, we will examine the KBNN and
its relationship with the statistical linearization of feedforward
BNNs.

IV. KBNN

The KBNN assumes that the Markov property holds in
BNNs allowing each layer to be treated individually. Both the
prediction of the output, i.e., the forward pass, and the weight
update are thus performed sequentially, as shown in Fig. 1.

zl+1i
ali

¯
wli

¯
zl· · · · · ·

smoothing Ismoothing II

Neuron i

Fig. 1. Probabilistic graphical model for neuron i in the l-th layer in a
feedforward BNN, adapted from [11]. The neuron’s input

¯
zl is multiplied

by the i-th column of
¯
Wl = (

¯
wl1

. . .
¯
wli

. . .
¯
wlMl

) to form the activation

¯
ali

, which is subsequently passed through the activation function to yield the
neuron’s output

¯
zl+1i

. In the backward pass, this procedure is reversed, starting
with updating the activation and then the neuron’s weights and the input.

A. Forward Pass

Given an input
¯
zl and a weight matrix

¯
Wl, KBNN assumes

that both the pre-activation
¯
al as well as the post-activation

¯
zl+1 of the l-th layer are jointly Gaussian distributed. It
is also assumed, that both the pre- and post-activations are
all pairwise independent, meaning their covariance matrices
are fully diagonal. This in turn means, that one only has to
calculate the elements of the main diagonal. The moments
of the pre-activation

¯
a can be calculated as

µ
¯
a

li
=

¯
µ⊤

¯
w

li ¯
µ
¯
z
l

,

σ2

¯
a

li

=
¯
µ⊤

¯
w

li

Czl
¯
µ
¯
w

li

+
¯
µ⊤
zl
C

¯
w

li ¯
µ
zl

+Tr
(
C

¯
w

li
C

¯
z
l

)
, ∀i = 1, ...,Ml ,

where Ml denotes the depth of the l-th layer, Tr(·) the
trace-function of a matrix and

¯
wli

is the i-th column of the
weight matrix

¯
Wl.

If the activation function is the rectified linear unit function,
then the moments of the post-activation

¯
zl are matched

according to

¯
µ
¯
z
l+1

=
¯
µ
¯
a

l

ϕ

(
¯
µ
¯
a

l

¯
σ
¯
a

l

)
+
¯
σ2

¯
a

l
N
(
¯
0
∣∣∣
¯
µ
¯
a

l

,
¯
σ2

¯
a

l

)
,

¯
σ2

¯
z
l+1

=
(
¯
µ2

¯
a

l

+ σ2

¯
a

l

)
ϕ

(
¯
µ
¯
a

l

¯
σ
¯
a

l

)
+

¯
µ
¯
a

l

σ2

¯
a

l
N
(
¯
0
∣∣∣
¯
µ
¯
a

l

,
¯
σ2

¯
a

l

)
−

¯
µ2

¯
z
l+1

,

where N (
¯
0|·, ·) denotes the Gaussian probability density

function evaluated at
¯
0,

¯
µ2

¯
a

l

and
¯
σ2

¯
a

l
are interpreted element-

wise and ϕ(·) represents the cumulative distribution function
of the standard Gaussian distribution. It is defined as
ϕ(x) = 1

2 (1 + erf(x/
√
2)) with erf(·) being the Gaussian

error function. The moments of other activation functions can
be found in [12].

B. Backward Pass

The backward pass of KBNN is again performed sequentially
for all layers. First, the pre-activation

¯
al is updated, followed

by the weight matrix
¯
Wl and the input of that layer

¯
zl, which



corresponds to the post-activation of the preceding layer. The
pre-activation ali can then be updated according to

µ+
ali

= µali
+
¯
k⊤li

(
¯
µ+

¯
z
l+1

−
¯
µ
¯
z
l+1

)
,(

σ+
ali

)2
= σ2

ali
+
¯
k⊤li

(
C+

¯
z
l+1

−C
¯
z
l+1

)
¯
kli ,

¯
kli =

(
C

¯
z
l+1

)−1

σ2
ali

zl+1i
,

σ2
ali

zl+1i
= σ2

zli
+ µ2

zl+1i
− µali

µzl+1i
,

(1)

with ∀i = 1, . . . ,Ml. The weight vector
¯
wl and the

post-acitvation
¯
zl can then be updated according to[
¯
µ+

¯
w

l

¯
µ+

¯
z
l

]
=

[
¯
µ
¯
w

l

¯
µ
¯
z
l

]
+ Ll

(
¯
µ+

¯
a

l

−
¯
µ
¯
a

l

)
,[

C+

¯
w

l
C

¯
w

l¯
z
l

C⊤
¯
w

l¯
z
l

C+

¯
z
l

]
=

[
C

¯
w

l
0

0 C
¯
z
l

]
+ Ll

(
C+

¯
a

l
−C

¯
a

l

)
L⊤
l ,

Ll = C
¯
w

l¯
z
l¯
a

l
·
(
C

¯
a

l

)−1
,

C
¯
w

l¯
z
l¯
a

l
=

diag(C¯
w

1¯
µ
¯
z
l

, ...,C
¯
w

Ml ¯
µ
¯
z
l

)
C

¯
z
l¯
µ
¯
w

1

, ...,C
¯
z
l¯
µ
¯
w

Ml

 .

(2)

Here, the cross-covariance matrix C
¯
w

l¯
z
l¯
a

l
denotes the

covariance between the vector
[
¯
wl ¯

zl

]⊤
and

¯
al. The operator

diag(·) outputs a diagonal matrix whose main diagonal
elements are the elements of its input vector.

V. CONCEPT OF STATISTICAL LINEARIZATION

Before we introduce the statistical linearization of
feedforward BNNs, we first introduce the basic concept of
statistical linearization based on the general formulation in [42].

Assume the following situation:
¯
y = f(

¯
x) with

¯
x ∼ N (

¯
µ
¯
x
,C

¯
x) and

¯
µ
¯
y
,C

¯
y being the mean and covariance

matrix of
¯
y, respectively. We are now trying to approximate

¯
y ≈ A

¯
x+

¯
b ,

with A being a matrix and
¯
b being a vector. We wish to preserve

the first two moments of
¯
y and also to minimize the mean-

squared error of the linearization. By matching the moments, it
immediately follows that

¯
b ∼ N (

¯
µ
¯
y
−A

¯
µ
¯
x
,C

¯
y −AC

¯
xA

⊤)

must hold. The mean-squared error is given as

MSE(A,
¯
b) = E

{(
¯
y −A

¯
x−

¯
b
)⊤ (

¯
y −A

¯
x−

¯
b
)}

. (3)

Setting derivatives of (3) with respect to A to zero gives

A = C
¯
x
¯
y
⊤ (C

¯
x

)−1
,

where C
¯
x
¯
y is the cross-covariance matrix between

¯
x and

¯
y

and hence the parameters of the linearization are given by

A = C⊤
¯
x
¯
y

(
C

¯
x

)−1
, (4)

¯
µ
¯
b
=

¯
µ
¯
y
−A

¯
µ
¯
x

, (5)

C
¯
b = C

¯
y −AC

¯
xA

⊤ . (6)

Detailed derivations of this can be found in [42, pp. 179–180].

VI. STATISTICAL LINEARIZATION OF BNNS

We begin by iteratively applying statistical linearization to
all layers of the BNN. To improve readability, we will omit
the noise term

¯
ε, leading to

¯
y = fL(

¯
aL) = fL(

¯
WL ·

¯
zL) , (7)

≈ FLGL

[
¯
wL

¯
zL

]
+ FL

¯
bGL

+
¯
bFL︸ ︷︷ ︸

=:
¯
b
L

,

where FL represents the statistical linearization of the
activation function of the last layer fL, and GL corresponds to
the linearization of the matrix-vector multiplication. If either
the input or the output of a given layer are one-dimensional,
then both F and G are vectors, otherwise they are matrices.
Since in most cases, neither the input nor the output of a
layer is one-dimensional, we will denote them as matrices.
Based on the statistical linearization introduced in Sec. V, the
linearized activation function is given by

FL := C⊤
¯
a

L¯
z
L+1

(
C

¯
a

L

)−1
,

assuming that
¯
aL and

¯
zL+1 are jointly Gaussian distributed,

where C
¯
a

L¯
z
L+1

is the cross-covariance matrix between
¯
aL

and
¯
zL+1, and C

¯
a

L
is the covariance matrix of

¯
aL.

Note that
¯
zL+1 =

¯
y
n

is the realization from the training
data set and thus

¯
µ
¯
z
L+1

=
¯
y
n

for some n ∈ {1, . . . , N} and
C

¯
z
L+1

= 0 holds. The linearized matrix-vector product is
given by

GL := C⊤
¯
w

L¯
z
L¯
a

L

(
C

¯
w

L¯
z
L

)−1
,

where C
¯
w

L¯
z
L¯
a

L
is the cross-covariance matrix between the

concatenated quantities (
¯
wL ¯

zL)
⊤ and the activation

¯
aL.

Again it is assumed that these quantities are jointly Gaussian dis-
tributed. The bias of the statistical linearization is then given by

¯
bL ∼ N

(
¯
µ
¯
b
,C

¯
b

)
,

¯
µ
¯
b
=

¯
µ
y
− FLGL︸ ︷︷ ︸

(a)

[
¯
µ

¯
w

L

¯
µ

zL

]
︸ ︷︷ ︸

(b)

,

C
¯
b = C

¯
y − FLGLC

¯
w

L¯
z
L
G⊤

LF
⊤
L︸ ︷︷ ︸

(c)

,

where C
¯
w

L¯
z
L

is the covariance matrix of (
¯
wL ¯

zL)
⊤.

The relation to the statistical linearization can be seen
by comparing (a), (b), and (c) with (4) to (6), respectively.
Repeating the statistical linearization step from (7) for the
second last layer results in

¯
y ≈ FLGL

[
¯
wL

¯
zL

]
+
¯
bL

≈ FLGL

 ¯
wL

FL−1GL−1

[
¯
wL−1

¯
zL−1

]
+
¯
bL−1

+
¯
bL

= FLGL

[
1L 0
0 FL−1GL−1

] ¯
wL

¯
wL−1

¯
zL−1

+ ˜
¯
bL−1 ,



where ˜
¯
bL−1 = FL GL

¯
bL−1 +¯

bL combines all linearization
biases into a single term.

Extending this approach further until the input layer is
reached gives

¯
y ≈ FLGL

[
1L 0
0 FL−1GL−1

] ¯
wL

¯
wL−1

¯
zL−1

+ ˜
¯
bL−1

= FLGL

[
1L 0
0 FL−1GL−1

]

·

1L 0 0
0 1L−1 0
0 0 FL−2GL−2


 ¯

wL

¯
wL−1

¯
wL−2

¯
zL−2

+ ˜
¯
bL−2

= FLGL

2∏
l=1

[
1L−l+1 0

0 FL−lGL−l

] ¯
wL

¯
wL−1

¯
wL−2

¯
zL−2

+ ˜
¯
bL−2

= . . .

= FLGL

L−1∏
l=1

[
1L−l+1 0

0 FL−lGL−l

]
︸ ︷︷ ︸

=:H

¯
wL

...

¯
w1

¯
x

+ ˜
¯
b1 .

Note that the dimensions of the identity matrix, 1l, vary
between different terms in the products, depending on the
number of weights per layers involved. Expanding H while
keeping track of the identity matrix dimensions leads to

H⊤ =

(
L−1∏
l=1

[
1 0
0 FL−lGL−l

])⊤

·G⊤
LF

⊤
L

=



1 0
0

[
1 0

]
G⊤

L−1F
⊤
L−1

0
[
1 0

] [
0 G⊤

L−2F
⊤
L−2

]
G⊤

L−1F
⊤
L−1

...
...

0
[
1 0

]∏L−2
l=2

[
0 G⊤

l F
⊤
l

]
G⊤

L−1F
⊤
L−1

0
∏L−2

l=1

[
0 G⊤

l F
⊤
l

]
G⊤

L−1F
⊤
L−1


·G⊤

LF
⊤
L .

After linearization, the BNN is transformed into a LSSM.
Consequently, the update equations are derived from the
Kalman filter [43] and are given as

¯
µ+

¯
w

=
¯
µ
¯
w
+K

(
¯
y
n
−

¯
µ
¯
y
L

)
, (8)

C+

¯
w = C

¯
w −KHC

¯
w, (9)

K := C
¯
w H⊤ (H C

¯
w H⊤ +C

¯
ε︸ ︷︷ ︸

C
¯
y

)−1
,

where C
¯
w is given as

C
¯
w =



C
¯
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,

and C
¯
x = 0 holds since

¯
x is deterministic. The Kalman gain

K is given as
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L

(
C

¯
y

)−1

.

Since the statistical linearization is unbiased in the first two
moments, it is obvious that the forward pass of the LSSM
is unbiased too. In the following section we will thus prove
the equivalence of the backward pass as well.

VII. PROOF OF EQUIVALENCE
BETWEEN KBNN AND STATISTICAL LINEARIZATION

Theorem: Both BNN formulations, as presented in
Sec. IV-B and Sec. VI, are equivalent in that they yield
identical update steps for both the mean and covariance matrix
of the weights. Specifically, the update procedures of KBNN,
detailed in (1) and (2), and those of the LSSM, outlined in (8)
and (9), produce the same results.

Proof: In the LSSM the update for the weight matrix
¯
Wj

of the j-th layer corresponds to the j-th row of the Kalman
gain K. To further analyze the update formula, we now focus
on this specific entry in K. For clarity and to simplify the
proof, we introduce the following notation:

Cj := C
¯
w

j¯
z
j¯
a

j

(
C

¯
a

j

)−1

C
¯
a

j¯
z
j+1

.

Let us consider the first elements of the product of the j-th
entry in the Kalman filter gain K, which is given by

[
C

¯
w

j
0
] [
0 G⊤

j F
⊤
j

]
(a)
=
[
C

¯
w

j
0
] 0


(
C

¯
w

j

)−1

0

0
(
C

¯
z
j

)−1

Cj


(b)
=
[
0
[
1 0

]
Cj

]
(c)
=
[
1 0

] [
0 Cj

]
.

Here, (a) substitutes the definitions of G⊤
j and F⊤

j , (b)
simplifies the multiplication, and (c) rewrites the matrix
multiplication in block-wise form.



We now focus on the next element in the product of the
j-th entry in the Kalman filter gain K:[

0 Cj

] [
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⊤
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]
=
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0 1

] [
0 Cj+1

]︸ ︷︷ ︸
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,

where I and II represent the same term with different indices,
allowing the process to be repeated across all layers. Repeating
these steps and combining them yields the final entry of the
j-th entry in the Kalman filter gain K. Remember that this
result must be multiplied by (

¯
y
n
−

¯
µ
¯
y
) for some

¯
y
n

from the
training data set D as in (8) and the initial mean

¯
µ
¯
w

j

must be
added as well. Therefore, the final update formula for the mean
of the weights

¯
w of the statistically linearized BNN is given by

¯
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¯
w
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=
¯
µ
¯
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j

+ (10)
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¯
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) .

This completes the calculations for this approach. Next,
we examine the update formula for KBNN and show that it
matches the derived expression. Since KBNN updates both
the weight vector

¯
wj and the post-activation

¯
zj , we extract

the relevant parts using projections such as
[
1 0

]
or
[
0 1

]
,

depending on whether the update is for
¯
wj or

¯
zj . The update

for the weight vector
¯
wj is thus given by
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The update for the post-activation
¯
z can be extracted using

the projection
[
0 1

]
. Applying this recursively yields the

following update formula:
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Since this matches the formula in (10), the update for the
mean is complete.

We now shift our focus to the covariance matrix update.
The KBNN updates the covariance matrix according to:[
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By again using the projections
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]
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one can now extract the update step for C+
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j
. It is

given as
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Repeating the procedure recursively from layer j to the L-th
layer leads to the following update formula for C

¯
w

j

C+

¯
w

j
=
[
1 0

] [C
¯
w

j
0

0 C
¯
z
j

] [
1
0

]
+

[
1 0

] L−1∏
l=j

Cl

(
C

¯
z
l+1

)−1 [
0 1

]
CL

(
C

¯
y

)−1 (
0−C

¯
y

)

·
(
C

¯
y

)−1

C⊤
L

L−1∏
l=j

[
0
1

](
C

¯
z
l+1

)−1

C⊤
l

[
1
0

]
. (11)

In the proof for the mean we already showed that the Kalman
filter update for the j-th layer is given by

Kj =
[
1 0

] L−1∏
l=j

Cl

[
0 1

]
CL

(
C

¯
y
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. (12)

Substituting (12) into (11) gives
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¯
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¯
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and by vectorizing this equation, we obtain
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¯
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which matches (9).



VIII. DISCUSSION

Recasting BNN training as an LSSM offers several
compelling benefits over alternative closed-form approaches
such as KBNN, while retaining their non-gradient-based nature.

First, although both LSSM and KBNN perform exact
posterior updates via state-space estimation (e.g., Kalman
filtering and smoothing), LSSM circumvents the need to
explicitly integrate a high-dimensional joint distribution over
latent states and observations. Instead, it leverages classical
Bayesian filters—Kalman, extended Kalman, unscented
Kalman, and related square-root variants [44]—to yield exact,
closed-form updates with minimal computational overhead.

Second, the state-space structure of LSSM imposes an
inherent regularization that mitigates overfitting, reduces
sensitivity to measurement noise, and enhances generalization
performance.

Third, LSSM naturally supports dual estimation of latent
states and model parameters via state augmentation. For
instance, consider the system

¯
xk+1 =

¯
a(
¯
xk,¯

θk) ,
¯
y
k
=

¯
h(
¯
xk) +¯

vk ,

where a(·) is modeled by a BNN. By augmenting the state
vector with parameters

¯
θk, one can jointly estimate both

¯
xk

and
¯
θk from observations

¯
y
k
. This approach is particularly

advantageous when the system is partially observable or
subject to external disturbances.

Fourth, the incremental-update capability of LSSM makes it
ideally suited for online and streaming applications. New data
can be assimilated without retraining from scratch, enabling
real-time inference and adaptation.

Fifth, the explicit state-space formulation enhances inter-
pretability. By viewing parameter evolution as a latent dynam-
ical process, one can trace the transformation of priors into
posteriors over time. This transparency stands in stark contrast
to the opaque weight updates of conventional deep learning,
facilitating both theoretical analysis and practical diagnostics.

Finally, embedding BNN training within the rich ecosystem
of Bayesian state-estimation techniques opens the door to a
vast array of methodological innovations—ranging from robust
filtering to adaptive noise modeling—that can be directly
applied to improve training stability and performance.

Taken together, these advantages establish the LSSM-based
paradigm as a robust, interpretable, and computationally
efficient alternative for BNN training, especially in contexts
where stability and real-time adaptability are paramount.

IX. CONCLUSION

In summary, reformulating Bayesian Neural Network (BNN)
training within an linear state-space model (LSSM) framework
provides an efficient, stable, and interpretable approach to
probabilistic modeling. By leveraging state-space estimation
techniques, it reduces computational complexity, enhances
numerical stability, and enables efficient online learning.
The structured nature of the formulation further mitigates
overfitting while offering clearer insights into parameter
dynamics. These advantages collectively position LSSM-based
training as a powerful alternative to conventional approaches.

Future work will focus on refining key aspects of this
framework. Specifically, we aim to investigate alternative

linearization methods and their impact on weight updates, as
well as strategies for optimizing the linearization matrix H to
enhance stability and convergence. Through these refinements,
we seek to extend the applicability of this approach to a
broader range of learning scenarios.

Moreover, because both recurrent- and convolutional neural
networks rely primarily on linear transformations (aside from
operations such as max-pooling), this framework can be
straightforwardly extended to both architectures.
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