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Abstract—Efficiently solving the continuous-time signal and
discrete-time observation filtering problem for chaotic dynam-
ical systems presents unique challenges in that the advected
distribution between observations may encounter a separatrix
structure that results in the prior distribution being far from the
observation or the distribution may become split into multiple
disjoint components. In an attempt to sense and overcome
these dynamical issues, as well as approximate a non-Gaussian
distribution, a nudged particle filtering approach has been
introduced. In the nudged particle filter method a control term
is added, but has the potential drawback of degenerating the
weights of the particles. To counter this issue, we introduce
an intermediate resampling approach based on the modified
Cramér-von Mises distance. The new method is applied to
a challenging scenario of the non-chaotic, unforced nonlinear
Duffing oscillator, which possesses a separatrix structure. Our
results show that it consistently outperforms the standard particle
filter with resampling and original nudged particle filter.

I. INTRODUCTION

The extension of particle filtering methods to complex
systems, such as those encountered in the geosciences, has
not yet been achieved. The core issue is the increased oc-
currence of particle degeneracy in not only high-dimensional
systems, but also those that may be chaotic or turbulent, and
may receive observations with a temporally sparse cadence.
Classical studies on the degeneracy of the particle filter in
high-dimensional systems include the work by Bengtsson et
al. [1] and Synder et al. [2], where simply linear systems with
additive Gaussian noise is used. The work of Synder et al. [3]
has more recently looked at how the optimal proposal provides
the best performance bounds to minimize degeneracy in the
case of importance sampling particle filters.

With an aim toward generating samples from the optimal
proposal using control theoretic techniques, Lingala et al.
[4] introduced the nudged particle filter, which solves an
optimal control problem to better advect particles toward the
optimal proposal, given the future observation. We describe
this approach in Section III and build on it to develop a
new method described in Section IV. A potential drawback
of the nudged method is that particles can degenerate during
the advection to generate the prior due to excessive control.
This was better understood in the work of Yeong et al. [5]
and studied extensively on the Lorenz 1996 model in Beeson
and Namachichivaya [6]. A simpler linear heuristic control

law with the same drawback was presented in van Leeuwen
[7]. Although computationally more expensive than the simple
control law of van Leeuwen [7], the nudged particle filter fully
senses the nonlinear dynamics in the future forecast, enabling
control that is sensitive to dynamical flow with separating
behavior.

Another key advantage of the nudged particle filter for
chaotic systems and those especially encountered in the geo-
sciences, is the ability for the conditional distribution to
remain near the dynamical attractor while generating samples
approximating the optimal proposal. Methods that may move
the distribution away from the attractor, such as Kalman
approaches or recent flow-based particle methods, then require
an advection time after the assimilation update to settle back
onto the attractor and be physically realistic. The recent
work of Zhou and Beeson [8] looked at the effectivity of
projecting flow-based particle methods onto an attractor to
maintain this property and Beeson [9] looked at the value of
a hybrid approach using the nudged particle filter with a flow-
based particle filter. Other approaches and ideas for effective
particle filtering on high-dimensional systems have recently
been surveyed by van Leeuwen et al. [10].

This paper contributes a new idea to the nudged particle
filter by performing an intermediate resampling scheme us-
ing the modified Cramér-von Mises distance introduced by
Hanebeck and Klumpp [11] and Eberhardt et al. [12]. The
aim of this modification to the nudged particle filter is to
remedy the degeneracy that may occur due to the control
term. The original nudged particle filter maintained particle
independence during advection between observations, whereas
the intermediate resampling naturally results in correlation
of the particles. Although this is a step back for proving
possibly theoretical results, it enables a more continuous
control action by the particles. We demonstrate this capability
on a challenging low-dimensional stochastic nonlinear Duffing
oscillator setup in Section V. The main result is that for a
fixed number of particles, the new intermediate resampling
nudged particle filter is able to consistently outperform both
the standard and nudged particle filters to navigate the filtering
distribution across separatrix boundaries and converge toward
the true hidden signal.

We describe the dynamics of the Duffing oscillator test
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problem in Section II, followed by the standard and nudged
particle filters in Section III, the new importance resampling
nudged particle filter in Section IV, the experimental results
in Section V, and finally conclusions in Section VI.

II. THE DUFFING OSCILLATOR

The unforced nonlinear Duffing oscillator is a one-degree
of freedom Hamiltonian system, which we extend to the
stochastic setting by driving it with a Brownian motion.
The stochastic version is therefore given by the following
stochastic differential equation (SDE),

d

„

xt

9xt

ȷ

“

„

0 1
1 0

ȷ „

xt

9xt

ȷ

dt ´

„

0
x3
t

ȷ

dt ` σdWt, (1)

where σσ˚ “ 1E-3¨Id P R2ˆ2, with Id the identity matrix, and
W is a two-dimensional standard Brownian motion (BM). The
deterministic variant of (1) possesses three equilibrium points;
one saddle equilibria at the origin, and two center equilibria
at p´1, 0q and p1, 0q. The stable and unstable manifolds of
the saddle equilibria generate homoclinic connections that
separate the periodic motion about the center equilibria from
each other, as well as from a periodic motion that exists in
the remaining subset of the phase space. These realms of
dynamical motion are shown in Fig. 1 and the separatrix
structure from the saddle equilibria and its invariant manifolds
will be exploited in the numerical experiments of Section V.

III. STANDARD AND NUDGED PARTICLE FILTER

For an explanation of the standard particle filter (PF)
with resampling, the nudged particle filter (nPF), and the
new intermediate resampling nudged particle filter (IRnPF)
to be introduced in Section IV, we consider the following
general problem setup for a partially observable continuous-
time signal, discrete-time observation system

dXt “ fpXtqdt ` σpXtqdWt, X0 “ x P Rm,

Ytk “ hpXtkq ` ξtk , Y0 “ 0 P Rd,
(2)

where ξtk „ N p0,Σyq. Standard assumptions on the indepen-
dence of X0 K pξtkq K Wt will be made. For brevity and to
improve readability, we will often replace an element of the
discrete-time set ptkq with the corresponding index (e.g., k)
and we use FY

k to denote the σ-algebra of observations up to
and including time tk.

The filtering process follows the two recursive steps of: 1.
generating the prior conditional distribution ptpx|FY

k´1q via
the Chapman-Kolmogorov equation

ptpx|FY
k´1q “

ż

Rm

pt|k´1px|zqpkpdz|FY
k´1q, t P rtk´1, tkq,

followed by; 2. the update of the posterior conditional distri-
bution ptpx|FY

k q by Bayes’ formula

ptpx|FY
k q 9 ptpYk|xqptpx|FY

k´1q, t “ tk.

Fig. 1: Phase portrait for the deterministic unforced nonlinear
Duffing oscillator, highlighting realms of dynamical signifi-
cance.

A. Standard Particle Filter with Resampling (PF)

The standard particle filter, introduced by Gordon et al. [13],
with resampling solves the filtering problem as follows:
(1) approximate the initial distribution by a sum of N equally

weighted Dirac distributions that have support on the
singletons pXi

0 „ p0q which are i.i.d.,

pN0 pdx|Y0q ”

N
ÿ

i“1

wi
0δXi

0
pdxq “

1

N

N
ÿ

i“1

δXi
0
pdxq;

(2) at time k ´ 1, the prior is generated under the action of
the Markov kernel PX for the dynamics in (2),

pNk pdx|FY
k´1q “ pNk´1pdx|FY

k´1qPX “

N
ÿ

i“1

wi
k´1δXi

k
pdxq;

(3) using the observation Yk, the unnormalized weights are
calculated as

rwi
k “ wi

k´1pkpYk|Xi
kq; (3)

(4) normalize the particle weights,

wi
k “ rwi

k{

N
ÿ

i“1

rwi
k;

(5) if the particle weights are degenerate, resample the parti-
cles and set all weights to be equal (i.e., wi

k “ 1{N );
(6) define the posterior at time k as

pNk pdx|FY
k q ”

N
ÿ

i“1

wi
kδXi

k
pdxq,

and return to Step (2).
In this work, we use an approximation to the effective sample
size, which was introduced in Bergman [14] and Liu and Chen
[15], as the metric for Step (5) in deciding whether degeneracy
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has occurred. Denoting the vector of normalized weights as w,
the approximate effective sample size is defined as

Neff ” 1{xw,wy.

We use the threshold of Neff ă N{2 to trigger resampling,
and use the universal (also known as systematic) resampling
approach of Kitagawa [16].

B. Nudged Particle Filter (nPF)

As described in Section I, the nudged particle filter (nPF)
aims to mitigate PF degeneracy in the chaotic and sparse
temporal observation case by solving an optimal control prob-
lem that nudges particles independently toward the optimal
proposal given the future observation. Hence, the nPF follows
the same steps as the PF, but replaces the advection of particles
in Step (2) of Section III-A with the following dynamical law

dXt “ fpXtqdt ` utdt ` σpXtqdWt, t P rtk, tk`1q, (4)

where the control term u is the minimizer of the finite-horizon
objective function

Jpu; k, x;Yk`1q

“ E
„

ż tk`1

tk

1

2
xus, R

´1
s usyds ` gpXk,x

k`1, Yk`1q

ȷ

.

In this objective function, R´1 takes values in the space of
symmetric positive definite matrices and g is a terminal cost
function that penalizes the realization Xk,x

k`1 from being far
from the observation Yk`1. In this work, we use the negative
log of the observation likelihood for g. The superscript for
Xk,x

k`1 indicates a realization of (4) starting at the state x P Rm

at time tk and advected to time tk`1.
The solution to this optimal control problem is given by the

feedback control law solution

upt, xq “ ´Rt∇xV pt, xq, (5)

where ∇xV is the gradient of the value function that satisfies
the Hamilton-Jacobi-Bellman equation

´ BtV pt, xq ` Hpt, x,∇xV,∇b2
x V q “ 0,

V ptk`1, xq “ gpx, Ytk`1
q,

and H is the control Hamiltonian

Hpt, x,∇xV,∇b2
x V q “

sup
ν

"

´xfpxq ` ν,∇xV y ´
1

2
Tr

`

R∇b2
x V

˘

´
1

2
xν,R´1νy

*

.

By using a log-transformation [17], V pt, xq “ ´ log Φpt, xq,
the control solution takes the form

upt, xq “
1

Φpt, xq
Rt∇xΦpt, xq.

Assuming the dispersion coefficient σ, is constant and inde-
pendent of Xt, and then choosing R “ σσ˚, the evolution
equations of Φ and ∇xΦ both become backward linear second

order parabolic partial differential equations. Therefore they
have solutions given by the Feynman-Kac formulas

Φpt, xq “ E
”

expp´gpηk,xk`1, Yk`1qq

ı

, (6)

and

∇xΦpt, xq “ ´E
”

expp´gpηk,xk`1, Yk`1qq

exp

ˆ
ż tk`1

tk

∇xfpηk,xs qds

˙

∇xgpηk,xk`1, Yk`1q

ȷ

, (7)

where η is a realization to an SDE with the same generator
as the signal process in (2).

As alluded to in Section I, the drawback of the nPF is
that the weights of the particles must be adjusted if control is
performed. This is due to the fact that the controlled dynamics
(4) are not the same as the original signal dynamics (2). The
change in weight for a particle Xi is therefore given by a
Radon-Nikodym derivative

dµi

dpµi
“ exp

ˆ

´

ż tk`1

tk

xvps,Xi
sq, dWsy

´
1

2

ż tk`1

tk

xvps,Xi
sq, vps,Xi

sqyds

˙

, (8)

where vps,Xi
sq “ ´σ˚∇xV ps,Xi

sq, and the derivation fol-
lows from the results on Girsanov transformations. In contrast
to (3), the unnormalized weights of the nPF are

rwi
k “

dµi

dpµi
wi

k´1pkpYk|Xi
kq. (9)

We direct the reader to Yeong et al. [5] for more details on
the derivation and properties of the nPF.

The control solution for the nPF is continuous in time and
requires the evaluation of the expectations in (6) and (7).
An approximation must be made in both of these cases for
numerical implementation. We therefore do the following in
this work:

(2a) we discretize the time interval rtk, tk`1q into a uniform
partition of M subintervals defined by the collection of
times ptkpjqqMj“1;

(2b) at the start of each of these subintervals, a control
solution satisfying (5) is computed using K realizations;

(2c) the control solution is fixed for the control step interval
rtkpjq, tkpj`1qq, and the particle is advected under the
dynamics of (4);

(2d) the correction to the unnormalized weight is made ac-
cording to (8);

(2e) if the particle weight did not degenerate below some
threshold, return to Step (2a) to solve for the next control
step until the final time tk`1 is reached; otherwise if the
particle did degenerate due to the control solution, advect
the particle from tkpjq until tkpj`1q under the natural
dynamics of (2) without control.
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IV. INTERMEDIATE RESAMPLING NUDGED PARTICLE
FILTER (IRNPF)

Each particle of the nPF calculates their control indepen-
dently of all others and therefore the unnormalized weights
during the intermediate time between observations can become
degenerate relative to the original distribution’s mean. A
key contribution in this work is to introduce a deterministic
optimal resampling after each control step, such that the ad-
vected distribution will have minimum particle weight variance
throughout the advection (i.e., wi “ 1{N ). The benefits of
performing this resampling are at least twofold. On a local
level, each particle has a weight that is reset to 1{N , and
therefore enables the ability to apply control in Step (2c)
of the nPF algorithm without running into the degeneracy
condition specified in Step (2e) during the next control step
(i.e., any degeneration is isolated to a given control step).
The new IRnPF is therefore able to continually apply control
throughout the intermediate time to drive the particle toward
the observation neighborhood based on the terminal constraint
g. On a global level, the resampling enables the use of indirect
information generated by each particle on the difficulty of the
dynamics to be encountered, so that particles are resampled
at locations with the expectation that they will have similar
control efforts for the next control step, and hence a similar
decrease in their unnormalized weights.

The resampling of particles is achieved by minimizing the
modified Cramér-von Mises distance, which is defined in
Definition IV.2. This distance was introduced by Hanebeck and
Klumpp [11] and allows for the comparison of two probability
distributions. The distance relies on the following definition for
the localized cumulative distribution (LCD).

Definition IV.1 (Localized Cumulative Distribution [11]).
Given a probability distribution µ, a width parameter b P Rn

`,
and kernel function K : Rn ˆ Rn Ñ r0, 1s, the corresponding
Localized Cumulative Distribution (LCD) is defined as

Fµp¨; b,Kq : Rn ÝÑ r0,8q,

pmq ÞÝÑ

ż

Rn

Kpx ´ m, bqµpdxq.

We assume that the kernel function is a separable Gaus-
sian kernel, dependent on a scalar width in each directional
component,

Kbpxq ” Kpx; bq “ exp
`

´}x}22{2b2
˘

, (10)

which then gives the modified Cramér-von Mises distance
defined in the following manner:

Definition IV.2 (Modified Cramér-von Mises Distance [11]).
Let Fµ and Fν be the LCD for two probability distributions
µ and ν, both with kernel K, and w : R` Ñ R` a weighting
function. Then their modified Cramér-von Mises distance is
defined as

Dpµ, νq ”

ż

R
wpbq

ż

Rn

pFµpm; b,Kq ´ Fνpm; b,Kqq
2
dmdb.

In this work, we make use of an asymptotic approximation
for Dpµ, νq between two Dirac mixtures as b Ñ 8 and the
weight function is restricted to p0, bs and chosen according to
wpbq “ 1{bn´1 by Eberhardt et al. [12] (see also Hanebeck
[18]) in the following theorem.

Theorem IV.1
With b " 1, wpbq “ 1{bn´1, µ, ν Dirac mixtures with support
pxiq, pyiq and weights pwi

xq, pwi
yq respectively, and K given

according to (10), Dpµ, νq is approximately,

Dpµ, νq «
πn{2

8

´

rDpµq ´ 2 rDpµ, νq ` rDpνq

¯

`
πn{2

4
CpbqDpµ, νq, (11)

where

rDpµ, νq ”

N
ÿ

i“1

K
ÿ

j“1

wi
xw

j
y xlog

`

}xi ´ yj}22

˘

rDpµq ” rDpµ, µq, rDpνq ” rDpν, νq,

Dpµ, νq ” }Eµ rxs ´ Eν rxs }22,

Cpbq ” logp4b2q ´ Γ,

where Γ « 0.5772 is the Euler gamma constant and xlogpsq ”

s logpsq.

A. The IRnPF Method
The IRnPF method, an extension of the nPF in Section III-B

is now described. In particular, following Step (2e) of the nPF,
we have the additional steps:
(2f) compute the normalized weights for the controlled Dirac

mixture pNkpjq
and generate a new mixture rpKkpjq

with
γK “ N 1, γ P N, evenly weighted samples of the
normalized distribution pNkpjq

;
(2g) translate the samples of rpKkpjq

to have the same mean as
pNkpjq

;
(2h) using the support locations of rpKkpjq

as optimization
parameters, minimize the modified Cramér-von Mises
distance between pNkpjq

and rpKkpjq
;

(2i) using the optimized support locations, multiply each
particle γ-times and normalize the weights by 1{γ to
produce the resampled distribution pNkpjq

; return to Step
(2a) of the nPF.

Note that the translation given in Step (2g) implies that D “ 0
in (11) for the initial iteration of the optimization. In this work
we do not apply the intermediate resampling after the last
control step, since the universal resampling algorithm will be
applied after Bayes’ update if needed.

V. NUMERICAL EXPERIMENTS

In the experiments to follow, we use the following discrete-
time observation process,

Ytk “

„

xtk

9xtk

ȷ

` ξtk , ξtk „ N p0, 1E-2 ¨ Idq,

1For the IRnPF we specify γ,K first and then N before applying the
method, so that this relation holds.
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Fig. 2: Global view for a realization of the advected initial PF
distribution with deterministic initial condition, separated from
the true hidden signal state, over one observation interval.

Fig. 3: Local view of Fig. 2.

with observations occurring every 0.5 time-units (TU) (i.e.,
tk`1 ´ tk “ 0.5 for all k), and pξtkq K X0 K pWtq. Note
that the nPF and IRnPF are not limited to the linear or fully
observable case. In all simulations, we use a duration of 4.5
TU, and therefore 9 observations. All methods make use of
the universal resampling approach if the effective sample size
falls below 5 following the posterior update (Step (5) of the
PF). An RK4Maruyama numerical integration scheme with a
stepsize of 1E-2 is used for advection of particles.

Each particle filtering method uses 10 particles, and γ “ 5
for the IRnPF. Therefore N “ 10 for the PF and nPF, and for
the IRnPF we have γ “ 5,K “ 10 and hence N “ 50. Note
that the IRnPF will have a computational complexity on the
same order as the nPF since the control is still only calculated
for 10 particles for any of the control steps. The advection
using 5 realizations for each control in the IRnPF enables a
better approximation of the advected distribution, and hence
improved resampling. The optimization at Step (2h) for the

IRnPF is accomplished using the scipy.minimize BFGS method
with a (relative) tolerance of 1E-3.

To demonstrate the qualitative behavior of the three meth-
ods, we choose deterministic initial conditions for the signal
state at px, 9xq “ p1,´0.657q and the initial filtering distribu-
tion a Dirac distribution at px, 9xq “ p1,´0.857q. This choice
results in the signal state being separated from the initial
distribution by the deterministic stable manifold (separatrix)
to the saddle equilibria. These initial conditions are shown in
Fig. 2 and 3, which provides both a global and local (zoomed-
in) view of the first observation interval for a PF simulation.
The separatrix structure with invariant manifolds is shown in
orange in these figures. The dispersion coefficient in (2) is
such that the deterministic dynamics are not overpowered by
the diffusion of the BM, and therefore forward in time, there
is a high likelihood that the signal will remain in the Internal
(Right) realm show in Fig. 1, the filtering distribution will
remain in the External realm, and the two will diverge as they
approach the saddle equilibria. The last observation period for
this realization of the PF is shown in Fig. 4 and confirms that
this is the typical behavior that occurs.

In Fig. 5 we show the final observation interval for the same
simulation, but using the nPF. In particular, this simulation has
the same initial conditions, the same signal path, and the same
observations of the signal. The time between observations (0.5
TU) is partitioned into 50 equal control steps for the nPF, and
K “ 10 realizations are used for each particle to calculate
their control term in Step (2b). Comparing the final observation
interval of Fig. 5 for the nPF to Fig. 4 for the PF is informative;
it shows the nPF is lagging behind the PF in the natural
dynamical flow. This implies that the nPF has been attempting
to overcome the dynamical flow to move in the direction of the
signal observation. This observation is further demonstrated in
Fig. 7 by viewing the particle paths in the 9x state over the
simulation time, and coloring the particle paths according to
their relative unnormalized weight during advection. Particles
that are lightly shaded, tending toward white, is an indication
that they have been actively using control to nudge themselves.
As indicated in Step (2e) of the nPF algorithm, the particles
are only allowed to nudge so much as to prevent possible full
distributional degeneration, and hence control is only being
applied for a fraction of the total simulation time.

Figure 6 shows the final observation interval of the IRnPF
for this same case. In contrast to the nPF, the IRnPF is able to
apply control more consistently throughout the simulation due
to the intermediate resampling, and therefore is able to navi-
gate the filtering distribution over the separatrix structure and
approach the location and observations of the signal process.
The improvement in the relative unnormalized weights of the
particles is shown in Fig. 8. The final control steps of each
observation interval shows some particles in light blue, which
is expected because control is being used and as we stated after
Step (2i) for the IRnPF algorithm, an intermediate resampling
is not used on the final control step before an observation.
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Fig. 4: Global view of the PF behavior during the last
observation interval.

Fig. 5: Same as Fig. 4, but for the nPF.

Fig. 6: Same as Fig. 4, but for the IRnPF.

Fig. 7: The 9x states versus time for particles of the nPF, with
particle paths colored according to their relative unnormalized
weights during advection. The figure illustrates the disadvan-
tage of decreasing unnormalized weights during advection for
the nPF; low relative weight (i.e., decreased relative to the
mean) is shown in “white”, even relative weight in blue, and
high relative weight in purple.

Fig. 8: Similar information as in Fig. 7, but for the IRnPF. One
noticeable difference is that with the IRnPF, for each control
solution, γ “ 5 advected realizations are produced. Hence the
generation of the prior distribution has greater resolution at
nearly the same computational cost.

TABLE I: Monte Carlo Analysis Results; Approximately Best
Values for Each Criteria Highlighted.

Experiment Filtering Method
Statistic PF1E1 PF1E2 PF1E3 nPF1E1 IRnPFγ“10

1E1
Avg. RMSE 0.84 0.58 0.42 0.52 0.40

Avg. Min. RMSE 0.18 0.17 0.16 0.17 0.16
Avg. Max. RMSE 2.25 1.57 0.91 1.26 0.87

Avg. (Neff / N) 0.34 0.25 0.26 0.40 0.50
Total Runtime (s) 4.3 19.5 178 814 1007
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A. Monte Carlo Results

A Monte Carlo (MC) analysis was performed to quantify
and confirm the typical behavior of the PF, nPF, and IRnPF
methods on the experimental setup just described. In the MC
analysis, we use 20 different signal and observation history
pairs, and for each pair we perform 20 different simulations.
Therefore, a total of 400 simulations are produced for each
method. To be clear, the benchmark of each method is on the
same signal and observation pairs, so that direct comparison
of performance is possible.

The main results are summarized in Table I. The Total
Runtime is for all 400 simulations. We indicate the number of
particles used in the PF method with the subscript (e.g., 1E1)
and the number of nudged particles for the nPF and IRnPF
similarly. The superscript for the IRnPF method indicates the
multiplicative number of particles advected for each control
(see Section IV-A). The root mean square error (RMSE) and
the Min./Max. RSME for a given simulation realization ω are
defined as,

RMSEpXt, p
N
t qpωq ”

1

4.5

ż 4.5

0

}Xspωq ´ EpN
s pωq rxs }2ds,

Min.RMSEpXt, p
N
t qpωq ” min

sPr0,4.5s
}Xspωq ´ EpN

s pωq rxs }2,

where Xs is the true signal path for a given realization and
Max.RMSE is defined in an analogous way. The Avg. of
each of these metrics, as reported in Table I, is the average
over the 400 simulations. Histograms2 of the RMSE data in
Table I is shown in Figs. 9, 10, and 11 to provide a greater
understanding of the statistics of the MC runs.

The behavior and performance of the three methods for the
example realization described in Section V and shown in Figs.
4 through 8 is apparent in the data of Table I. The lower Avg.
Max. RMSE for the nPF1E1 versus the PF1E1 shows that on
average the nPF is able to counter the dynamical flow suffi-
ciently long to loiter near the stable manifold before slowly
being forced along the unstable direction as shown in Fig. 5.
Given that the initial RMSE is 0.2, the Avg. Min. RMSE for
the PF1E1 case shows that the PF with few particles is largely
unable to ever get closer to the signal. Increasing the number of
particles to the PF1E2 case enables the standard PF to produce
RMSE metrics nearer to that of the nPF1E1, but the nPF
still has superior effective sample size. Of course, the main
disadvantage of the nPF1E1 is the computation complexity due
to calculating the control. Increasing the number of particles
further in the standard approach, the PF1E3 case is able to
outperform the nPF1E1 in all RMSE criteria with a saving of
about 4.5 times the computational effort.

The new approach proposed in this paper, the IRnPF, is
competitive with the PF1E3 case, even if only 10 particles are
used. The IRnPF method retains superior effective sample size
and has approximately the same computational complexity as
the nPF. The nudging parameters for the nPF variants (nPF

2Kernel Density Estimates (KDE)

Fig. 9: Histogram for Avg. RMSE data shown in Table I.

Fig. 10: Histogram for Min. RMSE data shown in Table I.

Fig. 11: Histogram for Max. RMSE data shown in Table I.
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and IRnPF) have not been optimized in these experiments and
could potentially be more competitive. It is known that the
number of particles for the standard PF scales exponentially
with the dimension of the problem. Therefore there may be
a crossover where the nPF and IRnPF methods are more
advantageous in terms of RMSE, effective sample size, and
computational complexity criteria, as the dimensionality of the
problem with similar dynamical features is increased.

VI. CONCLUSIONS

This paper has built on the optimal control approach of the
nPF developed in Lingala et al. [4], Yeong et al. [5], and Bee-
son and Namachichivaya [6] for increasingly chaotic systems,
by adding an intermediate optimal deterministic resampling
approach using the modified Cramér-von Mises distance devel-
oped by Hanebeck and Klumpp [11] and Eberhardt et al. [12],
to mitigate the isolated intermediate particle degeneracy con-
dition of the nudged method. The result is a method that can
more continuously apply control to adapt to difficult dynamical
regimes such as the separating flow problem of Section V for
the stochastic Duffing oscillator with erroneous deterministic
initial condition. The new intermediate resampling nudged
particle filter is consistently able to overcome the separating
flow with only a few particles.

Ongoing improvements by the authors in tuning the nudged
component and intermediate resampling may result in the
method outperforming the PF, not only in estimation quality,
but also in computational runtime, for similarly complex
dynamical problems in higher dimensions. Improvements in
the nudging optimal control theory are also being pursued.

One theoretical drawback of including the intermediate re-
sampling is the potential loss of independence of the particles;
this independence is also potentially lost after Bayes’ update if
resampling occurs due to the effective sample size decreasing
below a user defined threshold.
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