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Abstract—Densities separable in spherical coordinates have two
advantages: i) the normalization constant is easy to compute, as
the cumulative distribution can be decomposed into individual
scalar integrals, and ii) an orthogonal inverse transform is
directly available via a simple, scalar initial value problem and
can be used to compute deterministic samples. We propagate
uniform low-discrepancy sequences through that orthogonal
inverse transform and obtain very homogeneous and even visually
appealing deterministic samples. To demonstrate this technique,
we exemplarily propose some spherical-coordinate-separable
densities in S2, R2, and R3, including a non-isotropic modification
of the von Mises–Fisher distribution. The proposed densities may
be used, e.g., to represent uncertain radar measurements and for
directional estimation. Furthermore, the framework presented
herein allows quite simple design of various more densities tailored
to a given scenario.

Index Terms—Deterministic sampling, directional estimation,
orthogonal inverse transform sampling, von Mises–Fisher distri-
bution, density design, numerical integration

I. INTRODUCTION

A. Why Deterministic Sampling?

Sampling of various densities is an important tool in, e.g.,
state estimation and control, used to approximate intractable
integrals, like expectations, occurring in prediction and filtering
steps. Deterministic samples allow for reproducible results.
Furthermore, since they are placed homogeneously, they also
yield much faster convergence, i.e., comparable Monte Carlo
results with fewer samples, compared to the slow 1/

√
L

convergence of random samples.

B. Unscented Sampling

One deterministic sampling strategy is using a very small,
fixed amount of samples matching the first two moments of
the respective density. This is widely used in the Unscented
Kalman Filter (UKF) in the Euclidean domain [1] and has
also been proposed for spherical manifolds [2]. Yet often one
wants to use more samples for increased accuracy. This may
be achieved by adding more samples on the main axes, which
has been proposed for the Gaussian density [3] as well as
the Bingham density on the sphere [4], [5]. However, there
still remain large gaps in between the main axes. They can
be filled, at least for the isotropic von Mises–Fisher (vMF)
density, with more “rays” of samples leading from the mode
outwards, called an “orbit-planet” sample arrangement [6], [7].
Yet coverage is still unsatisfactory in some regions.

Fig. 1: 300 deterministic samples on the S2 sphere from the
“von-Mises × von-Mises density”, i.e., the product of two von-
Mises densities over azimuth and elevation angles, which is an
anisotropic modification (36) of the von Mises–Fisher density.
Parameters: κθ = 120, κφ = 5.

C. Optimization-Based Sampling

The “gold standard” to achieve homogenous coverage uses
the Localized Cumulative Distribution (LCD) and numerical
optimization to compute sample locations [8]. Again, this has
been applied to the Gaussian density [9], [10] and sample
reduction [11], the latter has also been adapted to the sphere
[12], [13]. This method is, however, too slow for real-time
application and requires suitable caching. A somewhat faster
alternative is based on the projected cumulative distribution
(PCD) [14], [15], with a gradient-free optimization procedure.

D. Transformation-Based Sampling

Finally, there is transformation-based Gaussian sampling
[16], [17] which is very fast. In one scenario, 20 transformation-



based samples yielded the same accuracy as 200 random
samples [17, Fig. 11b]. It is based on the idea that inverse
transform sampling with generalized Fibonacci grids as uniform
template samples yields homogeneous samples if the transform
can be described via an orthogonal skeleton grid [18], [19,
Sec. 6.7]. These points typically yield integration errors nearly
as low as LCD-based samples while being much faster to
compute. The same principle has already been applied to
produce spherical vMF samples [20], and in this work, we are
generalizing it to a much broader class of densities, where the
vMF is just one example of.

E. Structure of the Paper

In Section III-A, will introduce uniform samples that are
then transformed as described in Sections IV and V. Both the
uniform template samples, as well as the transforms, must have
special properties so that the desired homogeneity is achieved.
Having laid out the fundamentals of the proposed framework,
Section VI demonstrates various outcomes of homogeneous,
deterministic samples of interesting densities.

II. KEY IDEA

For a given density f that is independent/separable in polar
or spherical coordinates, find the separable inverse transform
/ quantile function Q. Take a uniform low-discrepancy point
set Pu

L of L samples, e.g., Fibonacci-based or Sobol. Then
Q maps this point set into deterministic samples Pf

L of the
desired density, Pf

L = Q(Pu
L).

III. UNIFORM LOW-DISCREPANCY SAMPLES

We begin briefly introducing some uniform low-discrepancy
point sets eligible to serve as template to be transformed to
the desired densities later.

A. 2D: Kronecker–Fibonacci Lattice

For two-dimensional (2D) applications (here: R2 and S2 ⊂
R3), one may choose the Kronecker–Fibonacci lattice as low-
discrepancy uniform template point set Pu

L [21], [22]

Pu
L =

{[
2i−1
2L

i
Φ mod 1

]∣∣∣∣ i ∈ {1, 2, . . . , L}
}

, (1)

with the inverse golden ratio [23, A094214]

1

Φ
=

√
5− 1

2
= 0.618033 . . . . (2)

It is periodic along the coordinate with the modulo, i.e., the
second coordinate in (1). This coordinate should therefore be
chosen for the periodic spherical coordinate, i.e., p2 in (10)
and also p2 in (19). If this is mixed up, an inhomogeneity can
occur at the periodicity transition 2π ↔ 0, see green samples
in Fig. 2, centered horizontal line.

Unfortunately, there is currently no known equivalent of the
Kronecker–Fibonacci lattice for dimensions higher than two [21,
p. 222] with equivalent optimality and periodicity properties –
only optimality or periodicity. Thus, for applications in, e.g.,
R3 or S3, we have to resort to alternatives.

Fig. 2: Samples resulting from identical inverse transform but
different uniform templates: random (blue), Sobol (yellow),
and Kronecker–Fibonacci (green) however with aperiodic
coordinate in (1) used for periodic coordinate φ in (10) –
note the inhomogeneity along a horizontal line in the center
in the green samples, compared to Section VI-A with the
correct assignment. Density is von-Mises × truncated-Gauss
with parameters κ = 5, mr = 5, σr = 0.5, L = 600.

B. 3D: Frolov–Fibonacci Lattice

For three-dimensional (3D) applications (here: R3), one may
choose the Frolov–Fibonacci lattice as proposed in [16], [17].
It can be constructed via

Pu
L =

{
V⊤ · δ · z | z ∈ Z3

}
∩ [0, 1]

3
, (3)

where δ is chosen to obtain the desired L and V is the eigen-
vector matrix of the 3D quasi-Fibonacci matrix M =

[
1 1 1
1 1 0
1 0 0

]
.

It is given in closed form by

V =

√
4

7

cos
(

π
14 · 1

)
cos

(
π
14 · 3

)
cos

(
π
14 · 5

)
cos

(
π
14 · 3

)
cos

(
π
14 · 9

)
cos

(
π
14 · 15

)
cos

(
π
14 · 5

)
cos

(
π
14 · 15

)
cos

(
π
14 · 25

)
 . (4)

For hints on how to implement (3) efficiently, refer to [17,
Sec. IV.A].

A slight flaw of using Frolov lattices in the context of
spherical coordinates is that Frolov lattices are not periodic.
Thus, whenever significant probability mass is allocated all
along a periodic coordinate (here: φ), the samples will not be
deterministic/homogeneous at periodicity transitions 2π ↔ 0.



C. 2D and 3D: Sobol

A well-known alternative to Fibonacci–based samples, with
implementations readily available in all major languages,
typically up to 1111 dimensions, is the Sobol sequence [24],
[25]. This is a low-discrepancy point set that is periodic along
all directions.

Although its discrepancy is much lower than for independent
identically distributed (iid) random samples, it is not as low as
that of Fibonacci-based samples. Therefore, the homogeneity of
the resulting deterministic samples will be somewhat inferior,
see yellow samples in Fig. 2.

IV. ORTHOGONAL INVERSE TRANSFORMS

Now we describe the general idea of inverse transforms
of separable densities, starting with the rather simple polar
coordinates in R2, using explicit notation, and progressing to
R3 and S2. An even more basic introduction starting with the
standard normal density in R has been given in [20].

A. R2 in Polar Coordinates

Given some density f(x), x ∈ R2 that is separable in polar
coordinates, f(r, φ) = fr(r) · fφ(φ), and the polar “volume
element” dV = r dr dφ, we obtain the separable cumulative
density function (CDF)

F (r, φ) =

∫∫
f(r, φ) dV (5)

=

∫ r

r′=0

∫ φ

φ′=0

fr(r
′) · fφ(φ′) · r′ dr′ dφ′ (6)

=

(∫ r

0

fr(r
′) · r′ dr′

)
·
(∫ φ

0

fφ(φ
′) · dφ′

)
(7)

= Fr(r) · Fφ(φ) . (8)

Inversion gives us the quantile function that is identical to the
desired separable inverse transform

Qr(p1) = F−1
r (p1) Qφ(p2) = F−1

φ (p2) , (9)

or combined to a single function Q : [0, 1]2 7→ R2

Q

([
p1
p2

])
=

[
F−1
r (p1)

F−1
φ (p2)

]
. (10)

To obtain samples Pf
L of f , insert uniform samples Pu

L in
(p1, p2). If those uniform samples are iid random, the resulting
Pf
L will be iid as well. But if they are low-discrepancy, e.g.,

Kronecker–Fibonacci, the resulting Pf
L will be determinis-

tic/homogeneous, see the difference in Fig. 2. The resulting
samples are still in polar coordinates and may be transformed
to Cartesian coordinates via x = r · cos(φ), y = r · sin(φ).

B. R3 in Spherical Coordinates

Given some density f(x), x ∈ R3 that is separable in
spherical coordinates, f(r, θ, φ) = fr(r) · fθ(θ) · fφ(φ), and
the volume element dV = r2 sin(θ) dr dθ dφ, we obtain the
CDF

F (r, θ, φ) =

∫∫∫
f(r, θ, φ) dV

= Fr(r) · Fθ(θ) · Fφ(φ) ,

(11)

where

Fr(r) =

∫ r

r′=0

fr(r
′) · (r′)2 dr′ , (12)

Fθ(θ) =

∫ θ

θ′=0

fθ(θ
′) · sin(θ′) dθ′ , (13)

Fφ(φ) =

∫ φ

φ′=0

fφ(φ
′) dφ′ . (14)

The desired quantile functions are

Qr(p1) = F−1
r (p1) ,

Qθ(p2) = F−1
θ (p2) , (15)

Qφ(p3) = F−1
φ (p3) .

Again, inserting iid uniform samples produces iid samples
of f , but inserting a low-discrepancy sequence, e.g., the
Frolov–Fibonacci lattice, produces deterministic samples, all
in spherical coordinates. Cartesian coordinates are obtained via

x = r · sin(θ) cos(φ) ,

y = r · sin(θ) sin(φ) , (16)
z = r · cos(θ) .

C. S2 in Spherical Coordinates

Finally, we consider spherical densities f(x), x ∈ S2 ⊂ R3

separable in spherical coordinates f(θ, φ) = fθ(θ) · fφ(φ).
With the volume element dV = sin(θ) dθ dφ, we obtain the
CDF

F (θ, φ) =

∫∫
f(θ, φ) dV = Fθ(θ) · Fφ(φ) , (17)

where

Fθ(θ) =

∫ θ

θ′=0

fθ(θ
′) · sin(θ′) dθ′ ,

Fφ(φ) =

∫ φ

φ′=0

fφ(φ
′) dφ′ .

(18)

The desired quantile functions are

Qθ(p1) = F−1
θ (p1) , Qφ(p2) = F−1

φ (p2) , (19)

and Cartesian coordinates are (16) with r = 1.

V. CONSTRUCTING TRANSFORMATIONS NUMERICALLY

We have seen that evaluation of Q for inverse transform
sampling comprises integration and inversion, so one may
ask how to compute Pf

L = Q(Pu
L) in practice. This section

describes a range of such techniques.

A. Analytic Expression of Q

In some cases, integration and inversion can be performed
in closed form, such that there is a closed form expression for
Q, which can then be directly used as inverse transform. This
is the case, e.g., with the vMF density on the S2 sphere [20].



Fig. 3: Deterministic samples from the “von-Mises × truncated-Gaussian density” that is separable in polar coordinates,
Section VI-A.

Fig. 4: Deterministic spherical / S2 samples from the “von-Mises × von-Mises density” (36) that is separable in spherical
coordinates, Section VI-B.

B. Analytic Expression of F

In other cases, the cumulative F , i.e., the antiderivative of
f , may be available in closed form but not its inverse function.
Then we can solve

xi = Q(pi) ⇔ F (xi) = pi (20)

for xi numerically with the one-dimensional Newton-Raphson
method or nested interval algorithms like bisection [26,
Sec. II.C], [27, Sec. 9.1+9.4]. This is simplified by the fact
that F is monotonic by definition.

C. Inverse Interpolation

Now we are considering cases where the antiderivative
F (x) =

∫ x
f(x′) dx′ does not exist in closed form, i.e., we

only have an expression or a function handle of f . We can
then formulate an ordinary differential equation (ODE)

F ′(x) = f(x) , F (0) = 0 , (21)

and compute F with numerical ODE / initial value problem
solvers. Translated to the typical language in ODE solver
documentations, this reads

u′(t) = f(t) , u(0) = 0 , (22)

where u ≡ F and t ≡ x. The solver provides a list of (t, u)-
tuples representing F . If we interchange the coordinates and
interpolate the (u, t)-tuples, we obtain an approximation of the
desired Q [19, Sec. 7.4.3]. This constitutes a tabulation of Q
that we can employ repeatedly. With this method, f also does
not need to be normalized, as we obtain the normalization
constant as the last value of u.



Fig. 5: Deterministic samples in R3 from the “von-Mises × von-Mises × truncated-Gaussian density” that is separable in
spherical coordinates, Section VI-C, seen from three different perspectives (left to right: view on yz-plane, xy-plane, xz-plane).
Parameters are κθ = 100, κφ = 30, mr = 1.5, σr = 0.1, L = 1000. Uniform template is Frolov–Fibonacci.

D. Inverse ODE

Finally, we can write Q directly as an ODE in terms of f ,
entirely skipping F as an intermediate result

u′(t) =
1

f(u)
, u(0) = 0 , t ∈ [0, 1] , (23)

where u ≡ Q [19, Sec. 7.4.3]. This follows from the inverse
function theorem and can be shown with a simple proof:

F (Q(p)) = p | ∂

∂p
(24)

F ′(Q(p)) ·Q′(p) = 1 | F ′(x) = f(x) (25)
f(Q(p)) ·Q′(p) = 1 | solve for Q′ (26)

Q′(p) =
1

f(Q(p))
. (27)

However, this method can only be applied in regions where
the integrand is strictly positive.

VI. EXAMPLES

Putting it all together, we state some interesting examples,
one for each of the domains described in Section IV, respec-
tively.

A. R2: Von-Mises × Truncated-Gaussian Density

As a model density separable in polar coordinates (described
in Section IV-A), we choose a von Mises density fφ along the
angular coordinate φ ∈ [0, 2π)

fφ(φ) = c−1
φ · exp{κ · cos(φ)} ,

cφ = 2πI0(κ) ,
(28)

where I0 is the zeroth-order modified Bessel function of the
first kind, and a truncated normal distribution fr(r) along the
radial coordinate r ≥ 0

fr(r) = c−1
r · exp

{
−1

2

(
r −mr

σr

)2
}

, (29)

cr =

√
π

2
mr σr ·

(
2 +

1

2
√
π
· Γ

(
−1

2
,
m2

r

2σ2
r

))
,

where Γ is the upper incomplete gamma function. The
parameter κ ≥ 0 quantifies angular uncertainty, σr > 0 radial
uncertainty, and mr ≥ 0 the radial mode. For example, imagine
fr encoding the uncertain distance measurement and fφ the
angular measurement of a radar system.

The angular quantile function Qφ is not available in closed
form but can be computed following Section V-D by solving
the scalar initial value problem

u′(t) =
1

fφ(u)
, u(0) = 0 , t ∈ [0, 1] , (30)

with fφ from (28) and u ≡ Qφ. The radial cumulative

Fr(r) =

∫ r

r′=0

fr(r
′) · r′ dr′ , (31)

note the additional factor r′ from (7), is available in closed
form via

Fr(r) · cr =

σ2
r ·

[
exp

{
−1

2

(
mr

σr

)2
}

− exp

{
−1

2

(
mr − r

σr

)2
}]

↱

+

√
π

2
mr σr ·

[
erf

(
mr√
2σr

)
− erf

(
mr − r√

2σr

)]
, (32)

but not its inverse. Thus, it may be solved via bisection as
described in Section V-B.



Now we can insert into Q the uniform low-discrepancy
Kronecker–Fibonacci points Pu

L from Section III-A. The
angular coordinates become

φi = Qφ

(
i

Φ
mod 1

)
= u

(
i

Φ
mod 1

)
, (33)

where u is the solution of (30), for i ∈ {1, 2, . . . , L}. The
radial coordinates ri are obtained by solving

2i− 1

L
= Fr(ri) , (34)

via bisection, with Fr(r) from (32). This gives deter-
ministic samples Pf

L of f in polar coordinates; the
same samples in Cartesian coordinates are finally xi =
ri · cos(φi), yi = ri · sin(φi). Computation of (33)
with DifferentialEquations.jl [28] and (34) with
Roots.jl took about 0.25ms and 9ms on a desktop
computer for 2000 samples without parallelization. See Fig. 3
for visual examples.

B. S2: Von-Mises × Von-Mises Density

We already published this method with a density that would
fit here, namely the vMF density [20]

f(θ) = c−1 · exp{κ · cos(θ)} , c = 4π
sinh(κ)

κ
. (35)

In this notation with a fixed mean direction at θ = 0, and
because it is isotropic, the density depends only on θ and not
on φ, therefore both coordinates are independent – but as a
rather trivial case.

Now we propose a different spherical density on S2 ⊂ R3

that is separable in spherical coordinates, non-isotropic, and
depends on both θ and φ,

f(θ, φ) = c−1
θ c−1

φ · exp{κθ · sin(θ) + κφ · cos(φ)} ,

cθ = π · [I1(κθ) + L−1(κθ)] ,

cφ = 2π I0(κφ) ,

(36)

where In is the nth-order modified Bessel function of the first
kind, and L the modified Struve function.

For intuition, note that the standard vMF “kernel”
exp{κ · cos(θ − θ0)} has, for small uncertainties, the same
shape as the Gaussian kernel exp

{
− 1

2 (x− x0)
2
}

[12, Fig. 2].
And just like a 2D Gaussian is obtained by multiplying two
univariate Gaussians, exp

{
− 1

2 ((x− y0)
2 + (y − y0)

2)
}

, we
propose multiplying one vMF kernel along θ (around θ0 = π/2)
with a second one along φ (here around φ0 = 0), yielding
exp{cos(θ − π/2) + cos(φ)}, leading to (36).

Cumulatives F are not available in closed form, neither
is the inverse ODE method from Section V-D suitable due
to division by zero. Instead, we use the inverse interpolation
method from Section V-C. That is, we solve the initial value
problem

u′ = c−1
θ · exp{κθ · sin(t)} · sin(t) ,

u(0) = 0 , t ∈ [0, π] ,
(37)

yielding a list of (t, u)-tuples representing F : t 7→ u,
and set up the inverse interpolation function employing the

Fig. 6: Same as Fig. 5, but different parameters: κθ =
200, κφ = 5, mr = 1.5, σr = 0.4, L = 1000.

(u, t)-tuples representing Q : u 7→ t. We insert the non-
periodic coordinate of the Kronecker–Fibonacci lattice

(
2i−1
2L

)
as evaluation points (corresponding to u), then the interpolated
t are the θ coordinates of Pf

L. Similarly for the φ coordinates,
we solve the initial value problem

u′ = c−1
φ · exp{κφ · cos(φ)} , (38)

u(0) = 0 , t ∈ [0, 2π] ,

set up the inverse interpolation function u 7→ t, insert the
periodic Kronecker–Fibonacci coordinate ( i

Φ mod 1), and out
comes the φ coordinate. The desired Cartesian coordinates
of Pf

L are obtained through (16) with r = 1. Solving one
ODE took about 0.08ms on a desktop computer. The current
restriction on the density’s main direction and the orientation
of its main axes can be remedied by transforming the Cartesian
coordinates with a suitable rotation matrix. See Figs. 1 and 4
for visual examples (without the rotation matrix).

C. R3: Von-Mises × Von-Mises × Truncated-Gaussian Density

We can make a spherical density “leave the sphere” by
augmenting it with a radial component. Here, we take the
S2 ⊂ R3 density from (36) and augment it with the truncated
normal distribution (29) as radial component fr, yielding an
R3 density. The the now different normalization constant of
fr (due to the r2 factor) is

cr = mr σ
2
r exp

{
−1

2

(
mr

σr

)2
}

↱

+

√
π

2
σr ·

(
m2

r + σ2
r

)
·
(
1 + erf

(
mr√
2σr

))
.

(39)



Fig. 7: Evaluation for Monte Carlo integration with the
proposed samples (Fibonacci, Sobol) and conventional iid
samples (Random). Shown is the absolute integration error.

Again the cumulative Fr(r) =
∫ r

r′=0
fr(r

′) · (r′)2 dr′ is
available in closed form via

Fr(r) · cr = σ2
r e

−m2
r+r2

2σ2
r

(
mr e

r2

2σ2
r − (mr + r) e

mrr

σ2
r

)
+ ↱√

π

2
σr ·

(
m2

r + σ2
r

)(
erf

(
mr√
2σr

)
− erf

(
mr − r√

2σr

))
.

(40)
The θ and φ coordinates are obtained just as described in
Section VI-B – only that we insert, instead of the 2D Kronecker–
Fibonacci lattice, now the 3D Kronecker–Frolov lattice from
Section III-B (or alternatively the Sobol sequence). The r
coordinates ri are computed by solving Fr(ri) = pi via
bisection, with Fr from (40) and pi one coordinate from
the Kronecker–Frolov lattice or Sobol sequence. Mapping to
Cartesian coordinates is done with (16). Solving the ODEs
took about 0.07ms each, and the bisection 10ms, for 2000
samples. See Figs. 5 and 6 for visual examples.

VII. EVALUATION

For evaluation, we define the function g(x) = (x1 −m1)
3 +

(x2 − m2)
3, m = [1, 2]⊤, and approximate the expectation

integral,
∫∫

R2 g(x) · f(x) dx = −16.844 . . . , where f is the
von-Mises × truncated-Gaussian density from Section VI-A
with parameters κ = 0, mr = 1, and σr = 0.5, with Monte
Carlo sample approximations, 1

L

∑
x∈Pf

L
g(x), with various L

and variants of template samples. See Fig. 7 for the results.
The deterministic samples show a much faster convergence
rate. For example, the integration error 0.1 can be achieved
either with about 200 deterministic or 6000 random samples.

VIII. CONCLUSION

We demonstrated that the class of spherical-coordinate-
separable densities is very expressive, and that it is quite easy
to formulate one such density that is tailored to the particular
application at hand – be it representing uncertain radar or
sonar measurements, wind directions, or robotic actuators. We
demonstrated this with three particular exemplaric densities,
among them a very interesting non-isotropic modification of the
von Mises–Fisher distribution (36), see Fig. 4. Our main focus
lies on drawing homogeneous deterministic samples from those
densities – that also turn out to be visually appealing in the
R2 and S2 case if the Kronecker–Fibonacci lattice is used as
uniform template. The deterministic sampling is achieved via
an orthogonal inverse transform, facilitated by the separability,
using low-discrepancy sequences as uniform template particles.
In the future, we are seeking to generalize (36) to higher
dimensions: in S3 it could well represent uncertain quaternions
and serve as an alternative to the Bingham density in directional
estimation.
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