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Abstract—The solution to the state estimation problem is
given by the Bayesian recursive relations (BRRs). Recently,
ensemble Gaussian mixture filters have shown to be an accurate
and consistent solution to the state estimation problem. In
this type of filters, the BRRs are solved by approximating the
state probability density function (PDF) via Gaussian mixtures
(GMs) and point masses (PMs). Throughout the propagation
and measurement update steps, the approximated state PDF
is constantly switching between GMs and PMs. Therefore, a
key step for this solution involves optimally sampling PMs from
GMs. For onboard applications, verifiable and computationally
inexpensive sampling techniques are crucial. In previous work, a
deterministic sampling technique was developed by minimizing
a distance metric known as the modified Cramér-von Mises
distance (MCVMD), yielding a verifiable solution. However, the
computationally feasibility of this solution for onboard use was
not considered. This work introduces a new sampling strategy
that is both deterministic and computationally inexpensive com-
pared to MCVMD approach. By solving the approximate optimal
transport problem via an iterative Sinkhorn-Knopp algorithm,
this new technique is able to sub-optimally sample from a GM,
providing a computationally inexpensive filter.

Index Terms—Nonlinear Estimation, Sequential Filtering, Op-
timal Transport, Sinkhorn-Knopp

I. INTRODUCTION

In state estimation, quantities of interest are inferred from
dynamic models and measurements. The Bayesian recursive
relations (BRRs) [1] provide a solution to the state estimation
problem. If the system is linear and Gaussian, it is known
that the optimal estimator (in the minimum mean squared
error sense) is the Kalman filter [1]. Most dynamics and
measurement models are nonlinear, making the solution to
the BRRs intractable. These scenarios require approximations
and techniques to solve the BRRs numerically. Different
filtering techniques approximate the solution of the BRRs
by describing the state probability density function (PDF) in
various functional forms.

These filtering techniques are generally expected to be
accurate, consistent, and in some applications, computationally
feasible and verifiable. Accuracy quantifies the error between
the state estimate and the true state. Consistency refers to
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the estimated error distribution and/or covariance matrix being
consistent with the true values [1]. A computationally feasible
solution may have varying interpretations, but a fast filter-
ing strategy is typically desirable [2]. Verifiability refers to
producing expected and reproducible outputs from a known
set of inputs [3]. Some of these requirements might not be
met depending on the filtering strategy used to approximate
the BRRs. Therefore, a filter that can optimally balance these
requirements, based on the required application, is essential
for state estimation.

Onboard navigation is a filtering scenario where there is a
need to balance these four requirements. If a filter is to be
used in real-time onboard a vehicle, computational resources
may be constrained [2], and verifiability may be crucial [3].
In addition, low-margin of error onboard applications, such as
atmospheric entry [4], [5] or autonomous landing [6], may also
need very high accuracy with consistent error bounds. Thus,
finding an optimal balance between accuracy, consistency,
feasibility, and verifiability is important for such scenarios.

The point mass filter (PMF) is a filtering strategy used to
solve the BRRs by using a deterministic grid of point masses
(PMs) to describe the state PDF [7]–[10]. In recent work,
the Silverman mass filter (SMF), a variation of the standard
PMF, was introduced [11]. The SMF was shown to be an
accurate solution to the BRRs, by placing the grid on the
approximated posterior PDF obtained via a Gaussian sum filter
(GSF) update [12], [13]. The SMF was also shown to yield
consistent results by using kernel density estimation (KDE)
techniques [14] to better approximate the prior PDF before
performing the GSF update.

Recently, this filter was improved with a deterministic
optimal sampling technique [15], making it equivalent to an
ensemble Gaussian mixture filter (EnGMF) [16]–[19] with
deterministic resampling. The deterministic nature of this filter
makes it a good candidate for verifiability [3]. However, the
optimal sampling technique was developed without consider-
ing the computational feasibility requirement. Therefore, in its
current state, the SMF meets three out of the four requirements
discussed, accuracy, consistency, and verifiability.

This work presents a solution to the computational feasibil-
ity requirement. The sampling technique, used to improve the



SMF, optimally samples PMs from the approximated posterior
PDF obtained via the GSF update, represented by a Gaussian
mixture (GM). To obtain the PMs, deterministic samples are
first drawn from each component of the GM, forming an
initial PM approximation of the posterior PDF. This initial
approximation is then reduced to the desired number of
PMs by minimizing the modified Cramér-von Mises distance
(MCVMD). The optimality of this reduction technique is,
therefore, defined with respect to the MCVMD.

In this work, the initial PM approximation is reduced by us-
ing optimal transport (OT) techniques, similar to the strategies
used in the ensemble transform particle filter (ETPF) [20]–
[23], and in the pineapple filter [3]. However, the OT solution
is approximated by an iterative use of the Sinkhorn-Knopp
(SK) [24] algorithm, providing a faster runtime compared to
previous work. This new reduction technique is shown to
perform similar to the optimal sampling, but with a lower com-
putational cost, thus satisfying the four filtering requirements
discussed.

The remainder of this paper is organized as follows: first,
a background of sequential filtering using PMs and GMs is
provided in Section II. The optimal sampling strategy that
minimizes the MCVMD is presented in Section III, and the use
of OT as a reduction strategy is presented in Section IV. The
performance of both techniques is tested on bivariate problem,
and a sequential filtering problem in Section V. Section VI
provides conclusions and future work.

II. SEQUENTIAL FILTERING USING POINT MASSES AND
GAUSSIAN MIXTURES

Let xk ∈ Rnx be the state, driven by discrete dynamics
fk : Rnx → Rnx and measurements hk : Rnx → Rny at time
step k, such that

xk+1 = fk (xk) + qk, (1)
yk = hk (xk) + ηk, (2)

where qk ∈ Rnx and ηk ∈ Rny are process and measurement
noise, respectively, and yk ∈ Rny is the measurement. To
solve the BRRs, a hybrid PM and GM approach can be used
by discretizing the state space with a grid of PMs.

In previous work, a PMF that places the grid centered on
the approximated posterior PDF (referred to as the SMF) [11],
[25], rather than the prior [8]–[10], has been developed. This
filter begins by formulating the initial posterior state PDF as
a GM with infinitesimal covariance,

p (xk|yk) ≈
N∑
i=1

w
(i)
k|k δ

(
xk −X (i)

k|k

)
, (3)

=

N∑
i=1

w
(i)
k|k lim

P→0
N

(
xk;X (i)

k|k,P
)
, (4)

where X k|k ∈ Rnx×N is the collection of grid points, X (i)
k|k ∈

Rnx is the i-th grid point, wk|k ∈ RN
+ are the probability

masses, w(i)
k|k ∈ R+ is the probability mass of the i-th grid

point, and N is the total number of points.

Assuming that the process noise is Gaussian and zero-mean,
the initial posterior PDF can be propagated by using the GSF
algorithm [12], [13], and KDE techniques [14]. This results in
an approximate prior distribution given by:

p (xk+1|yk) ≈
N∑
i=1

w
(i)
k+1|kN

(
xk+1;fk

(
X (i)

k|k

)
,Bk

)
, (5)

with w
(i)
k+1|k = w

(i)
k|k, and,

Bk = β2P̂k+1|k +Qk, (6)

where P̂k+1|k ∈ Rnx×nx is the ensemble covariance of
the propagated points, Qk ∈ Rnx×nx is the process noise
covariance, and β2 ∈ R+ is the bandwidth parameter, given
by Silverman’s rule of thumb [14]. Note that in Eq. (6), the
ensemble covariance and the process noise covariance balance
each other. If Qk is large, β2 can be scaled by a factor
0 < α ≤ 1, so that the filter is more consistent. On the
contrary, if Qk is small, β2 does not need to be scaled [11].

A GSF update [12], [13] is performed when a measurement
is obtained (k ← k+1) to approximate a posterior distribution
of the form:

p (xk|yk) ≈
N∑
i=1

w̃
(i)
k|kN

(
xk; X̃

(i)

k|k, P̃
(i)

k|k

)
, (7)

where each mean, covariance, and weight of the GM are given
by (assuming Gaussian and zero-mean measurement noise):

X (i)
k|k−1 = fk

(
X (i)

k|k

)
(8)

ν
(i)
k = yk − hk

(
X (i)

k|k−1

)
(9)

X̃
(i)

k|k = X (i)
k|k−1 +K

(i)
k ν

(i)
k , (10)

P̃
(i)

k|k = Bk−1 −K
(i)
k W

(i)
k K

(i)T
k , (11)

w̃
(i)
k|k ∝ w

(i)
k|k−1N

(
yk;hk

(
X (i)

k|k−1

)
,W

(i)
k

)
. (12)

with K
(i)
k ∈ Rnx×ny and W

(i)
k ∈ Rny×ny representing

the Kalman gain and innovation covariance for each point,
respectively.

After the GSF update, optimally representing the GSF-
approximated posterior distribution (which could be multi-
modal) in Eq. (7), as a Dirac mixture (DM) approximation
for the next iteration, becomes the main challenge,

p (xk|yk) ≈
N∑
i=1

w
(i)
k|kδ

(
xk −X (i)

k|k

)
. (13)

In other words, this filtering strategy requires a solution to
optimally find the location of the new grid points X k|k, and
their associated weights, wk|k, given the information from the
GSF update. Figure 1 shows the key steps in the SMF solution.



Fig. 1. Key steps of the SMF. First, the initial grid is propagated as a GM,
then the points are updated, and a new grid is constructed.

III. AN OPTIMAL REDUCTION SOLUTION

Recently, a solution based on optimal sampling of GMs
has been proposed [15]. In this solution, the GM in Eq. (7)
is deterministically sampled to revert to a PM approximation
by minimizing the MCVMD. Thus, this technique is said to
be optimal with respect to the MCVMD. To sample the GM,
deterministic samples are first drawn from each component of
the GM, forming an initial PM approximation of the posterior
PDF. This initial approximation is then optimally reduced to
the desired number of PMs.

The optimal sampling is summarized as follows. First, D
samples are obtained from each Gaussian component1,

N
(
xk; X̃

(i)

k|k, P̃
(i)

k|k

)
≈ 1

D

D∑
j=1

δ
(
xk −D(j)

k|k,i

)
, (14)

where D(j)
k|k,i ∈ Rnx is the j-th deterministic sample. Note

that these samples are equally weighted. The initial PM
approximation, therefore, consists of N ·D PMs,

p (xk|yk) ≈
N∑
i=1

w̃
(i)
k|k

D

D∑
j=1

δ
(
xk −D(j)

k|k,i

)
. (15)

The second step is to optimally reduce the DM to the desired
number of equally weighted points, in this case N ,

N∑
i=1

w̃
(i)
k|k

D

D∑
j=1

δ
(
xk −D(j)

k|k,i

)
≈ 1

N

N∑
i=1

δ
(
xk −X (i)

k|k

)
.

(16)
Note that this reduction step, where all the new PMs are
equally weighted, makes this version of the SMF equivalent
to an EnGMF [16]–[19] with deterministic resampling.

For this work, let M = N · D and let the points on the
left-hand side of Eq. (16) be denoted as Yk|k ∈ Rnx×M with
weights wY

k|k ∈ RM
+ , that is:

M∑
i=1

w
Y(i)
k|k δ

(
xk −Y(i)

k|k

)
≈ 1

N

N∑
i=1

δ
(
xk −X (i)

k|k

)
. (17)

1Deterministic samples can be obtained in various ways, this work uses
Fibonacci grids. [26]

Given the two DMs in Eq. (17), the optimal points, X k|k, are
found by minimizing the MCVMD between the two DMs with
respect to the points’ location, given by [15]:

DMCVM(X ) =
(
wY

k|k

)T
MYk|kYk|kw

Y
k|k

− 2

N

(
wY

k|k

)T
MYk|kX1N

+
1

N2
(1N )

T
MXX1N

+K

∣∣∣∣∣∣∣∣Yk|kw
Y
k|k −X 1N

N

∣∣∣∣∣∣∣∣2
2

,

(18)

where K > 0 is a constant, 1L ∈ RL is the one vector, and,

MX iX j
= xlog

(
DX iX j

)
, (19)

with DX iX j denoting the Euclidean distance matrix between
X i and X j , and xlog (z) = z · log (z) element-wise.

Thus, the location of the new grid points is given by solving

X k|k = argmin
X

DMCVM (X ) . (20)

For this minimization problem, the location of the points can
be initialized by either using the first N points of Yk|k, or
by using the means of the GSF-approximated posterior, X̃ k|k.
Assuming M ≫ N , the main complexity for calculating the
MCVMD is O(M ·N) [27].

This solution has been shown to obtain high-quality points,
improving the estimation performance of the SMF [15].
The deterministic nature of this solution is desirable for
onboard applications, but solving the optimization problem in
Eq. (20) can be a computational bottleneck. Therefore, this
work explores a new technique by using OT to reduce the
computational runtime of the SMF while preserving estimation
performance.

IV. OPTIMAL TRANSPORT AS A REDUCTION STRATEGY

In OT, as formulated in Refs. [3], [21], [23], an approximate
mapping between X k|k and Yk|k can be found, such that

X k|k = Yk|kT
⋆
k , (21)

by minimizing the total transport known as the Monge-
Kantorovich problem [20],

T ⋆
k = argmin

Tk

M∑
i=1

N∑
j=1

T
(i,j)
k

∥∥∥Y(i)
k|k −X (j)

∥∥∥2
2
, (22)

subject to

M∑
i=1

T
⋆(i,j)
k = 1,

N∑
j=1

T
⋆(i,j)
k = Nw

Y(i)
k|k , T

⋆(i,j)
k ≥ 0, (23)

where X is usually chosen to be the first N points of Yk|k or
the means of the GSF-approximated posterior, X̃ k|k [3]. Note
that this strategy uses a different target function compared
to the optimal sampling technique, where the MCVMD is
minimized.



Figure 2 shows the use of OT as a reduction strategy.
In essence, the initial weighted points Yk|k are transported
with the operator T ⋆

k ∈ RM×N to equally weighted reduced
points X k|k. However, since finding T ⋆

k is a linear program-
ming problem, the computational worst-case complexity of all
known solvers is exponential. This makes the OT approach
unsuitable for reducing the complexity of the SMF.

Fig. 2. Optimal transport as a reduction strategy.

A. Sinkhorn-Knopp Algorithm

What is interesting about this linear programming problem
is that it can be approximately solved by using the SK
algorithm [22], [24], [28]. This work proposes the use of the
SK algorithm to approximately solve the OT problem as a
reduction strategy.

The SK algorithm approximates T ⋆
k by adding a regulariza-

tion term to the cost function in Eq. (22),

T ⋆,SK
k = argmin

Tk

M∑
i=1

N∑
j=1

[
T

(i,j)
k ∥Y(i)

k|k −X (j)∥22

+
1

λ
T

(i,j)
k log

T
(i,j)
k

w
Y(i)
k|k

]
, (24)

subject to the same constraints, where λ > 0 is the reg-
ularization weight. For this setup, the SK algorithm has a
guaranteed time complexity of O(M · N) [22]. Note that
this is the same complexity as evaluating the MCVMD once.
Although the SK algorithm is an approximation of the OT
problem, it is guaranteed to converge (in the fixed-point sense).
This guarantee is essential for bounding computational time,
which is crucial when running filtering algorithms in limited
computational resources.

To assess convergence, the following criteria can be used.
Note that, following the OT formulation, the SK solution has
to satisfy

M∑
i=1

T
⋆,SK(i,j)
k = 1. (25)

Therefore, the algorithm is said to converge when∣∣∣∣∣∣∣∣(T ⋆,SK
k

)T

1M − 1N

∣∣∣∣∣∣∣∣2 < ε2, (26)

where ε2 > 0 represents a small constant.

B. Reformulation of the Sinkhorn Knopp Algorithm

In addition to using the SK algorithm to solve the OT prob-
lem, this work proposes a simple yet significant improvement
to the SK solution. Note that in Eq. (22) and Eq. (24), the
choice of X is fixed. Alternatively, by iterating a set amount
of times on X , such that

X k|k,T
⋆,SK
k = arg min

Tk,X

M∑
i=1

L∑
j=1

[
T

(i,j)
k ∥Y(i)

k|k −X (j)∥22

+
1

λ
T

(i,j)
k log

T
(i,j)
k

w
Y(i)
k|k

]
, (27)

the resulting operator T ⋆,SK
k and location of the new points

X k|k can be significantly improved. In this case, the SK
algorithm is run for a fixed number of iterations Ni, where
in each iteration, X is updated using the points found in
the previous iteration. Instead of computing the Euclidean
distance once, this reformulation repeatedly alternates between
computing T ⋆,SK

k and updating X over the course of the Ni

iterations.

V. NUMERICAL EXAMPLES

This section compares the accuracy, consistency, and com-
putational runtime of the new SK approximation technique,
the optimal reduction (OR) that minimizes the MCVMD [15],
and solving the OT problem directly through linear program-
ming [3]. Throughout these examples, the OR technique will
be used as a benchmark, representing the optimal PM approx-
imation. That is, the performance metric used for evaluating
the location of the reduced points will be the MCVMD.

A. Clover Distribution

Figure 3 shows a two-dimensional example that compares
the three reduction methods discussed. The sampling distribu-
tion is a GM with four equally weighted components in the
form of a clover. The first two components are given by

p(x1) ∼ N (x1,2, P1,2) , (28)

p(x2) ∼ N (−x1,2, P1,2) , (29)

with

x1,2 =

2
2

 , P1,2 =

 1 0.5

0.5 1

 . (30)

The second two components are given by

p(x3) ∼ N (x3,4, P3,4) , (31)

p(x4) ∼ N (−x3,4, P3,4) , (32)

with

x3,4 =

−2
2

 , P1,2 =

 1 −0.5

−0.5 1

 . (33)

From each component, 100 deterministic points are sampled
using Fibonacci grids (M = 400). These points, referred to as
Yk|k in the previous sections, are shown in gold. The union



Fig. 3. Comparison of the OR (left), OT (center), and the SK approximation (right) for N = 100. The gold points show the first PM approximation of the
GM plotted in blue. The purple points show the reduced PM approximation.

of the samples represent the initial PM approximation of the
GM.

The initial PM approximation is then reduced to N = 100
equally weighted points, referred to as X k|k in the previous
sections. This new points are shown in purple. The left
panel shows the OR technique by minimizing the MCVMD
using Matlab’s fminunc function with default settings, as
in Ref. [15]. The center panel shows the reduction technique
that directly solves the OT problem, as in Ref. [3], using
Matlab’s linprog function with default settings. The right
panel shows the SK approximation with ε2 = 1 × 10−6, and
λ = 1× 103. For all three approaches, X is initialized at the
first N points in Yk|k. From the figure, it can be seen that all
three approaches achieve similar reductions. In particular, the

OT solution and the SK approximation yield nearly identical
points.

However, if the number of desired points is reduced to N =
50, the OT solution and the SK approximation perform poorly
compared to minimizing the MCVMD. This can be seen in
the center panel of Fig. 4. The OT solution is not shown as
it yields very similar points to the SK approximation. In this
case, the reformulated approach, where the SK algorithm is run
for multiple iterations, updating X at the beginning of each
one, can lead to significantly improved results. If Ni = 10
iterations are performed between T ⋆,SK

k and X , the resulting
points represent the underlying distribution better, as shown
in the right panel of Fig. 4. Note, however, that these points
are still sub-optimal with respect to the MCVMD solution.

Fig. 4. Comparison of the OR (left), the SK approximation (center), and the reformulated SK approximation (right) for N = 50. The gold points show the
first PM approximation of the GM plotted in blue. The purple points show the reduced PM approximation.



Performing a parameter sweep over Ni can show the ben-
efits of the reformulated SK approximation over the standard
SK and the OT solution. Figure 5 shows a comparison of the
three reduction techniques as a function of Ni. The top panel
shows the ratio, dr, between the MCVMD, calculated with
respect to the gold (Yk|k) and purple points (X k|k), for the
OR technique and each of the other techniques,

dr =
DMCVM

(
X (OT or SK)

k|k

)
DMCVM

(
X (OR)

k|k

) . (34)

That is, dr = 1 represents the best reduction, in terms
of minimizing the MCVMD, as given by the OR strategy.
The bottom panel of Fig. 5 shows the runtime needed for
each reduction. All strategies were implemented in MATLAB
R2024a and were run on a MacBook Pro with an Apple M1
Pro chip and 16 GB of RAM.

From the figure, it can be seen that performing more
iterations in the SK algorithm moves the reduced points
towards the OR solution. By only performing two iterations,
the SK solution achieves a PM representation that more
closely aligns with the OR results when compared to the OT
solution. In addition, it can be seen that the SK solution is
less computationally expensive than both the OR and the OT
techniques, even when performing multiple iterations of the
algorithm. Even though the OT solution is faster than the OR
technique, the reformulated SK approximation yields better
quality points (in the sense of approaching the OR solution)
in a faster runtime.

Fig. 5. Comparison between the three reduction techniques. The top panel
shows the MCVMD ratio between the OR, and the other reduction techniques.
The bottom panel shows the runtime required to perform the reduction.

B. Ikeda Map

The clover distribution example illustrates that the SK
approximation can produce comparable points to the OR
strategy, especially when iterating over both T ⋆,SK

k and X .
The SK framework may be more desirable from an onboard
perspective as it avoids optimization schemes and guarantees
convergence in the fixed-point sense. The remaining question
is whether the points obtained with the SK approximation are
representative enough of the underlying distribution. To test
whether the SK approximation can yield results similar to the
OR technique, the Ikeda map can be used to run a sequential
filtering test.

The Ikeda map represents a discrete-time dynamical system,
where [29], [30]

x
(1)
k+1 = 1 + u

(
x
(1)
k cos tk − x

(2)
k sin tk

)
, (35)

x
(2)
k+1 = u

(
x
(1)
k sin tk + x

(2)
k cos tk

)
, (36)

with tk defined as

tk = 0.4− 6

1 +
(
x
(1)
k

)2

+
(
x
(2)
k

)2 . (37)

For this example, u = 0.9 to have chaotic behavior, and
additive white Gaussian process noise with covariance matrix
Qk = 1×10−2I2×2 is assumed. Every time step, it is assumed
that a nonlinear measurement is available,

yk =

√(
x
(1)
k

)2

+
(
x
(2)
k

)2

+ ηk, (38)

where ηk is white Gaussian measurement noise with scalar
covariance matrix Rk = 1. Figure 6 shows the final noiseless
range measurement for different values of u. Each point repre-
sents a different trajectory simulated from an initial condition
sampled from x0 ∼ N (02×1, I2×2) and propagated for 50
time steps. From the figure, it can be seen that for u ≥ 0.6,
the Ikeda map is a chaotic system.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

u

0.0

0.5

1.0

1.5

y f

Fig. 6. Final range as a function of u for the Ikeda map.



For this sequential filtering example, 1000 Monte Carlo
(MC) runs are propagated for 50 time steps, starting from an
initial state x0 ∼ N (02×1, I2×2). Each reduction technique is
tested within the SMF framework. The different filters used
are summarized below.

1) SMF-OR: This filter uses the optimal reduction ap-
proach, sampling deterministic points from the GSF-
updated points and minimizing the MCVMD to reduce
them.

2) SMF-SK (Ni = 1): This filter uses the SK algorithm to
reduce the deterministic points sampled from the GSF-
updated points.

3) SMF-SK (Ni = i): This filter also uses the SK algo-
rithm to reduce the deterministic points sampled from
the GSF-updated points, but iterates i times between
T ⋆,SK
k and X .

Note that the OT solution is not presented, as from the
previous example, it was shown that the SK approximation
can yield a better PM representation with a faster runtime.
For all filters, M = 125 and N = 25. For the SMF-
OR, the MCVMD is minimized using Matlab’s fminunc
function with default settings. In the case of both versions
of the SMF-SK, ε2 = 1 × 10−2 and λ = 500. For all
reduction techniques, X is initialized at the means of the GSF-
approximated posterior, X̃ k|k, and Silverman’s rule of thumb
is scaled by α = 0.4.

In this example, two metrics are used to evaluate the
performance of the filters. The root mean square error (RMSE)
measures the accuracy of filters. The RMSE for this work is
calculated as

RMSE(k) =
nMC∑
j=1

1

nMC

√√√√ 1

nx

nx∑
i=1

(
x
(i)
k,j − x̂

(i)
k|k,j

)2

, (39)

where nMC is the number of MC runs, nx is the state
dimension, x(i)

k,j is the true state, and x̂
(i)
k|k,j is the estimated

state. The scaled normalized estimation error squared (SNEES)
measures the consistency of the filter, obtained by

SNEES(k) =
nMC∑
j=1

1

nMC
eT
k,j

(
Pk|k,j

)−1
ek,j , (40)

where
ek,j = xk,j − x̂k|k,j . (41)

A SNEES of one indicates a consistent filter. If the SNEES is
lower than one, the filter is conservative. Alternatively, if the
SNEES is higher than one, the filter is overconfident. [1]. As
the SNEES is highly sensitive to outliers, any value greater
than 1 × 103 was disregarded as a numerical instability for
this example.

Figure 7 shows the RMSE vs. time steps for the SMF-OR
and the two versions of the SMF-SK. The green line shows
the approximate best performance in the current example,
achieved with a regularized particle filter using 1 × 104

particles. As it can be seen, not iterating over T ⋆,SK
k and

X , that is, Ni = 1, produces a slightly higher error in

the SMF-SK compared to the SMF-OR. If Ni = 5, the
SK approximation closely resembles the SMF-OR, with both
solutions converging almost to Bayesian inference.
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Fig. 7. RMSE vs. time steps for the SMF-OR and the SMF-SK (Ni = i).
The dashed green line shows the RMSE obtained with a regularized particle
filter with 1× 104 particles.

A similar conclusion can be drawn from Fig. 8. The green
dashed line in this figure shows an SNEES of one. The SMF-
OR results show that minimizing the MCVMD yields the best
overall consistency. However, performing more iterations on
T ⋆,SK
k and X improves consistency for the SMF-SK. Table I

shows the time-averaged RMSE, SNEES, and runtime for each
strategy. The runtime presented in this table represents the time
required for a single propagation and update. Additionally, the
runtime values are normalized with respect to the SMF-SK
(Ni = 1) runtime, as this filter runs the fastest.
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Fig. 8. SNEES vs. time steps for the SMF-OR and the SMF-SK (Ni = i).
The green dashed lines shows a SNEES of one.

The SMF-SK (Ni = 5) is only slightly slower than the
SMF-SK (Ni = 1), yet it achieves similar accuracy and con-
sistency values to those of the SMF-OR. For this scenario, the
SMF-OR is the most accurate and consistent filter. However, it
runs the slowest, as it has to minimize the MCVMD for each
reduction step. It is important to note that there are various
techniques to speed up the runtime of the SMF-OR, but as
presented, the SMF-SK (Ni = 5) provides the best balance
between accuracy, consistency, and runtime.



TABLE I
TIME AVERAGED RMSE, SNEES, AND RUNTIME FOR EACH STRATEGY

Filter RMSE SNEES Runtime

SMF-SK (Ni = 1) 0.4862 4.0909 1.0000

SMF-SK (Ni = 5) 0.4774 1.1074 3.3440

SMF-OR 0.4751 0.9889 54.2780

VI. CONCLUSIONS

State estimation for nonlinear systems requires filters that
numerically approximate the solution to the Bayesian recur-
sive relations. These filtering strategies are expected to be
accurate and consistent, and in some applications, verifiable
and computationally feasible. Filters that parametrize the state
probability density function as Gaussian mixtures and point
masses, such as the ensemble Gaussian mixture filter, have
shown to be an accurate and consistent solution to the state
estimation problem. However, they often rely on stochastic
resampling methods, which makes the filter not verifiable.

In recent work, an improved version of the Silverman mass
filter, equivalent to a deterministic ensemble Gaussian mixture
filter, was developed [15]. In this new filter, the resampling
step was made deterministic with the sampling of point masses
from the posterior Gaussian mixture by minimizing a distance
measure. Although this new technique improved the filtering
outcomes by providing a verifiable solution, the computational
cost for the sampling step was not considered.

This work presents a new strategy for deterministically
sampling point masses from a Gaussian mixture, based on
an approximate solution to the optimal transport problem.
By solving the approximate optimal transport problem via an
iterative Sinkhorn-Knopp algorithm, the sampling step can be
performed faster, while preserving accuracy and consistency.
This new strategy was tested on a bivariate static example
and a sequential filtering problem involving the Ikeda map.
In both cases, using the iterative Sinkhorn-Knopp algorithm
was shown to be less computationally expensive than previous
work, while still achieving comparable results.

This new sampling technique presents a filtering strategy
that is accurate, consistent, verifiable, and computationally
feasible. Future work will implement this new strategy in
onboard scenarios, such as spacecraft navigation, to validate
its use in higher dimensional and realistic scenarios.
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