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Abstract—Particle filters are an important class of algorithms
for Bayesian estimation. One of their drawbacks is the so-
called particle degeneration where only very few particles with
a meaningful weight remain after the filter step. This effect is
typically remedied by regularly resampling the particles, yielding
a set of equally weighted particles. This paper investigates an
approach to deterministically sample particles from the proposal
distribution in such a way to automatically have equally weighted
particles at the end of the filter step. The proposed method is
first motivated and presented for the one-dimensional case. Using
the Radon transform and projected cumulative distributions, the
one-dimensional algorithm is extended to multivariate problems.
Some examples of the usefulness of the proposed algorithm are
also shown.

Index Terms—Particle Filter, upsampling, deterministic sam-
pling, Radon transform.

I. INTRODUCTION

Bayesian state estimation combines uncertain prior infor-
mation about a system with noisy measurements to produce
an improved estimate of the state of the system. Closed-form
solutions to this problem are available only for a limited number
of systems. For example, with Gaussian prior distributions and
linear measurement equations, the Kalman filter emerges as
the optimal solution. When dealing with general non-linear
systems and arbitrary priors, different approximations can be
made to arrive at closed-form approximate solutions. Two
popular Kalman filter variants, the extended Kalman filter and
the unscented Kalman filter, for example, only take the first
two moments into account for the estimation and linearize the
measurement function.

The particle filter goes a different route from these by
approximating the posterior distribution with weighted particles,
which are essentially samples of the underlying continuous
posterior distribution. With an increasing number of particles
N , it can be shown to converge asymptotically to the exact
solution. Common particle filters that use random samples have
a convergence rate for the error in O(N−1/2) [1]. This may
be improved up to O(N−1) by using quasi-random sequences
[2][3] or other kinds of deterministic samples [4][5].

A common challenge for all particle filters is the so-called
sample degeneration, where the number of particles contributing
to the solution decreases over time. This effect is typically

Fig. 1: Core idea of the proposed algorithm. Equally weighted
particles of a proposal distribution (blue) are transformed with
the Radon transform. The proposal density is estimated in each
of the resulting one-dimensional sub-spaces. The number of
particles is increased in areas of high likelihood, in this case
around the measurement located at the red cross.

remedied by regularly resampling the particles to remove low-
weight particles while keeping the overall number of particles
the same.

Progressive particle filters and particle flow filters are based
on the idea of continuously morphing a prior distribution of
particles into the posterior distribution. Particle flow filters
formulate this as differential equations that have to be solved to
find the posterior [6]. Progressive particle filters instead divide
this transformation into a sequence of smaller transformations
that are applied iteratively, often with some kind of resampling
step in between [7][8]. In [9] a progressive particle filter
with a deterministic resampling scheme based on Projected
Cumulative Distributions (PCDs) was proposed.

Another method of combating sample degeneration is to
consider the future likelihood update already during sampling



from the prior distribution. Auxiliary particle filters [10] fall
into this category. They are based on the idea that no prior
samples are needed in low-likelihood regions as they would not
be resampled after the update anyway. Therefore, an auxiliary
distribution is constructed and sampled to prefer samples from
high-likelihood regions.

This paper proposes a novel deterministic sampling scheme
to sample a proposal distribution for use in a particle filter.
Unlike random sampling, the weights assigned to the samples
can be selected freely when using deterministic sampling. This
additional degree of freedom allows to increase the number of
particles in areas where the posterior particles are expected to
have a large weight. It is proposed to choose the weights of
the proposal particles inversely proportional to the weighting
factor used in the filter step. In case of the bootstrap particle
filter, this factor coincides with the measurement likelihood.
This weighting scheme leads to posterior particles that are
closer to equally weighted than when using random samples
and increases the number of effective particles in the filter.
As the proposal distribution is often only available in the
form of samples, a novel upsampling method is developed to
adjust the number of particles and their weights. It builds on
the idea presented in [9] where multivariate distributions are
upsampled using estimated PCDs, which were first presented in
[5]. Instead of piecewise constant functions as in [9], piecewise
polynomials similar to [11] are used for density estimation.
The paper first gives a brief introduction to particle filtering
and the reasoning behind choosing the particle weights. The
proposed sampling scheme is then derived for one-dimensional
problems, before it is extended to multivariate densities using
PCDs. An application of the resulting algorithm to a Gaussian
mixture prior is visualized in Fig. 1. Finally, the improvement
in the number of effective posterior particles, when using these
pre-weighted particles is shown on some simulated examples.

II. PROBLEM FORMULATION

Bayesian estimation is concerned with calculating the
posterior probability density function (pdf) of the state of
a system, given a prior pdf, a system model, a measurement
model, and some measurements. For the purpose of this paper,
the system model is the identity without any corruption by
noise and only one timestep is considered. In other words, the
focus lies on a single filter step given the prior pdf f(x) of
the state x, a measurement y, and a likelihood function f(y|x).
The underbar notation x denotes the variable as a vector. The
posterior pdf f(x|y) can then be calculated by applying Bayes
rule and normalizing the result

f(x|y) = η · f(x) · f(y|x) . (1)

The normalization factor η ensures that f(x|y) integrates to
one and is therefore a valid pdf.

In the bootstrap particle filter, the prior and posterior
densities are represented by weighted samples of the respective

distributions called particles. The application of Bayes rule in
this case is straightforward by taking the prior distribution

f(x) =

N∑
i=1

wp
i δ(x− xi) , (2)

expressed as a Dirac mixture density, and multiplying the prior
particle weights wp

i with the likelihood function

f(x|y) = η

N∑
i=1

wp
i f(y|x) · δ(x− xi)

= η

N∑
i=1

we
i δ(x− xi) . (3)

Note that only the particle weights change from prior to
posterior weights we

i , while the particle positions stay the same
and all new information from the measurement is encoded in
the weights.

This filtering scheme is known as the bootstrap particle
filter. Its simplicity makes it very easy to use but leads to
considerable particle degeneration when the prior and posterior
distributions are far apart. When placed in a general particle
filter framework [12], it uses the standard proposal or transition
density as the so-called proposal distribution. It is identical
to the prior pdf f(x) here, as the considered system does
not evolve. By choosing a well-suited proposal distribution
for a given problem, the performance of a particle filter can
be significantly improved. It should typically be as close as
possible to the posterior distribution while still being fast to
sample.

Using a general proposal density π(x|y), the weight update
becomes

we
i = wp

i

f(y|xi) · f(xi)

π(xi|y)
. (4)

By identifying the proposal distribution π(x|y) as a prior
distribution f̃(x) and the weight update factor in (4) as a
likelihood function

f̃(y|xi) =
f(y|xi) · f(xi)

π(xi|y)
(5)

this general update can also be interpreted as the multiplication
of a prior distribution with a likelihood as in (3). This paper
uses the bootstrap particle filter as an example to derive the
proposed methods, but, through the identification above, these
can be easily extended to different proposal distributions.

Sampling from the prior distribution is usually done with
random sampling methods like Markov-Chain-Monte-Carlo.
This results in particles, where each particle has the same
weight. When considering deterministic sampling from a
distribution through optimization, as in [13] or [5], an additional
degree of freedom is available because the weight of each
particle can be chosen individually. The optimal deterministic
particles drawn from a prior distribution have weights according
to

wp
i =

1

f(y|xi)
, (6)
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Fig. 2: Comparison of equally weighted particles (yellow) and particles weighted according to the inverse likelihood function
(blue) before and after the filter step in a bootstrap particle filter. The particles were drawn deterministically from the proposal
distribution (green) and the blue samples were weighted with the inverse of the likelihood function (red). The ground truth
posterior distribution is shown in pink.

the inverse of the likelihood function. This assumes that the
likelihood is larger than zero at all particle locations, requiring
a reasonable overlap between the prior distribution and the
likelihood function. After multiplication of the weights in (6)
with the likelihood function and subsequent normalization, the
posterior particles are equally weighted. This makes resampling
unnecessary and eliminates sample degeneration.

One way to draw such samples from a one-dimensional
distribution that is available in closed form is to minimize the
Cramér-von-Mises distance

D(f, g) =

∫ ∞

−∞

(
F (x)−G(x)

)2
dx (7)

between the underlying continuous distribution and a Dirac
mixture density representing the samples with cumulative
distribution function (cdf) F (x) and G(x). Specifically, the
sample positions are obtained by solving the optimization
problem

argmin
xi

∫ ∞

−∞

(
F (x)−

N∑
i=1

(
f(y|xi)

)−1∑N
j=1

(
f(y|xj)

)−1H(x−xi)

)2

dx

(8)
with the Heaviside step function

H(x) =


0 x < 0
1
2 x = 0

1 x > 0

. (9)

Given that the integral exists and converges (see [14] for more
details) and given a suitable starting solution that avoids very
small and very large likelihood values, this problem can be
solved with standard unconstrained optimization algorithms
like L-BFGS.

An example of particles in a bootstrap particle filter sampled
and weighted in this way is shown in blue in Fig. 2. Compared

to the equally weighted particles in yellow, the blue particles are
denser, where the posterior is larger, and are equally weighted
after the filter step. Unfortunately, this approach breaks down
relatively fast in practical applications. As the likelihood goes
to zero in low-likelihood regions, its inverse grows to infinity.
This in turn leads to inverses close to zero in high-likelihood
regions when normalizing back to a sum of one. The solution
to (8) would not be useful for filtering in this case.

III. WEIGHT SELECTION SCHEME

As discussed above, exact weighting of the particles with the
inverse likelihood (6) is not really practical. However, it is still
advantageous to reduce the variance of the posterior weights as
much as possible and get them close to being equally weighted
[10]. This means having densely sampled particles with small
weights in areas of high likelihood and avoiding the problems
caused by low likelihood regions discussed above.

In the following, an algorithm is introduced that selects
particle weights roughly proportional to the inverse likelihood.
The starting point of the proposed algorithm is a number M
of equally weighted samples of the prior distribution. The
likelihood function is evaluated at each sample position. Based
on these provisional weights, each particle is replaced with a
number of particles according to Algorithm 1.

This algorithm iteratively adds a new particle at the location
of the particle with the current largest weight. The current
weights are calculated by dividing the original weight of
each particle by the number of particles at that location. New
particles are added, up to a maximum number of particles N .
Overall this increases the number of particles from M to N by
splitting particles with high weights and leaving particles with
small weights alone. After this procedure, the new particles



Algorithm 1 Particle replacement algorithm to increase the
number of particles from M to N . The argmax function
returns the index of the largest entry in the vector and ⊘
denotes element-wise division.

Input vector of M particle weights w
Output vector of number of replacement particles n

1: n← 1 ∈ RM

2: while sum(n) < N do
3: i← argmax(w ⊘ n)
4: n[i]← n[i] + 1
5: end while
6: return n

are spread by adding a small perturbation and used as initial
solution to the following optimization problem

argmin
xi

∫ ∞

−∞

(
F (x)−

N∑
i=1

wi H(x− xi)

)2

dx . (10)

This is similar to (8), but with the weights wi determined by
Algorithm 1. The solution can then be obtained through inverse
transform sampling of F (x) [11].

IV. ONE-DIMENSIONAL DENSITY ESTIMATION

In real-world applications, the prior distribution is often not
available as a closed-form function, but can only be sampled
or is already available in sampled form. It has the form of a
Dirac mixture distribution as in (2). The cdf of this distribution
is a sum of step functions. Substituting such a function for
F (x) in (10) and solving the optimization problem often leads
to undesired results, for example clumped up particles. The
reason for this is that the particles are drawn from the discrete
Dirac mixture density, when they should actually be drawn
from the unknown underlying continuous distribution.

This problem was also discussed in [9] and solved there
by interpolating the Dirac mixture density with a piecewise
constant function before sampling. In [11], a different density
estimation algorithm was proposed based on polynomial spline
segments instead of a constant function. While this seems to
give relatively accurate estimation results, it only works in one
dimension and introduces some hard constraints based on the
assumption that the samples were drawn by minimizing the
Cramér-von-Mises distance.

Nevertheless, this method, in a slightly modified form, is
used here to estimate the continuous pdf of the underlying prior
distribution based on the initial particles. A very important
adaptation that is done is to soften the mentioned hard
constraints.

The estimated density f̂(x) is parametrized as a sum of S
squared piecewise polynomials rs(x)

f̂(x) =

S∑
s=1

f̂s(x) =

S∑
s=1

r2s(x) (11)

r1(x)

r2(x)

r3(x)

r4(x)

r5(x) r6(x)

Fig. 3: Density parametrization based on piecewise squared
polynomial splines. Estimated density f̂(x) in pink and root
representations rs(x) in green.

where

rs(x) =

{∑D
i=1 cs,ix

D−1 if x > ξs ∧ x ≤ ξs+1

0 else
. (12)

with the degree of the polynomial D and the nodes ξ1, . . . ξS+1.
These nodes are sorted in ascending order and chosen such,
that all samples are covered. Continuity constraints on the
function value and first derivative are added at each node to
ensure a continuous estimate. The representation is visualized
in Fig. 3.

This parameterization inherently ensures non-negativity
of the resulting density, instead of needing to add explicit
constraints on the polynomial coefficients. It also leads to easily
computable cdfs due to the ease of integrating polynomials.
The density estimation itself is formulated as an optimization
problem to find the optimal coefficients of the polynomials
rs(x). In [11] the Fisher information number

I
(
f̂
(
rs(x)

))
=

S∑
s=1

∫ ∞

−∞

(
r′s(x)

)2
dx (13)

is used as the objective function and additional constraints are
added to force the estimated density to intersect the empirical
cdf exactly at each sample location. The Fisher information
number can be interpreted as a measure of the roughness
of a function and is used as a regularizer to find a unique
solution [15]. The constraints were chosen to motivate density
estimation as the inverse operation to deterministic sampling.
They force the estimated cdf to follow the empirical cdf very
strictly. This is often too restrictive if the samples do not
follow the assumptions exactly. Therefore, they are replaced
by the objective to minimize the squared distance between the
empirical and estimated cdf at each sample location

D̂(f̂ , X) =
M∑
i=1

(
F̂ (xi)−H(x− xi)

)2
(14)

for a set of samples X = {x1, . . . , xM}. The new optimization
objective is the weighted sum of this distance D̂(f̂ , X) and the



Fisher information number I(f̂). The complete minimization
problem for density estimation is

argmin
f̂(rs(x;cs))

D̂(f̂ , X) + λI(f̂) (15)

s.t. f̂j(ξj) = f̂j+1(ξj) ∀j = 2, . . . , S

f̂ ′
j(ξj) = f̂ ′

j+1(ξj) ∀j = 2, . . . , S∫ ∞

−∞
f̂(x) dx = 1

(16)

with a regularization factor λ, continuity constraints at the
node locations ξj , and the integration constraint to get a valid
pdf. The solution to this problem is the distribution with the
smoothest cdf that the given samples could reasonably be
drawn from according to D̂. Increased smoothness can be
traded for a larger distance between samples and continuous
estimate through the hyperparameter λ. In practice, this problem
can be solved, for example, with an interior point algorithm
that is capable of handling nonlinear objectives and equality
constraints.

V. MULTIVARIATE EXTENSION WITH PROJECTED
CUMULATIVE DISTRIBUTIONS

The estimation algorithm described above as well as deter-
ministic sampling using cdfs does unfortunately not generalize
to high-dimensional problems in a straightforward way. One
reason for this is that cdfs are not uniquely defined in more
than one dimension, necessitating alternative approaches [16].
More importantly, it is also difficult to define multivariate and
smooth piecewise polynomial splines analogous to (11). The
Radon transform [17] is a tool to break down high-dimensional
problems into (infinitely) many one-dimensional problems. The
so-called sliced Wasserstein distance [18] is a popular variant
of this method that has gained traction as a loss function in
approaches based on artificial neural networks [19][20]. The
Radon transform has also been used for deterministic sampling
[5], [21]. In [22], the derivation of generalized sliced probability
metrics from one-dimensional metrics is discussed.

Starting with a d-dimensional probability distribution with
pdf f(x), its projection onto the line given by the unit vector
u ∈ Sd−1 has the pdf

f(r|u) =
∫
Rd

f(t) · δ(r − u⊤t) dt . (17)

The Radon transform is obtained when considering the projec-
tions onto all directions u ∈ Sd−1.

A distance measure between multivariate distributions with
pdfs f(x) and g(x) can then be derived by averaging the
distances of all one-dimensional projections

D∞
d (f, g) =

1

Ad

∫
Sd−1

D1

(
f(r|u), g(r|u)

)
du . (18)

Ad is the surface of the hypersphere Sd−1. In practical
implementations, the number of projections has to be limited
to a finite value, replacing the integral in (18) with a sum

DL
d (f, g) =

1

L

L∑
l=1

D1

(
f(r|ul), g(r|ul)

)
(19)

Algorithm 2 Proposed algorithm to sample N particles
weighted approximately inversely to the likelihood function
from a prior distribution initially represented by M particles.

Input M particles of prior distribution
Output N new particles

1: Evaluate likelihood for each particle yielding w
2: Determine new weights using Algorithm 1 and w
3: Project particle positions onto each direction ul

4: Fit polynomial splines f̂(r|ul) to projected particles
5: Draw N new particles by solving (20)

and using unit vectors ul uniformly sampled from Sd−1.
Choosing the Cramér-von-Mises distance (7) for D1 gives the
modified Cramér-von-Mises distance applicable to multivariate
distributions suggested in [5].

This distance measure enables deterministic sampling of
distributions where only the one-dimensional cdfs of the
projected distributions are needed. These can be estimated
by projecting the samples and applying the algorithm for
one-dimensional density estimation described in Section IV.

All that remains is to put the pieces together into the final
algorithm for multivariate distributions Algorithm 2. Starting
with M samples of an otherwise unknown prior distribution,
the quantity of target samples N , and a way to evaluate
the likelihood function, the number of replacements for each
particle and their weights wp

i are determined according to
Algorithm 1. The initial M samples are projected onto a
number L of unit vectors sampled from Sd−1 where d is
the dimension of the state space. For each of the projections,
the according density f̂(r|ul) is estimated by solving the
minimization problem (16). The corresponding estimated cdfs
F̂ (r|ul) and the newly determined particle weights are then
used to set up the following optimization problem to find the
positions xi of N new particles

argmin
xi

1

L

∫ ∞

−∞

(
F̂ (r|ul)−

N∑
i=1

wiH(r−u⊤
l xi)

)2

dx . (20)

The solution to this problem is obtained using Newton’s method,
as suggested in [5].

The complete algorithm shown in Algorithm 2 takes M
particles propagated through the prediction step of a filter and
a measurement as input and returns equally weighted posterior
particles. It can be used as a drop-in replacement for the particle
filter step by setting N = M , otherwise an additional reduction
step is necessary to reduce the number of particles back to N
after the filter step. In contrast to conventional particle filter
steps that resample the particles after weighting them with the
likelihood, a higher resolution of particles is achieved in areas
of high likelihood. This results in a generally more accurate
representation of the posterior distribution.

The cost of a better accuracy is an increase in computa-
tional complexity, especially compared to simple resampling
schemes such as importance resampling. The three last lines
of Algorithm 2 depend on the number of projection directions
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Fig. 4: Comparison between equally weighted prior particles in blue and particles drawn with the proposed method in yellow.
Both sample sets were drawn from the prior distribution (dashed green) and weighted with the inverse of the likelihood (red) to
get the posterior distribution. The analytic posterior is drawn in pink.

L. This number can be seen as a way to trade accuracy and
speed. Systems with a higher number of state dimensions and
more intricate state distributions also require more projections
to represent these. In line 4, an optimization problem is solved
for each of the projections, where the objective function scales
linearly with the number of initial particles, giving a runtime
complexity of O(LM). To solve the optimization in line 5 of
Algorithm 2, a Newton step is calculated in each projection
to iteratively update the position of the particles. This gives a
complexity of O(LN) depending on the number of projection
directions and the number of new particles. Something that
was omitted in these considerations is the runtime of the
optimization algorithms used, which comes in addition to the
above.

VI. EXPERIMENTS

A. One-dimensional Sanity Check

To show the principal workings of the proposed algorithm,
a bootstrap particle filter with one-dimensional states and
measurements is considered. The standard Gaussian N (0, 1)
is used as prior distribution and the likelihood function p(y|x)
is also Gaussian with mean 0.5 and standard deviation 0.3.
Fig. 4a shows the situation before the multiplication of the
particle weights with the likelihood. The blue samples are
equally weighted and were deterministically drawn from the
prior density (dashed green) using (10). The yellow samples
were drawn according to the proposed algorithm starting with
five deterministically drawn samples from the prior density.
The algorithm has no knowledge of the actual underlying
density, and only the samples and the likelihood function (red)
were given as input. The resulting particles are approximately
weighted with the inverse of the inverse likelihood. When
comparing the according posteriors in Fig. 4b it can be seen
that there are more yellow samples with significant weights
than blue samples. Additionally, the yellow samples are closer

to equally weighted than the blue ones. This suggests that the
proposed algorithm works as expected.

To quantify the effect of the improved particle sampling
scheme, the number of effective particles

Neff =

N∑
i=1

1

w2
i

(21)

is calculated and compared to equally weighted particles. This
value is N when all particles have the same weight and goes
to one, as more particles have weights close to zero. In the
example, we have Neff ≈ 3.2 for the equally weighted particles,
which increases to Neff ≈ 5.7 when using the improved
particles. This further underpins the usefulness of the presented
procedure.

B. Two-dimensional Distance Measurement

Next, a two-dimensional bootstrap particle filter with distance
measurements is examined. The prior distribution is the two-
dimensional Gaussian distribution

f(x) = N
([

0
−1

]
,

[
2 0
0 1

])
. (22)

The likelihood function is based on a Euclidean distance
measurement and given as

f(y|x) = N (y; ∥x∥2, 0.2) . (23)

Fig. 5a shows the prior pre-weighted particles sampled with
the proposed method and the mean and 3σ-interval of the
likelihood function. The size of the dots denotes the particle
weight. The starting point were 24 equally weighted prior
particles (not shown) which were increased to 40 weighted
particles. The posterior particles are overlaid onto the ground
truth posterior distribution in Fig. 5b. This result is compared
to a posterior that was calculated using equally weighted prior
samples Fig. 5c. The proposed method leads to more particles
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Fig. 5: Example application of the proposed method in the context of a bootstrap particle filter with a distance measurement.
The prior samples (a) are pre-weighted according to the inverse likelihood. The mean and rough spread of the likelihood
function is drawn in red. There are more posterior particles with a significant weight in (c), where the samples in (a) were
used, as in (b) where equally weighted prior samples were used. The dashed square in (a) marks the the part of the plot shown
in (b) and (c).

with a significant weight remaining in the posterior distribution.
This is also evident in the number of effective particles, which
goes from 10.5 to 17 when using the improved sampling.

C. Scaling to Higher Dimensions

To investigate the scaling of the algorithm to higher dimen-
sions in a bootstrap particle filter. A d-dimensional Gaussian
mixture distribution with two components is used as prior
distribution. Both components have the identity matrix as
covariance matrix. The first component is centered in the origin,
while the mean of the second component has its first coordinate
offset by 2. The likelihood function is a d-dimensional Gaussian
with the same mean as the second component of the prior
distribution and a diagonal covariance matrix with variance
0.5 in every dimension.

The proposed particle sampling method is compared to
equally weighted particles sampled with the method in [5].
For both methods, 1000 random unit vectors were used as
projection directions. The number of effective particles in the
posterior distribution was calculated Fig. 6. As expected, Neff
decreases with an increasing number of dimensions, as on
average fewer particles lie in the relevant regions. The curves
for both methods are more or less parallel, while the proposed
method has more effective particles in all dimensions. This
suggests that it should provide more accurate results than
equally weighted samples, but cannot overcome the curse of
dimensionality.

VII. CONCLUSION

In this paper, a novel algorithm was introduced to enhance
given samples of a prior distribution by considering particle
weights. The particles are deterministically sampled by solving
an optimization problem. This makes it possible to select
the particle weights inversely proportional to the likelihood

dimension
2 4 6 8 10

N e
ff

0

50

100

150

Fig. 6: Number of effective particles (Neff) over the dimensions
for the setup described in Section VI-C. Value for equally
weighted particles in blue and for particles drawn with the
proposed method in yellow.

function that is applied in the filter step. This method of pre-
weighting the particles is shown to increase the number of
effective particles in the posterior distribution, when compared
to equally weighted particles.

The proposed algorithm starts with some number of equally
weighted particles and iteratively splits them in high-weight
regions. Future research may look at methods to additionally
merge particles in low-weight regions. It is in general desirable
to get closer to the optimal pre-weighted particles, that lead to
equally weighted posterior particles.
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