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Abstract—Gaussian mixture filters for nonlinear systems usu-
ally rely on severe approximations when calculating mixtures in
the prediction and filtering step. Thus, offline approximations
of noise densities by Gaussian mixture densities to reduce
the approximation error have been proposed. This results in
exponential growth in the number of components, requiring
ongoing component reduction, which is computationally complex.
In this paper, the key idea is to approximate the true transition
density by an axis-aligned Gaussian mixture, where two different
approaches are derived. These approximations automatically
ensure a constant number of components in the posterior
densities without the need for explicit reduction. In addition, they
allow a trade-off between estimation quality and computational
complexity.

Index Terms—Bayesian estimation, nonlinear systems, Gaus-
sian mixture filter, transition density approximation.

I. INTRODUCTION

State estimation is a key element in many areas, such as
tracking, guidance, positioning, navigation, sensor fusion, fault
detection, and decision-making. Its goal is to estimate the
state of a dynamic system, which is, in general, not directly
measurable, from a set of noisy measurements.

State estimation began in the sixties with the introduction
of the Kalman filter (KF), which optimizes state estimation
for linear systems by minimizing the mean square error. Its
structure is followed by many algorithms addressing state
estimation of nonlinear systems. The algorithms following
the optimization approach provide point state estimates and
covariance matrices of estimate errors. Another approach to
state estimation uses Bayesian recursive relations (BRRs),
incorporating a Bayes equation and Chapman-Kolmogorov
equation (CKE), to provide the state estimate as a condi-
tional probability density function (PDF) based on a set of
measurements. The conditional PDF completely describes the
estimated state; however, the BRRs are analytically tractable
only for a few special cases.

There are many approximate solutions to the BRRs leading
to algorithms of various complexity. Assuming joint PDF of
the state and measurement prediction Gaussian leads to a
group called Gaussian filters (GFs) (e.g., cubature filter [1] or
the stochastic integration filter [2]), which are computationally
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light. However, the assumption seldom holds, and thus, GF
performance for strongly nonlinear systems is poor.

Another group of approximate Bayesian algorithms results
from discrete approximation of the posterior PDF. These
include the point-mass filters (PMFs) [3] replacing the con-
tinuous support of the posterior by a grid of weighted points,
which is usually orthogonal and equidistant. Such a grid
is flexible in representing the posterior but results in com-
putationally demanding algorithms due to the convolution
calculated in the CKE. Particle filters (PFs) [4] belong to the
same group, but they replace the continuous support with a
set of randomly positioned samples. They are computationally
lighter than the PMFs, but the estimates are subject to random
effects.

Gaussian mixture filters (GMFs) [5] are Bayesian algo-
rithms filling the gap between GFs and PMFs. The support of
the posterior is continuous since they represent it by a mixture
of Gaussian PDFs. The usage of a Gaussian mixture (GM)
instead of a single Gaussian PDF results in better accuracy,
even for highly nonlinear problems. This improvement occurs
because each GM term has a small variance compared to the
single Gaussian PDF, which mitigates the impact of strong
nonlinearity. Compared to PFs and PMFs, the GMFs are
usually computationally lighter. For arbitrary nonlinear state
and measurement equations, GMFs can be classified into two
different approaches: local ones and global ones.

Local approaches process the GM components individually
by a bank of filters, each processing a single component.
This has been pioneered in [5] with the first use of GMs for
Bayesian nonlinear filtering. The unavoidable increase in the
number of components due to noises described by GMs is
handled by simple neglecting and combination. In [6], a bank
of Gaussian filters for the independent updates of Gaussian
components is proposed with three different rules to update
the component weights after the correction step.

A more recent discussion of weights calculation after the
correction step based on prior linearization, posterior lineariza-
tion, and without any linearization can be found in [7]. More
complex individual filters have been used in [8], where a
component-wise update is performed using a bank of Gaussian
particle filters as proposed in [9].

Global approaches jointly process all the mixture compo-
nents. An early global approach is the update step for prior



GM with arbitrary nonlinear measurement equation in [10].
Instead of solving the complex problem of approximating
the prior GM, a system of ordinary differential equations for
posterior mixture parameters is solved over an artificial time
interval. A recent global approach [11] considers the update
step for a Gaussian mixture particle filter with deterministic
samples. It works by drawing unweighted samples from the
prior GM, assigning weights from the likelihood, computing
higher-order moments from this sample-based posterior, and
finally determining the posterior GM from moments while
minimizing its Fisher information. This approach is based on
calculating the Fisher information for GMs in [12].

Alternatively, global processing can be achieved with tran-
sition densities approximated by GMs, e.g., [13]. In general,
for arbitrary mixtures, this leads to an exponential increase
in the number of components over time in both the filtering
and prediction steps. Usually, this is taken care of by regular
mixture reduction, which is a non-convex and computationally
complex optimization problem. To automatically limit the
number of components in the prediction step with a GM tran-
sition density, [14] proposed to perform a decomposition into
axis-aligned components. This not only allows a prespecified
number of components without any reduction but also leads
to closed-form expressions for the posterior mixture.

This paper follows the global processing and aims to
propose GMF algorithms that impose the structure of the
predictive and posterior PDF through a decomposition of the
transition PDF to axis-aligned GMs. This allows the user to
control accuracy and computational complexity by specifying
the decomposition.

The paper is structured as follows: Section II introduces
the state estimation problem, the BRRs, and their solution
by the GMF. Section III describes two decompositions of
the transition PDF leading to two proposed GMF algorithms
described in Section IV. A numerical illustration of the devel-
oped algorithms is given in Section V, and Section VI provides
concluding remarks.

II. BAYESIAN STATE ESTIMATION AND GAUSSIAN
MIXTURE FILTER

Consider a discrete-time stochastic system described by a
nonlinear state-space model

xk+1 = fk(xk) +wk, (1a)
zk = hk(xk) + vk, (1b)

where xk ∈ Rnx and zk ∈ Rnz represent the immeasurable
state of the system and the available measurement at time
instant k = 0, 1, . . ., respectively. The functions fk : Rnx 7→
Rnx and hk : Rnx 7→ Rnz are assumed known. The state noise
wk ∈ Rnx and measurement noise vk ∈ Rnz are described
by known PDFs pwk

and pvk
. The initial state x0 is given

by known PDF px0 . Both noises are assumed to be white,
mutually independent, and independent of the initial state.

The model (1) can be expressed using transition PDF (2a)
and measurement PDF (2b)

p(xk+1|xk) = pwk
(xk+1 − fk(xk)) (2a)

p(zk|xk) = pvk
(zk − hk(xk)). (2b)

A. Bayesian state estimation

The goal of state estimation is to infer the posterior PDF
p(xz|zk) of the state xk given all the measurements available
up to time k denoted as zk := [z⊺1 , z

⊺
2 , · · · , z

⊺
k]

⊺. The general
solution to the problem is provided by the BRRs consisting of
the Bayes equation (3a) and the CKE (3b)

p(xk|zk) =
p(zk|xk)p(xk|zk−1)

p(zk|zk−1)
(3a)

p(xk|zk−1) =

∫
p(xk|xk−1)p(xk−1|zk−1)dxk−1, (3b)

where p(zk|zk−1) is the evidence given by p(zk|zk−1) =∫
p(zk|xk)p(xk|zk−1)dxk. The initial condition for the BRRs

is p(x0|z0) = p(x0). The calculation of the BRRs thus
involves alternating the filtering step (3a) and the prediction
step (3b). Usually, an approximate solution has to be used
to obtain the filtering PDF p(xk|zk) and the predictive PDF
p(xk|zk−1).

B. Gaussian mixture filter

The GMF assumes the predictive PDF in the form of a GM

p(xk|zk−1) =

Nk|k−1∑
i=1

αi
k|k−1N{xk;m

x,i
k|k−1,Σ

x,i
k|k−1}, (4)

where the notation N{x;m,Σ} stands for the Gaussian PDF
of the random variable x with mean m and covariance matrix
Σ and αi

k|k−1 ≥ 0, i = 1 . . . Nk|k−1 are the weights that sum

to one, i.e.,
∑Nk|k−1

i=1 αi
k|k−1 = 1. For GM (4), Eq. (3a) can

be arranged as

p(xk|zk) =
p(zk|xk)

∑Nk|k
i=1 αi

k|k−1N{xk;m
x,i
k|k−1,Σ

x,i
k|k−1}

p(zk|zk−1)

=

Nk|k−1∑
i=1

αi
k|k−1p

i(zk|zk−1)∑Nk|k−1

j=1 αj
k|k−1p

j(zk|zk−1)︸ ︷︷ ︸
αi

k|k

pi(xk|zk)

=

Nk|k−1∑
i=1

αi
k|k p

i(xk|zk), (5)

where pi(xk|zk) corresponds to calculation of (3a) for
p(xk|zk−1) = N{xk;m

x,i
k|k−1,Σ

x,i
k|k−1} and similarly,

pi(zk|zk−1) =
∫
p(zk|xk)N{xk;m

x,i
k|k−1,Σ

x,i
k|k−1}dxk. To

preserve the GM form of the predictive PDF, the following
approximation is calculated for each i:

pi(xk|zk) ≈ N{xk;m
x,i
k|k,Σ

x,i
k|k} (6)

by means of moment matching with Taylor series expansion,
unscented transform (UT), or cubature or quadrature rules.



The filtering step thus involves Nk|k−1 parallel calculations
of (3a) for p(xk|zk−1) = N{xk;m

x,i
k|k−1,Σ

x,i
k|k−1} and eval-

uation of pi(zk|zk−1), for which the measurement prediction
ẑik|k−1 =

∫
hk(xk)N{xk;m

x,i
k|k−1,Σ

x,i
k|k−1}dxk is typically

used yielding pi(zk|zk−1) = pvk
(zk − ẑik|k−1). Now, having

the GM representation of the posterior PDF

p(xk|zk) =
Nk|k∑
i=1

αi
k|kN{xk;m

x,i
k|k,Σ

x,i
k|k} (7)

with Nk|k = Nk|k−1, the predictive PDF for the next time
step p(xk+1|zk) is calculated by the CKE

p(xk+1|zk) =
∫

p(xk+1|xk)

Nk|k∑
i=1

αi
k|kN{xk;m

x,i
k|k,Σ

x,i
k|k}dxk

=

Nk|k∑
i=1

αi
k|k

∫
p(xk+1|xk)N{xk;m

x,i
k|k,Σ

x,i
k|k}dxk︸ ︷︷ ︸

pi(xk+1|zk)

=

Nk+1|k∑
i=1

αi
k|k p

i(xk+1|zk), (8)

where Nk+1|k = Nk|k. Again, the approximation

pi(xk+1|zk) ≈ N{xk+1;m
x,i
k+1|k,Σ

x,i
k+1|k} (9)

facilitates preservation of the GM form of the predictive PDF

p(xk+1|zk) =
Nk+1|k∑
i=1

αi
k+1|kN{xk+1;m

x,i
k+1|k,Σ

x,i
k+1|k}.

(10)

The equalities Nk+1|k = Nk|k = Nk|k−1 suggest that the
number of terms of the GM approximations of predictive and
posterior PDFs is fixed to N0|0. Such a situation results from
the representation/approximation of the initial PDF

p(x0|z0) =/≈
N0|0∑
i=1

αi
0|0N{x0;m

x,i
0|0,Σ

x,i
0|0}. (11)

If the transition PDF p(xk+1|xk) in (2a) has the GM form with
W terms (due to several state dynamics models or process
noise PDF pwk

being a GM), then Nk+1|k = W · Nk|k. If
the measurement PDF p(zk|xk) in (7) is of GM form with
V terms (due to several measurement models or measurement
noise PDF p(vk) being a GM), then Nk|k = V · Nk|k−1.
In both cases, the number of GM terms in the posterior
and predictive PDFs grows exponentially. To achieve tractable
GMF algorithms, techniques for merging or pruning terms of
the GMs such as generalized pseudo-Bayesian or interacting
multiple-model techniques [15].

III. DECOMPOSITION OF THE TRANSITION DENSITY

The two GMFs proposed in this paper result from global
processing, in particular from an approximate decomposition
of the transition PDF using axis-aligned GMs. It will be shown
that this results in the user-defined structure of the GM in

the predictive PDF. The structure can be adapted in relation
to the current working point. Such an approach can be used
even for cases when the model and the initial PDF p(x0|z0)
do not have a GM structure. The proposed GMFs differ in
the specification of the user-defined structure. The first GMF
algorithm defines the decomposition structure through the state
described by the posterior (filtering) PDF p(xk|zk), i.e., the
structure is defined by a filtered state grid (FSG). The second
GMF algorithm defines the decomposition structure through
the state described by the predictive PDF p(xk+1|zk), i.e., the
structure is defined through a predicted state grid (PSG).

For convenience, the decompositions will be introduced for
a zero mean Gaussian state noise, i.e.,

p(xk+1|xk) = pwk
(xk+1 − fk(xk)) = N{xk+1; fk(xk),Q}

(12)

However, they can be designed for any pwk
.

A. Decomposition with filtered state grid

This decomposition described in [14] assumes the transition
density (12) to be decomposed as

p(xk+1|xk) ≈ p̂fsg(xk+1|xk) =
Mk+1∑
j=1

ωj
k g

j(xk+1;θ
g,j
k+1)γ

j(xk;θ
γ,j
k ), (13)

where functions gj and γj are given by Gaussian PDFs

gj(xk+1;θ
g,j
k+1) = N{xk+1;m

g,j
k+1,Σ

g,j
k+1} (14a)

γj(xk;θ
γ,j
k ) = N{xk;m

γ,j
k ;Σγ,j

k } (14b)

The decomposition defines the fixed structure of the predic-
tive PDF p(xk+1|zk) through setting parameters θγ,j

k , j =
1 . . . ,Mk+1. The decomposition is illustrated in Figure 1 for
a scalar state transition density

p(xk+1|xk) = N{xk+1; 0.5xk + 25xk

1+x2
k
+ 8 cos(1.2k), Q}

(15)

(for k = 0) appearing in the highly nonlinear univariate
nonstationary Gaussian model (UNGM) problem.

1) Calculation of the parameters: The parameters θg
k+1 :=

{θg,j
k+1}

Mk+1

j=1 , θγ
k := {θγ,j

k }Mk+1

j=1 and the weights ωk :=

{ωj
k}

Mk+1

j=1 are calculated to minimize the squared error be-
tween the transition PDF and its approximation (13)

J(θg
k+1,θ

γ
k , ωk) =∫∫ (
p(xk+1|xk)− p̂fsg(xk+1|xk)

)2
dxk+1dxk. (16)

The reason for choosing the integral of a squared difference
between the transition PDF and its approximation is the fact
that for the Gaussian transition PDF (12) and the approxi-
mation (13), some terms can be integrated analytically. The
large number of parameters makes the minimization of (16)
intractable. Hence, some parameters are prescribed by the user,
and the optimization is performed only over a few.



Figure 1. Illustration of the transition PDF decomposition with FSG. Red
curves correspond to functions g while black curves to functions γ.

First, the number of terms Mk+1 and the location pa-
rameters mγ,j

k are selected to achieve good approximation
of (12) in the non-negligible support of the posterior p(xk|zk).
Second, the location parameters mg,j

k+1 are calculated as

mg,j
k+1 = fk(m

γ,j
k ), j = 1, . . . ,Mk+1. (17)

Third, covariances Σg
k+1 are set as Σg,j

k+1 = Q, j =
1, . . . ,Mk+1 due to (12). Fourth, to respect the shape of the
function fk at the location mγ,j

k , the covariance Σγ
k is set to

be proportional to

Σγ,j
k ∝ Σ̄

γ
k

(
∂fk(xk)
∂xk

∣∣∣
xk=mγ,j

k

)−1

Q

(
∂fk(xk)
∂xk

∣∣∣
xk=mγ,j

k

)−⊺

,

(18)

where (F)−⊺ stands for the transpose of the inverse of F.
The proportionality factor denoted as Σ̄

γ
k is common for

all Σγ,j
k , j=1, . . . ,Mk+1. Its value is obtained by minimiz-

ing (16). Finally, the weights ωk are set as

ωj
k ∝ ω̄k = 1/

√
(2π)nx |Σ̄γ,j

k | (19)

so that

pxk+1|xk
(mg,j

k+1|m
γ,j
k ) =

ωj
kg

j(mg,j
k+1;θ

g,j
k+1)γ

j(mγ,j
k ;θγ,j

k ). (20)

The proportionality factor denoted as ω̄k is common for
all ωj

k, j = 1, . . . ,Mk+1. Its value is obtained by min-
imizing (16). Hence, the criterion is minimized w.r.t. the
proportionality factors Σ̄

γ
k and ω̄k both being scalars.

2) Possible generalization: When the function fk is time-
varying, it may be necessary to recompute the decomposition
for each time instant. In a special case, when the time instant
acts in an additive way such as fk+m(x) = fk(xk)+∆k, where
∆k : R 7→ Rnx , the decomposition may be pre-computed only
for a single time instant (e.g., k = 0) and then shifted in
direction of xk+1 by ∆k −∆0.

The generalization to higher dimensions is straightforward.
The number of location parameters mγ

k may grow expo-
nentially with the state dimension nx. Optimization of the

Figure 2. Illustration of the transition PDF decomposition with PSG. Red
curves correspond to functions g while black curves to functions ϕ.

criterion (16) to obtain the covariance matrices Σγ
k and the

weights ω may be difficult but an approach similar to (18)
and (19) may be used. The decomposition can also be designed
for the non-Gaussian transition PDF.

B. Decomposition with predicted state grid

This decomposition assumes the transition density (12)
decomposed as

p(xk+1|xk) ≈
Mk+1∑
j=1

ωj gj(xk+1;θ
g,j
k+1)ϕ

j(fk(xk);θ
ϕ,j
k ),

(21)

where functions gj and ϕj are given by Gaussian PDF

gj(xk+1;θ
g,j
k+1) = N{xk+1;m

g,j
k+1,Σ

g,j} (22a)

ϕj(fk(xk);θ
ϕ,j
k ) = N{fk(xk);m

ϕ,j
k ;Σϕ,j} (22b)

The decomposition (21) was proposed in [16] to address the
solution to the CKE for the PMF. The decomposition defines
the fixed structure of the predictive PDF p(xk+1|zk) through
parameters θg

k+1 := {θg,j
k+1}

Mk+1

j=1 , θϕ
k := {θϕ,j

k }Mk+1

j=1 and the
weights ωk := {ωj

k}
Mk+1

j=1 . The decomposition is illustrated in
Figure 2 for (15). Note that compared to the illustration in
Figure 1, the axis-aligned grid is defined over the space of
xk+1 and fk(xk) rather than xk+1 and xk, which is the case
of FSG.

1) Calculation of the parameters: The parameters are also
obtained by an optimization process [16]. The number of
terms Mk+1 and the locations mg,j

k+1 are selected so that the
approximation is good on the non-negligible support of the
prior p(xk|zk). The locations mg,j

k+1 and mϕ,j
k are usually

equal mg,j
k+1 = mϕ,j

k , and variances Σg,j and Σϕ,j are usually
fixed and identical. They only depend on how dense the
locations are. For optimal parameter values, the grid can easily
be redefined over a hyper-rectangular region of arbitrary size.

2) Possible generalization: The decomposition with
PSG (21) can be straightforwardly generalized to higher
dimensions as demonstrated in [16]. Similarly to the



decomposition with the FSG, the number of components
grows exponentially with the dimension of the state nx. The
decomposition can be calculated for other classes of transition
PDF such as Student-t distributed PDF [16]. Time-varying
function fk in (1a) does not affect the decomposition since the
decomposition is computed in the space of xk+1 and fk(xk)
as illustrated in Figure 2. Also, time-varying parameters of
the transition PDF may not complicate the application of
the decomposition since, for example, of Gaussian PDF,
the decomposition was calculated for standard Gaussian
distribution and the parameters θg

k+1 and θϕ
k can easily be

adapted for arbitrary covariance matrix.

IV. GMFS WITH TRANSITION PDF DECOMPOSITIONS

Now, the GMF algorithms employing the decomposi-
tions (13) and (21) are introduced.

A. GMF with transition PDF decomposition and FSG

The algorithm denoted as GMF-FSGD can be described
using Algorithm 1.

Note that for the transition PDF decomposition with FSG,
no approximation is used when calculating the CKE since the
function γ is a Gaussian PDF in xk. The prediction PDF
in (23e) demonstrates that its structure is defined by the user
through the locations mg,j

k+1.

B. GMF with transition PDF decomposition and PSG

The algorithm denoted as GMF-PSGD can be described
using Algorithm 2. For generally nonlinear fk, the integral
in (24d) has to be evaluated approximately. The approxima-
tion error should be small since both variances Σϕ,j

k and
Σx,i

k|k ⪯ Σg,j
k are small and the effect of the nonlinearity is thus

limited. They are also identical by design, so the calculations
can be simple.

C. Theoretical comparison of GMF-FSGD and GMF-PSGD

Both algorithms are based on a decomposition of the transi-
tion PDF, and their application for a state estimation problem
must involve an offline stage, where the decomposition is pre-
calculated. The comparison thus concentrates on both aspects:
the offline precomputation stage and the algorithm application
for online state estimation. Both grids are defined as axis-
aligned. While FSG is defined over the space given by xk+1

and xk, the PSG is defined over the space defined by xk+1

and fk(xk).
For the FSG, the offline stage involves the specification of

a grid in the domain of xk. The grid has to cover the region
where the state xk is expected to lie for k = 1, 2, . . .. Defining
the region may be challenging, and for real-world problems,
one needs to run a simple filter first to provide a rough
state estimate to determine the region. The size of the region
substantially affects the number of terms of the decomposition.
The online state estimation does not necessarily use all the
terms of the decomposition (precomputed for all time instants)
but rather a subset of terms relevant to the current state
estimate x̂k|k. As mentioned above, the time-dependency of

Algorithm 1 GMF-FSGD
Step 1 (initialization): Assume a posterior PDF

p(xk|zk) =
Nk|k∑
i=1

αi
k|k N{xk;m

x,i
k|k,Σ

x,i
k|k}. (23a)

Step 2 (time update): Given the support of the posterior,
select the parameters θγ

k , θg
k+1, and weight ωk. Calculate the

CKE as

p(xk+1|zk) =
∫

p(xk+1|xk)p(xk|zk)dxk

≈
∫ Mk+1∑

j=1

ωj
k g

j(xk+1;θ
g,j
k+1)γ

j(xk;θ
γ,j
k )

Nk|k∑
i=1

αi
k|k N{xk;m

x,i
k|k,Σ

x,i
k|k}dxk, (23b)

which can be rewritten as

p(xk+1|zk) ≈
Mk+1∑
j=1

βjgj(xk+1;θ
g,j
k+1), (23c)

where

βj = ωj
k

N∑
i=1

αi
k|k

∫
γj(xk;θ

γ,j
k )N{xk;m

x,i
k|k,Σ

x,i
k|k}dxk

= ωj
k

N∑
i=1

αi
k|k N{mγ,j

k ;mx,i
k|k,Σ

γ,j
k +Σx,i

k|k}. (23d)

Then, the predictive PDF p(xk+1|zk) is of the form

p(xk+1|zk) =
Nk+1|k∑
j=1

αj
k+1|k N{xk+1;m

g,j
k+1,Σ

g,j} (23e)

with Nk+1|k = Mk+1 and αj
k+1|k = βj .

Step 3 (measurement update): Update each parameter of
p(xk+1|zk) using standard equations for GMF.

the function fk(xk) in (1a) may complicate the decomposition
precalculation further.

All the difficulties of FSG stem from the definition of the
grid over the space given by xk+1 and xk. Since the PSG
is defined over the space defined by xk+1 and fk(xk), it is
only the process noise distribution pwk

that affects the PSG.
Moreover, even if the distribution parameters vary in time,
this dependency may not complicate the PSG computation.
An example is the Gaussian wk with a time-varying mean or
covariance matrix, where the PSG can be precomputed for a
standard Gaussian distribution and then shifted and scaled to
align with pwk

.
From the offline stage calculation point of view, the FSG is

more difficult to calculate than the PSG. Both grids are usually
specified to be equidistant, which for the FSG may lead to
limited approximation accuracy in areas when small changes



Algorithm 2 GMF-PSGD
Step 1 (initialization): Assume a posterior PDF

p(xk|zk) =
Nk|k∑
i=1

αi
k|k N{xk;m

x,i
k|k,Σ

x,i
k|k}. (24a)

Step 2 (time update): Given the support of the posterior,
select the parameters θϕ

k , θg
k+1, and the weights ωk. Calculate

the CKE as

p(xk+1|zk) =
∫

p(xk+1|xk)p(xk|zk)dxk

≈
∫ Mk+1∑

j=1

ωj
k g

j(xk+1;θ
j
k+1)ϕ

j(fk(xk);θ
ϕ,j
k )

Nk|k∑
i=1

αi
k|k N{xk;m

x,i
k|k,Σ

x,i
k|k}dxk,

(24b)

which can be rewritten as

p(xk+1|zk) ≈
Mk+1∑
j=1

βj gj(xk+1;θ
g,j
k+1), (24c)

where

βj = ωj

Nk|k∑
i=1

αi
k|k∫

ϕj(fk(xk);θ
ϕ,j
k )N{xk;m

x,i
k|k,Σ

x,i
k|k}dxk. (24d)

Then, the predictive PDF p(xk+1|zk) is of the form

p(xk+1|zk) =
Nk+1|k∑
j=1

βj N{xk+1;m
g,j
k+1,Σ

g,j} (24e)

with Nk+1|k = Mk+1.
Step 3 (measurement update): Update each parameter of
p(xk+1|zk) using standard equations for GMF.

to xk correspond to big changes in xk+1. This is illustrated
in Figure 3, where the UNGM transition PDF is decomposed
for both FSG and PSG.

The disadvantage of the decomposition with FSG is com-
pensated in the online state estimation, where due to the
function γj (14b) being Gaussian PDF in xk, the integration
in (23d) can be evaluated analytically. The GMF-PSGD has to
calculate the corresponding integral (24d) numerically as the
function ϕj in (22b) is a Gaussian PDF in fk(xk) rather in xk.
The numerical approximation used for the evaluation may be
a simple one, e.g., the cubature rule, which is computationally
cheap and leads to satisfactory results since both PDFs,
which product appears in the integral, have similar covariance
matrices.

V. NUMERICAL ILLUSTRATION

Consider the UNGM [17], which is strongly nonlinear and
often used as a benchmark problem. Its transition PDF is given
in (15) and measurement PDF

p(zk|xk) = N{zk; x2
k

20 , R}. (25)

In this paper, we consider the process and measurement noise
variances Q = 10−1 and R = 10−1, respectively, and the
initial condition being Gaussian with zero mean and variance
Σx

0|0 = 10−2.
The state of the UNGM was estimated by

• GMF-FSGD with equidistant locations mγ,j with dis-
tance between neighborhood locations 0.05

√
Q,

• GMF-PSGD with the decomposition parameters com-
puted in [16] with rank 40,

• PMF [18] with 103 grid points,
• PF with the importance density given by the transition

PDF, multinomial resampling at each time instant, and
Npf = 103 samples.

First, the predictive and filtering PDFs for k = 2 are shown
in Figure 4 to illustrate the capability of the proposed filters
to produce a good approximation of complex-shaped PDFs.
Then, the root mean-squared error (RMSE)

RMSEk =

√√√√ M∑
ℓ=1

(
xk(ℓ)− x̂k|k(ℓ)

)2
(26)

based on M = 104 Monte Carlo (MC) simulations was
computed with xk(ℓ) being the true state at ℓ-th MC simulation
and x̂k|k(ℓ) being its filtering estimate. It is shown in Figure 5,
from which it follows that for the above-mentioned parameters,
the best RMSE performance has the PF. The GMF-PSGD
performs better than the GMF-FSGD, which is probably
given by the fact that the decomposition with the FSG has
worse approximation quality in some regions compared to the
decomposition with the PSG.

Since the RMSE only evaluates the quality of point esti-
mates, the proposed methods are also assessed based on the
quality of the posterior PDF. The performance was analyzed
in terms of Kullback-Leibler divergence (KLD) between the
posterior PDF produced by the PF with Npf = 105 samples
representing the true posterior and the posterior PDFs pro-
duced by GMF-PSGD, GMF-FSGD, and PMF. The posterior
PDF of the PF is given as

ppf(xk|zk) = 1
Npf

Npf∑
i=1

δ(xk − sik), (27)



Figure 3. Comparison of transition PDF and its approximations for the UNGM: top row – top view, middle row – 3D view, bottom row – square of
approximation error.

where δ is the Dirac delta function and sik is the i-th sample.
The KLD defined as

DKL(p
pf∥p) =

∫
ppf(xk|zk) log

ppf(xk|zk)
p(xk|zk)

dxk

=

∫
ppf(xk|zk) log ppf(xk|zk)dxk︸ ︷︷ ︸

SDE

−
∫

ppf(xk|zk) log p(xk|zk)dxk︸ ︷︷ ︸
INACC

(28)

consists of Shannon differential entropy (SDE) and inaccuracy
(INACC) [19]. The discrepancy between the PDFs is captured
by the inaccuracy only; hence, it will be used for the com-
parison. The inaccuracy averaged over the MC simulations is
depicted in Figure 6. From the figure, it follows that superior
performance is achieved by the GMF-PSGD while the PMF
does not perform well.

The computational time of the algorithms is compared in
terms of the time of the filter’s single step, given in Table I

The results indicate that the GMF-PSGD algorithm is com-
putationally cheaper than GMF-FSGD. This was not expected
since GMF-PSGD uses numerical integration while GMF-
FSGD uses analytical integration in the online run. The reason
for this is the number of terms, which was higher for GMF-

Table I
COMPUTATIONAL COSTS OF THE ALGORITHMS (SINGLE STEP OF ONLINE

PART)

GMF-PSGD GMF-FSGD PF PMF

Time [ms] 0.78 1.96 4.29 6.09

FSGD (286 GM terms on average) than for GMF-PSGD (80
GM terms on average). The difference is caused by different
approximations and sizes of the approximation regions used
by the algorithms. It shall be noted that all the above results
depend on the specification of the filter parameters, such as the
number of grid points, samples, and GM terms in the transition
PDF decomposition. Comparing the performance of the filters
is challenging due to differing parametrization. Therefore,
the purpose of the numerical example is to showcase the
competitiveness of the proposed algorithms when compared
with the representative Bayesian filtering algorithms.

VI. CONCLUSION

The paper proposed practical Gaussian mixture filters that
do not rely on local component processing and do not suffer
from component explosion. The key idea of these global
filters is the offline decomposition of a given transition density
into a mixture of axis-aligned Gaussian components. These



decompositions automatically maintain a predefined number
of posterior components without requiring explicit component
reduction. Two types of decompositions are derived that differ
in the definition of the coordinate axes. While the first de-
composition uses xk+1 and xk as axes, the second one uses
xk+1 and f(xk). The first decomposition has complex offline
processing and requires the specification of an approximation
domain. However, for Gaussian and Gaussian mixture posteri-
ors, the prediction step can then be performed online in closed
form. The second decomposition is simple to perform and does
not require a predefined approximation domain but requires
numerical integration (done by the unscented transform). Both
decompositions allow an adjustable trade-off between the
computational load during the online prediction step and
the estimation quality achieved. Numerical simulations with
a highly nonlinear univariate nonstationary Gaussian model
(UNGM) problem demonstrated that the proposed algorithms
are competitive compared to the state-of-the-art Bayesian
filtering methods in terms of both point estimate quality and
posterior PDF quality.

Future work will focus on the calculation of more effi-
cient decompositions for GMF-FSGD and its generalization
to higher dimensions, as GMF-PSGD can easily be extended
to mid dimensions (approx. ten state elements).
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