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Abstract—Bayesian machine learning models—especially
Bayesian neural networks (BNNs)—offer powerful black-box
approaches for prediction and uncertainty quantification.
However, these models frequently exhibit inconsistent prediction
quality across input regions, and conventional global metrics (e.g.,
the mean squared error (MSE)) are inadequate for capturing such
local discrepancies. To overcome this limitation, we introduce
a novel kernel-based framework for local calibration testing that
assesses how well predicted distributions reflect both the function
to be learned and inherent uncertainties. In our approach,
spherical input-space kernels are used to define relevant subsets in
the neighborhood of a point to be tested. This enables the online
assessment of these localized regions using calibration metrics
or statistical tests. By aggregating results across multiple kernel
widths, our method yields both robust binary decisions and a
continuous analysis over arbitrary inputs. Numerical experiments
on single- and multi-dimensional regression tasks demonstrate
the efficiency and scalability of our approach, underscoring its
potential for real-time and large-scale applications.

Index Terms—Bayesian neural networks, uncertainty
quantification, statistical testing, calibration testing.

I. INTRODUCTION

In many safety-critical applications, effectively quantifying
the uncertainty of predictive models is crucial for building
trustworthy systems. In the realm of machine learning, Bayesian
neural networks (BNNs) offer a powerful means of capturing
uncertainty, with the promise that a model will say whether it is
uncertain about its prediction, e.g., by increasing the variance of
an output. In practice, however, it is observed that uncertainty
estimates are of different quality depending on the region of the
input space. E.g., a region densely covered by training data may
yield well-calibrated predictions, whereas regions with sparse
training data may produce inaccurate outputs. In this context,
calibration refers to the consistency between the predicted
uncertainty and the actual uncertainty inherent in the data-
generating process, which is usually assessed using test samples.
Therefore, identifying input space regions of suboptimal
calibration is critical to ensuring trustworthy predictions,
particularly when these predictions inform important decisions.

Despite numerous advances in approximate inference tech-
niques, such as Markov Chain Monte Carlo (MCMC) [1], Vari-
ational Inference (VI) [2], or Expectation Propagation (EP) [3],
challenges remain in evaluating a model’s local calibration.
Standard diagnostic metrics or calibration measures such as
the mean squared error (MSE) or uncertainty calibration error
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Fig. 1. Local calibration using input space kernels and the UCE is shown
in (a), providing insights into the model’s calibration across the input space
[x1 x2]⊤ ∈ R2. Note that our method does not require knowledge of the
exact data generation process. For comparison, (b) depicts the distance
between the model’s predictions and the data-generating process.

(UCE) [4] typically focus on global evaluations and overlook
input-dependent calibration discrepancies. Motivated by this
gap, we propose a kernel-based testing framework that exam-
ines calibration in localized, input-dependent neighborhoods
defined by spherical input-space kernels. By systematically com-
bining results from multiple kernel widths, our method robustly
reveals localized miscalibration. The relevance of our kernel-
based approach stems from its flexibility and generality. Unlike
our previous methods that rely on fixed global partitions [5]–[8]
or are designed for specific input dimensionalities [5], [6], our
proposed approach enables calibration assessment at arbitrary
locations and scales in any input dimension. This adaptability is
crucial for uncovering local miscalibration that may be missed
by global or coarsely partitioned methods.

Contribution: In this paper, we first review the Bayesian
learning setup and the resulting test problem in Secs. III and IV,
respectively. Building upon our prior work on identifying
trustworthy regions [5]–[8], we then introduce an improved
kernel-based approach for local calibration testing via spherical
input-space kernels, given only a test data set. In contrast to
state-of-the-art methods, our approach does not require global
partitioning of the input space. We further propose a mechanism
to aggregate local tests across multiple kernel widths, yielding
both binary calibration decisions and continuous calibration
measures. Lastly, we provide experimental validation on
single- and multi-dimensional regression tasks, demonstrating
the efficiency, scalability, and alignment of our method with
principled ground truth distances, as shown in Fig. 1.



Notation: In this paper, underlined letters, e.g.,
¯
x, denote

vectors, boldface letters, such as
¯
x, represent random variables,

while sets are represented as calligraphic letters, e.g., D.

II. RELATED WORK

A. Approximate Inference

Unlike classical neural networks with deterministic weights,
BNN weights, since they are represented by distributions,
cannot be trained using standard backpropagation. Instead,
learning weight distributions relies on approximate probabilistic
inference. We exclusively consider the principles used in the
evaluation (Sec. IX) in this subsection. For a comprehensive
overview of these methods, see [9].

The MCMC method, initially proposed in [1], has become
a widely used approach for probabilistic inference in training
BNNs. Despite its effectiveness, its high computational
cost—due to the need for generating a large number
of samples, as exemplified by the Metropolis–Hastings
algorithm [10]—remains a significant drawback. To enhance
its efficiency, several improvements have been developed,
including Gibbs sampling [11], Hamiltonian Monte Carlo [12],
and the No-U-Turn Sampler (NUTS) [13].

Another class of methods, collectively known as Variational
Inference (VI) [2], transforms the complex inference task into
an optimization problem by minimizing the empirical lower
bound of the reverse Kullback–Leibler divergence between
the variational distribution and the true posterior. Several
advancements have enhanced scalability for larger networks
by using scaled gradients from random subsets of training data
as implemented in Stochastic Variational Inference (SVI) [14]
or by employing deterministic moment propagation [15].

Expectation Propagation (EP) [3] approximates the true
posterior with a more tractable distribution. In contrast to VI,
which minimizes the reverse Kullback–Leibler divergence, EP
minimizes the forward divergence. This approach has gained
considerable attention in BNNs, with prominent examples
such as probabilistic backpropagation (PBP) [16].

B. Calibration Measures for Regression

Assessing prediction quality via calibration measures
involves quantifying how closely predictive distributions align
with the true data-generating process [17]. This evaluation is
complicated by the limited number of test samples and the
absence of ground truth uncertainty estimates. Various tools
exist for this purpose, including calibration plots [18], which
visually compare predicted confidence levels against empirical
observations. For regression models, scoring rules are often
employed to measure the quality of uncertainty estimates [17].

In the case of univariate and normally distributed predictions,
calibration measures such as the uncertainty calibration error
(UCE) [4] and expected normalized calibration error [19] are
used. These metrics assess discrepancies between predicted
variances and the MSE computed over binned test data Bs.
The UCE is defined by

UCE =

S∑
s=1

|Bs|
NTest

|MSE(Bs)−MV(Bs)| , (1)

where MSE(Bs) represents the MSE between the predicted
means and the observed outputs within the s-th bin, while
MV(Bs) is the mean variance of the predictions within the
s-th bin, and S is the number of bins. |Bs| is the number of
test data points within the s-th bin, whereas NTest is the total
number of test data points. For normally distributed predictions
in arbitrary dimensions, [17] introduced the quantile calibration
error, which compares observed frequencies with selected
quantile values of chi-squared distributed errors.

C. Statistical Testing
Statistical testing is used to decide between competing

hypotheses by using a test statistic T . In practice, one tests
a null hypothesis H0 against an alternative hypothesis H1,
rejecting H0 if the data provide sufficient evidence for H1. For
a detailed treatment of statistical testing principles, see [20].

To assess whether data points are consistent with a predicted
normal distribution, the chi-square test based on the average
squared Mahalanobis distance—commonly known as the
averaged normalized estimation error squared (ANEES)
test [21]—can be used. The ANEES test statistic is given by

TANEES =
1

NTest

NTest∑
n=1

(
¯
y
n
−

¯
µ¯
y

n

)⊤(
C¯

y
n

)−1(
¯
y
n
−

¯
µ¯
y

n

)
,

(2)
where

¯
y
n
∈ Rdy is the n-th output sample from the test data

set and N (
¯
µ¯
y

n
,C¯

y
n) is its corresponding normally distributed

prediction. For normally distributed predictions, the average
of the squared Mahalanobis distances follows a chi-squared
distributed test statistic with k = dy ·NTest degrees of freedom.
The p-value for the two-sided test is given by

pval = 2 ·min
(
pvall , pvalu

)
, (3)

where pvall = Fχ2
k
(TANEES) and pvalu = 1 − Fχ2

k
(TANEES)

are the lower and upper tail probabilities from the chi-square
cumulative density function (CDF), respectively. For a binary
decision, this p-value is compared to a significance level α,
and H0 is rejected if pval < α.

In cases where no distributional assumption can be made,
nonparametric tests such as the Kolmogorov–Smirnov [22] or
the Anderson–Darling test [23] may be employed. The binomial
test [20] can also be used, for instance, to verify that the 95%
confidence interval of predictions covers 95% of test outputs.

D. Trust Region Identification
In previous work aimed at assessing local calibration

in Bayesian models [5], we proposed a two-phase testing
methodology that involves partitioning the input space of
regression models. The approach first partitions the input space
globally, i.e., identifies candidate regions in the input space
where test data are present—these are essentially segments
of the input domain selected for further testing—and then
assesses the calibration of predictions within these regions. In
contrast to global calibration measures from Sec. II-B, which
are computed over the entire test data set, the methodology
introduced in [5] enables a localized evaluation of the model’s
performance per candidate region.

The first phase focuses on how regions are represented
and identified. In [5], regions are defined as intervals, which



TABLE I
REGION REPRESENTATIONS OF TRUST REGION METHODS.

dimensionality region representation partioning

1 intervals [5] global
2 Voronoi tessellation [6] global

arbitrary k-d trees partitions [7] global
arbitrary ball tree partitions [8] global
arbitrary kernels (proposed method) local

works only for single-input systems. For multi-dimensional
inputs, [6] employs Voronoi tessellations in two dimensions,
while [7] and [8] extend the approach to arbitrary dimensions
using k-d trees [24] and ball tree [25] partitions, respectively.
A concise overview of the methodologies is presented in Tab. I.

In the second phase, candidate regions are tested for
calibration using statistical tests such as the ANEES and the
binomial test. Regions that are found to be untrustworthy
based on these statistical tests are subsequently rejected.
However, arbitrary calibration measures can be used to
evaluate candidate regions. E.g., the expected calibration
error [26] is employed for classification tasks in [7], while
the UCE is utilized for regression tasks in [6], [8].

III. SUPERVISED LEARNING IN BAYESIAN MODELS

We consider a supervised learning setup where the
training data D = {(

¯
xn,

¯
y
n
)}Nn=1 are drawn from the true

data-generating process. Each pair consists of an input vector

¯
xn ∈ Rdx and its corresponding output realization

¯
y
n
∈ Rdy .

Typically, the true mapping between inputs and noisy outputs
is unknown, so the goal is to learn this mapping from the
available data. To achieve this, the relationship between inputs
and outputs is modeled by a feedforward BNN defined as

¯
y = f(

¯
x,

¯
w), where

¯
x is the deterministic input,

¯
w is the

random weight vector containing all network weights, and
¯
y

is the random output vector. For architectures where weights
are organized as per-layer matrices, the weight vector

¯
w is

obtained by flattening and concatenating these matrices into
a single dw-dimensional vector. The learning process is based
on Bayes’ rule for estimating the weight posterior

p(
¯
w | D) =

p(Y | X ,
¯
w) p(

¯
w)

p(Y | X )
,

where X = {
¯
x1, . . . , ¯

xN} and Y = {
¯
y
1
, . . . ,

¯
y
N
} are the sets

of input and output data of the training data set D, p(
¯
w)

is the prior, p(Y | X ) =
∫
Ω

¯
w
p(Y | X ,

¯
w) p(

¯
w) d

¯
w is the

normalization constant, and Ω
¯
w ⊆ Rdw is the sample space

of the weights. The likelihood p(Y | X ,
¯
w) is defined by the

model architecture and, by assuming independent output realiza-
tions

¯
y
n

, can be written as p(Y | X ,
¯
w) =

∏N
n=1 p(

¯
y
n
|
¯
xn, ¯

w).
For example, if there is a (possibly unknown) normal noise
probability density function (PDF), the likelihood function can
be modeled by p(

¯
y
n
|
¯
xn, ¯

w) = N (f(
¯
xn, ¯

w),C). Although
¯
x

is deterministic, we condition on the input data in our notation
to emphasize the dependence on the input data. The predictive
distribution is then obtained by

p(
¯
y |

¯
x,D) =

∫
Ω

¯
w

p(
¯
y |

¯
x,

¯
w) p(

¯
w | D) d

¯
w .
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Fig. 2. Local test problem for a single-input, single-output system (adapted
version from [8]). Within the purple-colored input space region , only one
test point is used, which is not statistically significant. Adjacent predictions
can be combined, as shown in the teal-colored region , to increase the
effectiveness of the test statement, and allow arbitrary input points to be tested.

In general, exact inference for the weight posterior or
prediction is intractable, hence, approximation methods (as
discussed in Sec. II-A) are applied in practice.

Note that predictive distributions can also be obtained
using heteroscedastic models with deterministic weights,
where the noise variance is a function of the input data
(i.e., σ2 = σ2(

¯
xn)), though this approach does not consider

parameter uncertainties. Although not the focus of this paper,
the proposed method can also be applied to such cases.

IV. TEST PROBLEM

Since the learning process relies on approximate inference,
assumptions, and hyperparameters, the resulting model is
inherently error-prone. Therefore, it is crucial to evaluate
the quality of the learned model’s predictive distributions.
However, evaluating the quality of the learned model’s
predictive distributions is challenging since the true data-
generating process is unknown. In particular, the true output
distribution p(

¯
y |

¯
x) cannot be directly compared with the

predictive distribution p(
¯
y |

¯
x,D). Therefore, prediction quality

is assessed using a test data set DTest = {(
¯
xn,

¯
y
n
)}NTest

n=1 .
To assess the local quality of a single prediction, i.e.,

p(
¯
y |

¯
xn,D), for a specific input

¯
xn, given the corresponding

output realization
¯
y
n

, a distance or calibration measure, such as
the negative log-likelihood, can be employed. However, drawing
definitive conclusions from a single sample is statistically
unsound. E.g., consider a one-dimensional realization yn
that deviates by more than three standard deviations from its
predicted mean, as highlighted in the purple region in Fig. 2.
Although such an event is unlikely, its probability is not zero,
which underscores the limitation of single-point assessments.
In addition, traditional evaluation assumes that an input point
of interest matches a known input in the test data set. In
real-world scenarios, however, a model is often queried with
arbitrary input points that do not coincide with any test sample.

To overcome these challenges, local neighborhoods can
be defined around any given input point by aggregating the
predictions from multiple nearby test points. This addresses
several challenges: it increases statistical significance, provides



a representation of local prediction quality, and enables assess-
ment at any point in the input space—not just at predefined
test inputs, as illustrated by the teal region in Fig. 2.

Consequently, the test problem can be articulated in two
questions: 1) How can such local neighborhoods be defined? 2)
How can multiple predictions and test data points from these
neighborhoods be integrated into a statistically meaningful test?

V. KEY IDEA

To address the test problem outlined in Sec. IV, in [5] we
introduced the concept of candidate regions—fixed regions
in input space that contain multiple test points and are tested
using statistical tests or calibration measures. However, this
requires a global partitioning of the input space.

The key idea of this paper is to extend candidate regions to an
input kernel-based approach, where the quality of predictions
is evaluated using multiple kernel widths centered around the
input point of interest, to address the first test problem, as shown
in Fig. 3. By utilizing multiple kernel widths, we can assess the
quality of predictions comprehensively, as prediction quality
may vary depending on the kernel width. Using this approach,
trustworthy predictions should remain consistent across
different kernel widths, while less trustworthy predictions
may exhibit significant variation. Moreover, this approach
enables the evaluation of arbitrary input points without relying
on predefined global partitions, such as the interval-based
candidate regions in [5] or hyperrectangles obtained from a
k-d tree in [7]. As a result, our method can be used to assess
online whether the input of a model leads to a trustworthy
prediction by evaluating the quality in the kernel-defined
neighborhood of a point of interest. However, in contrast to our
previous methods based on global partitioning, at this point,
we do not impose explicit requirements on the number of test
samples within each kernel, but implicitly assume that enough
data points are available to ensure statistical significance.

To address the second testing problem, we combine results
from multiple kernel widths using two schemes to achieve
a robust evaluation of prediction quality:
1) Utilize calibration measures for each kernel and aggregate

their results with weighted averaging to obtain a continuous
measure of local prediction quality.

2) Conduct statistical tests for each kernel and combine the
resulting p-values to yield a binary decision on prediction
trustworthiness.

Both schemes integrate the evaluation at a single input
point (the kernel center) with the assessment of adjacent
data and prediction, offering a comprehensive view of local
prediction quality.

VI. INPUT SPACE KERNEL

As illustrated in Fig. 3, a dx-dimensional sphere is used
as the input space kernel, centered at the point

¯
xc that is to

be tested. The kernel is defined by

K(
¯
xc, b) =

{
1 if ∥

¯
x−

¯
xc∥2 ≤ b

2

0 otherwise
,

where ∥
¯
x−

¯
xc∥2 is the Euclidean distance between the point

¯
x and the kernel center

¯
xc, and b is the nonnegative kernel

¯
xc

x1

x2 test data point (
¯
xn)

kernel 1
kernel 2
kernel 3

b
2
= 2.5

b
2
= 1.5

b
2
= 0.5

Fig. 3. Illustration of spherical input space kernels in a 2-dimensional input
space using three different kernel widths. All kernels are centered around
the same point (

¯
xc), i.e., the point in the input space that should be tested.

width, i.e., the diameter of the kernel. Consequently, the set
of indices of test points falling within the kernel is defined as

IK(
¯
xc, b) =

{
n

∣∣∣∣∥¯xn −
¯
xc∥2 ≤ b

2
, n = 1, 2, . . . , NTest

}
,

where
¯
xn are test input points from the test data set DTest.

Therefore, the set of input points within the kernel is given
by XK(

¯
xc, b) = {

¯
xn}n∈IK(

¯
x
c
,b), the set of corresponding

output data points is YK(
¯
xc, b) = {

¯
y
n
}n∈IK(

¯
x
c
,b), and the set

of predictions is PK(
¯
xc, b) = {p(

¯
y |

¯
xn,D)}n∈IK(

¯
x
c
,b). For

brevity, we refer to these sets simply as IK , XK , YK , and
PK throughout the paper. To determine the input points within
a kernel, we need to find all points within a certain radius
of the kernel center point. This can be done numerically, e.g.,
by a naïve search where the distance from the kernel center
point to all test points is calculated, or more efficiently by
using data structures such as k-d trees [24].

VII. KERNEL STATISTIC

Given the input space kernel and the corresponding output
points YK and predictions PK , evaluation is performed
by applying an arbitrary statistical test, distance metric, or
calibration measure, resulting in a kernel statistic TK(

¯
xc, b).

A. Example: UCE as Kernel Calibration Measure
As an example, consider the case of univariate and normally

distributed predictions p(y | xn,D) = N
(
µy
n, (σ

y
n)

2
)

for
which we choose the UCE (1) (without binning scheme) as
a calibration measure. Given the set of predictions PK , the
kernel statistic TK,UCE(

¯
xc, b) is then defined as

TK,UCE(
¯
xc, b) =

∣∣MSE(YK ,PK)−MV(PK)
∣∣ ,

MSE(YK ,PK) =
1

|IK|
∑
n∈IK

(yn − µy
n)

2 ,

MV(PK) =
1

|IK|
∑
n∈IK

(σy
n)

2
,

where |IK| is the number of points within the kernel.

B. Kernel Statistical Test
Analogously, a statistical test, e.g., the ANEES test,

can be used for each kernel to obtain the kernel statistic
TK,ANEES(

¯
xc, b) based on the test statistic (2). Additionally,

each statistical test returns a p-value pval(
¯
xc, b) for each

kernel, enabling kernel-level decision-making. In case of the
ANEES test, the p-value is calculated according to (3).



C. Trade-off Between Local and Global Assessment
Observing the kernel statistics reveals that for small kernel

widths, the local behavior is captured, while for larger widths
the global behavior emerges. In fact, as b → ∞ (i.e., when
the kernel encompasses all test points), the kernel statistic
equals the global statistic. This is evident, e.g., in the ANEES
test plot in Fig. 6. Above a certain kernel width, the ANEES
converges to the global ANEES value, as the kernel includes
all input points. Thus, analyzing kernel statistics over multiple
widths provides insights into both the local and global quality.

VIII. COMBINED STATISTIC

We now introduce two approaches—continuous and binary
assessment—to combine kernel statistics for evaluating local
prediction quality. For both approaches, test results are
aggregated over L kernels (with widths bl, for l = 1, . . . , L)
centered at the same input point, with each kernel assigned a
nonnegative normalized weight wl reflecting its contribution.

A. Continuous Assessment
For continuous assessment, we define the combined statistic

as the weighted sum of the kernel statistics

T (
¯
xc) =

L∑
l=1

wl · TK(
¯
xc, bl) ,

where TK(
¯
xc, bl) is the kernel statistic for a single kernel.

B. Binary Assessment
For binary assessment, a statistical test is performed for each

kernel width, yielding a p-value pvall (
¯
xc, bl) per kernel. These

p-values must then be combined to obtain a single p-value
that summarizes the evidence against the null hypothesis at the
given center point. Standard methods for combining p-values,
such as Fisher’s method [27] assume independence among the
p-values. In our case, however, kernels centered at the same
input point share common test points (e.g., in Fig. 3, the test
points in kernel 1 also appear in kernels 2 and 3), resulting
in correlated p-values. To address this issue, we adopt the
Cauchy combination test [28], which is robust to correlations
and avoids explicitly estimating correlations between p-values.
The combined statistic is defined as [28]

TC(
¯
xc) =

L∑
l=1

wl · tan
(
π

(
1

2
− pvall (

¯
xc, bl)

))
.

Under the null hypothesis of the test (when p-values are
uniformly distributed), each term tan

(
π
(
1
2 − pl

))
follows a

standard Cauchy distribution, and hence their weighted sum
TC is approximately standard Cauchy distributed. Due to the
heavy-tailed nature of the Cauchy distribution, the combined
statistic is robust to the correlation between the p-values [29],
and the p-value of the combined statistic can be approximated
using the upper tail probability of the standard Cauchy CDF
which is given by [28]

pvalC (
¯
xc) = 1− FC(TC) =

1

2
− 1

π
arctan(TC) .

A binary decision is reached by comparing pvalC to a predefined
significance level α. E.g., if pvalC < α, the null hypothesis is
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Fig. 4. Example of inverse sampling (4), with αGam = 2 and βGam = 12.5.

rejected, and the predictions at the input point
¯
xc are deemed

locally inaccurate or untrustworthy. The simplicity of this
approach, which avoids the explicit computation of correlations,
makes the Cauchy combination test particularly suitable for
large-scale applications with many kernels and data points.

C. Kernel Weight and Width Selection
Selecting appropriate kernel weights and widths is a crucial

aspect of our kernel-based method, as it directly influences
the balance between local and global quality assessments. A
kernel that is too narrow may yield unreliable statistics due
to insufficient data, while an overly broad kernel may obscure
important local variations. For weighting, one may choose a
function that emphasizes local behavior. E.g., unnormalized
weights w̃l = b−dx+1

l has been used in localized cumulative
distribution-based methods [30]. However, such weights must
be balanced with the observation that very small kernel widths
contain fewer test points, reducing statistical reliability.

From a practical perspective, domain knowledge can guide
the selection of kernel widths. To automate this process, we
propose a heuristic for sampling kernel widths from a PDF
that reflects domain knowledge. In our experiments, we use
the gamma distribution, Gam(αGam, βGam), where the shape
parameter αGam and inverse scale βGam are user-defined
hyperparameters. The gamma distribution is well suited
because it is defined over the nonnegative reals, matching the
requirement for kernel widths. Deterministic kernel widths
can be generated via inverse transform sampling

bl = F−1
Gam(ul) , (4)

where F−1
Gam is the inverse CDF of the gamma distribution and

ul are uniformly distributed values in [0, 1] (e.g., equidistant
points). This approach ensures that kernel widths are densely
sampled in regions where the gamma PDF is high. The
resulting weights are then equally weighted by wl =

1
L . An

example of deterministic inverse sampling from a gamma
distribution is shown in Fig. 4. Note that by using this scheme,
only the number of kernel widths and the width distribution
have to be specified and an arbitrary number of deterministic
kernel widths can be generated.

D. Boundary Effects
In kernel-based methods with finite samples, boundary

effects are a well-known challenge that can lead to biased
results and can be addressed by using methods such as
boundary correction [31]. However, how to properly address
these boundary effects in the combined statistic remains an
open question for future work.
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(b) SVI
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(c) PBP

Fig. 5. Local calibraion results for the single input cubic regression scenario S1. The p-values per kernel width are shown for (a) NUTS, (b) SVI, and (c)
PBP. The combined p-values, the resulting binary decision, and the 1-Wasserstein distances (ground truth distances) are shown in the lower row of the figures.

IX. NUMERICAL EVALUATION

We evaluate our methods on two simulated single-output
regression scenarios for which the data-generating processes
are known. To evaluate the performance of local calibration
methods, an arbitrary distance for PDFs between the predictive
distributions and the true data-generating process can be used
as the ground truth distance. For this purpose, we use the
1-Wasserstein distance in all experiments. The 1-Wasserstein
distance between the normally distributed outputs of the
true process, p(y | xn) = N

(
µGT, σ

2
GT

)
and the predictions

p(y | xn,D) = N
(
µPred, σ

2
Pred

)
is given by [32], [33]

W1 = |µ|
(
1− 2FN

(
−|µ|
|σ|

))
+ |σ|

√
2

π
exp

(
− µ2

2σ2

)
,

where µ = µGT − µPred, σ2 = (σGT − σPred)
2, and FN (·)

is the standard normal CDF. To assess consistency with the
ground truth distance, we examine whether high W1 values
correspond to regions rejected by our binary assessment, and
whether our continuous measure reflects the behavior of W1.

A. Single Input Regression Scenario S1

In our first evaluation scenario (S1), we use the same
single-input cubic regression example as in [5]. In this
scenario, 2000 training points and 2400 test points generated
from y = x3 + ϵ, with ϵ ∼ N (0, 9) are used. Training inputs
xn ∈ XTrain are drawn uniformly from [−5, 5] and test inputs
xn ∈ XTest from [−6, 6]. From the training data, 30% of
the data around the origin is removed, producing a gap in
the input training data approximately in the range [−1.5, 1.5].
We train BNNs using NUTS [13], SVI [14], and PBP [16]
following the settings of [5]. For evaluation, 300 kernel centers
(
¯
xc) are equally spaced over [−6, 6].

Fig. 6 shows the kernel-based ANEES for the NUTS
predictions evaluated over kernel widths uniformly drawn from
[0, 25]. As expected, for kernel widths b ≥ 24 the statistic
becomes constant across x values (since the kernel then
encompasses the full test range, x ∈ [−6, 6]). In contrast, lower
kernel widths (b ≪ 5) capture interesting local characteristics.

−5.0 −2.5 0.0 2.5 5.0
x

0

5

10

15

20

25

ke
rn

el
w

id
th

b = 24

0.0

0.4

0.8

1.2

1.6

2.0

A
N

E
E

S

Fig. 6. Kernel statistics using the ANEES evaluated over multiple center
points and kernel widths for the predictions of the NUTS for scenario S1.

For combined statistical tests with binary decisions, we deter-
ministically sample L = 20 kernel widths bl using inverse trans-
form sampling method from Gam(αGam = 2, βGam = 12.5).
The results of the binary decision using the combined
statistical test are shown in Fig. 5. It can be seen that the
regions with significant errors regarding the significance level
α = 0.01 are rejected by the statistical combination test. E.g.,
the regions near the upper and lower bounds of the input data
are rejected for all considered training methods, which aligns
with the 1-Wasserstein distances in these regions.

Note that, as indicated by the 1-Wasserstein distances, the
SVI and PBP predictions in Figs. 5b and 5c remain calibrated
within x ∈ [−1.5, 1.5], even though no training data are
available in this region. This underscores the importance of
local testing, as neither the presence nor absence of training data
inherently guarantees calibration or miscalibration, respectively.

B. Multiple Input Regression Scenario S2

In this scenario, we evaluate a two-dimensional nonlinear
regression task as introduced in [6]. The data is generated
according to y = sin

(
x2
1 + x2

2

)
+ ϵ with 4500 training points

and 3000 test points using ϵ ∼ N (0, 0.1). Training inputs are
drawn uniformly from [−1.75, 1.75]2, while test inputs are
drawn uniformly from [−2.5, 2.5]2. Around the origin, 30% of
the training data was removed, as shown in Fig. 7a. The BNN is
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(b) ground truth distance
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(c) combined ANEES (L = 10)
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(e) combined UCE (L = 3)
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(f) combined UCE (L = 5)
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(g) Voronoi-based UCE [6]
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(h) k-d tree-based UCE [7]

Fig. 7. Results of the multiple input scenario S2. In (a) the training and test data is shown. In (b) the 1-Wasserstein distance between the predictive distribution
and the true data generating process, which is used as ground truth distance, is shown. In (c) and (d) the combined ANEES and p-value is shown. In (e) and (f)
the UCE is shown for L = 3 and L = 5 kernel widths, respectively. For comparison, (h) and (g) display the UCE obtained using our methods from [6], [7].

trained using SVI [14] following the settings of [6]. The kernel
center points

¯
xc, where the predictive distributions are eval-

uated, are placed on an equally spaced grid over [−2.2, 2.2]2.
Note that no evaluation points are placed at the boundary
of the test input space to avoid potential boundary effects.
The kernel widths are deterministically sampled using inverse
transform sampling from Gam(αGam = 2, βGam = 12.5).

The binary assessment (Fig. 7d) shows that regions with
significant errors—where the combined p-value falls below the
significance level α = 0.01—are rejected by the test. In most
cases, these regions align with areas of high 1-Wasserstein
distance (see Fig. 7b). However, a few regions with low
1-Wasserstein distance are also rejected, which is expected
given that the significance level limits false rejections to
100 · α%, and no absolute guarantees can be given.

The results using the kernel-based UCE are shown in Figs. 7e
and 7f, and Fig. 1a for 3, 5 and 100 deterministically sampled
kernel widths, respectively. These results align clearly with
the 1-Wasserstein distance. Notably, the gap in training data
around the origin is detected by the UCE, as predictions in that
region are error-prone. Furthermore, the similarity of results
across different numbers of kernel width samples confirms
the robustness of the method. Although using a larger number
of kernels leads to smoother results, even a small number of
kernel widths captures the essential local error characteristics.

In Fig. 7h and Fig. 7g, the results obtained from our
previous methods [6], [7] are shown. Both methods are
capable of evaluating local calibration. However, our proposed
kernel-based method provides finer-grained results in terms
of locality and smoother calibration results, demonstrating
greater flexibility compared to predefined k-d tree-based or
Voronoi-based regions.

TABLE II
EVALUATION TIMES FOR A SINGLE KERNEL CENTER POINT.

scenario statistic L run timea

S1 ANEES 20 (24.82± 5.43) µs
S2 ANEES 10 (41.36± 4.75) µs
S2 UCE 3 (268.14± 51.10) µs
S2 UCE 5 (321.91± 72.36) µs
S2 UCE 100 3.40ms± 514.37 µs

amean ± standard deviation

C. Implementation Details and Performance

All evaluations were conducted on a single CPU core of
an Intel Core i7-1165G7 using a vectorized implementation
in Python. As shown in Tab. II, our approach assesses input
points of interest quickly, achieving sub-millisecond evaluation
times in most settings. Notably, the computational cost for the
kernel-based ANEES and its p-value is lower than that for the
UCE, since our implementation reuses previously computed
squared Mahalanobis distances for the ANEES. These results
demonstrate that our method is efficient and promising for
real-time as well as large-scale applications.

X. DISCUSSION

Combining results from multiple kernel widths can be inter-
preted as a generalization of traditional calibration measures, as
it enables a tunable trade-off between local and global evalua-
tion of predictive quality. By selecting appropriate kernel widths
in arbitrary-dimensional input spaces with hyperspherical ker-
nels, our method captures local miscalibration while preserving
global behavior. Notably, it is implicitly assumed that there are
sufficient data points within the kernels to ensure the test results
are statistically significant. In contrast, global partitioning-based



methods (e.g., k-d tree-based [7]) explicitly ensure that a mini-
mum number of test points are present within a region. However,
as our results show, this effect is partially compensated for by
using a sufficiently large maximum kernel width, which indi-
rectly ensures that numerous test points are taken into account.

The proposed framework provides both binary decisions and
continuous measures that offer finer-grained insights at specific
input points. It is important to note that statistical tests cannot
offer absolute guarantees. The significance level controls—but
does not eliminate—the probability of a Type I error.

In summary, our approach yields point-specific estimates of
uncertainty calibration without relying on exact ground truth
knowledge. Moreover, by utilizing inverse transform sampling
for the deterministic generation of kernel widths, our method
achieves efficient computation, with evaluation rates exceeding
1000Hz. This efficiency makes the approach attractive for
real-time and large-scale applications.

XI. CONCLUSION

In conclusion, this paper presents a novel method for assess-
ing the local quality of uncertainty predictions, i.e., the local
calibration, in Bayesian models such as BNNs. Our approach
leverages spherical kernels to represent localized input-space
regions, then employs calibration metrics or statistical tests on
predictions within each kernel. A key advantage is the method’s
ability to output either a clear binary decision or a continuous
measure, indicating how well the predictive uncertainties align
with the underlying data distribution at a given input point.
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