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Abstract—In this paper, we introduce a novel Gaussian As-
sumed Density Filter (GADF) for high-quality state estimation
in discrete-time stochastic nonlinear dynamic systems, with a pri-
mary focus on the measurement update. Rooted in optimal trans-
port theory, the Wasserstein distance is employed as a powerful
metric for comparing probability distributions. Building on this
foundation, we utilize the unique, explicit Wasserstein barycentric
interpolation between Gaussian distributions to parameterize an
initial Gaussian Process (GP) in the joint measurement/prior
state space. Deterministic samples drawn from the true joint
measurement/state density are then used with likelihood-based
parameter estimation techniques to optimize the parameters of
this Gaussian Process. As a result, the derived Gaussian Process
provides a local non-Gaussian approximation to the true joint
density. This approach eliminates the need for a second Gaussian
assumption on the joint density and avoids an explicit likelihood
function, making it a higher-quality plug-in replacement for the
commonly used Linear Regression Kalman Filter (LRKF).

Index Terms—Bayesian inference, nonlinear filtering, Gaussian
Assumed Density Filter, Wasserstein distance, maximum likeli-
hood estimation, Gaussian Processes

I. INTRODUCTION

A. Context

We consider the general state estimation problem for a
discrete-time stochastic nonlinear dynamic system with noisy
measurements. Specifically, we focus on Gaussian filters that
approximate the true, in general complex, state Probability
Density Function (PDF) by explicitly optimizing the shape
of a Gaussian distribution after each processing step. This
class of filters is known as Gaussian Assumed Density Filters
(GADFs).

The key advantage of GADFs is the compact and constant
amount of information to represent their state estimates. By
propagating only the mean and covariance within each update
step, they avoid the growing complexity compared to filters
that operate directly on the more complex state densities [1].
Gaussian mixture estimators can then be constructed based on
these filters [2], [3], [4]. However, even with these simplifi-
cations, it is still challenging to derive closed-form solutions
for the time update, and especially the measurement update. A
Bayesian measurement update requires an explicit likelihood
function, but deriving one for non-additive measurement noise
is challenging. Even when available, an analytical execution
of the filter step is often infeasible.
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Fig. 1: Exemplary illustration of the proposed non-Gaussian local approxi-
mation (green) of the true joint measurement/state density using Wasserstein
barycentric interpolation between each pair of adjacent Gaussians positioned
at the boundaries (orange). The approach is based on samples (blue) drawn
from the true joint. For comparison, the family of conditional Gaussian
densities (purple) for each measurement (horizontal axis), with mean and
variance identical to the true posterior density.

B. State of the Art

The Gaussian Particle Filter (GPF) [5] is a special sequential
importance sampling Particle Filter (PF) [6], [7] that approx-
imates posterior distributions by single Gaussians. It employs
Monte Carlo integration for moment matching and converges
to the Minimum Mean Square Error (MMSE) estimator as the
sample size approaches infinity. However, its computational
cost scales poorly with state dimension due to the curse
of dimensionality, and it still requires an explicit likelihood
function for sample re-weighting.

To further ease the measurement update, likelihood-free
approaches have been introduced. These methods approximate
the nonlinear mapping between the prior state and noisy
measurements linearly and then apply the Kalman filter for-
mulas, leading to Nonlinear Kalman Filters (NKFs). While
they eliminate the need for an explicit likelihood function,
their effectiveness depends on the “strength” of nonlinearity. In
cases of strong nonlinearity, this approximation can be overly
simplistic, resulting in reduced estimation accuracy compared
to more general GADFs without such linearization.

One approach to linearization is explicit linearization via
Taylor series expansion, as employed by Extended Kalman
Filters (EKFs) and its variants [8], [9]. In contrast, NKFs based
on statistical linearization implicitly linearize the measurement



model by approximating the joint density of measurement
and state with a Gaussian, a technique commonly referred to
as the second Gaussian assumption. When the required first-
and second-order moments are computed using sample-based
density representations, these NKFs fall under the category of
Linear Regression Kalman Filters (LRKFs) [10], [11]. Notable
examples include the Unscented Kalman Filter (UKF) [12] and
the Smart Sampling Kalman Filter (S2KF) [13].

LRKFs offer many advantages in terms of computational
efficiency and ease of implementation. Unlike PFs and GPFs,
they circumvent the issue of sample degeneration due to
their likelihood-free nature. Furthermore, their flexible design
enables effective application to highly nonlinear systems.
However, their primary limitation lies in the reduced state
estimation accuracy, as they approximate continuous state and
noise densities using only a finite set of samples.

A more advanced GADF, the Progressive Gaussian Filter
(PGF), eliminates the second Gaussian assumption, reducing
linearization errors and enhancing estimation quality [14],
[15]. It achieves this by decomposing the measurement update
into multiple sub-updates, gradually integrating measurement
information into state estimates. In [15], an explicit likelihood
function is needed for the progression mechanism. Both PGF
variants may accumulate errors due to multiple intermediate
Gaussian approximations within each recursion step.

In particular, a closely related approach is the GADF based
on the so-called Inverse Gaussian Process (IGP) Interpolation
[16]. Unlike conventional methods, it avoids both the second
Gaussian assumption and the need for an explicit likelihood
function during measurement updates. Instead, it first gen-
erates deterministic samples from the true joint measure-
ment/state density and subsequently approximates this joint
density through a sequential use of two IGPs. As a result,
this GADF achieves performance comparable to the optimal
MMSE estimator. However, the necessity of two sequential
matrix inversions, each with cubic time complexity, leads to
lengthy runtimes that impede real-time applications.

C. Contributions

In this work, we propose a GADF with a novel likelihood-
free measurement update. Our method does not rely on the sec-
ond Gaussian assumption for the true joint measurement/state
density, leading to better performance than the LRKFs, which
heavily depend on this simplification. Instead, we perform a
non-Gaussian local approximation of the true joint density
through a two-stage approach. First, within the joint space of
measurement and prior state, we construct a Gaussian Process
(GP) model using the unique, explicit Wasserstein barycentric
interpolation technique. In this way, at each measurement
value along the measurement axis, a corresponding Gaussian
conditional state PDF is readily obtained, effectively fulfilling
the goal of backward inference. In the next step, deterministic
and equally weighted samples of high quality are drawn from
the true joint measurement/state density. Using these samples,
likelihood-based parameter estimation techniques are applied
in a data-driven manner to optimize the parameters of the GP.

Together, the resulting GP fully characterizes the conditional
Gaussian densities of the hidden state on concrete measure-
ments as the approximate posterior state estimates. To enhance
visualization, we employ a rotated Cartesian coordinate system
throughout this paper, with measurements on the horizontal
axis and prior/posterior states on the vertical axis. For instance,
this configuration is illustrated in Figure 1.

Like [16], our proposed filter can also be integrated as a
higher-quality plug-in replacement for the commonly used
LRKF during an online filter step. Evaluations on a canon-
ical benchmark demonstrate that the proposed filter not only
achieves state estimation performance comparable to state-of-
the-art GADFs, but also significantly improves computational
efficiency relative to [16]. Moreover, the data-driven, sample-
based nature of this approach greatly enhances versatility. Es-
sentially, it can relax the additive Gaussian noise assumption,
allowing for non-Gaussian and non-additive noise models,
provided that high-quality (preferably deterministic) samples
can be drawn from the true joint measurement/state density.

II. PROBLEM FORMULATION

We consider estimating the hidden state xk of a discrete-
time stochastic nonlinear dynamic system based on noisy
measurements, consisting of a time update (or prediction step)
and a measurement update (or filter step). This work focuses
specifically on the challenging measurement update step. The
relationship between the measurement random vector y

k
, the

hidden system state xk, and the measurement noise vk is
described by the nonlinear generative measurement model

y
k
= hk(xk, vk) , (1)

where hk(·, ·) denotes the known vector-valued measurement
nonlinearity and the subscript k denotes the discrete time step.

A predicted state density is received by performing a time
update and then approximating it as a Gaussian through
moment matching, i.e., the Gaussian PDF of the state at time
step k conditioned on the measurements ỹ
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The goal is to correct this Gaussian prior state estimate by
incorporating a newly received concrete measurement ỹ

k
at

time step k. In general, it is done by using Bayes’ rule. The
generative measurement model (1) is first converted into a
probabilistic model as the conditional density fyk

(y
k
|xk)

of y
k

given xk, which turns into a likelihood function

fL
k (xk)

def
= fyk

(ỹ
k
| xk) for a given specific measurement ỹ

k
.

However, as mentioned before, an explicit description of the
likelihood function is hard to derive in the case of non-additive
measurement noise. Hence, we adopt a likelihood-free point
of view, which instead operates directly on the joint density
of prior state and measurement fx,y
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), so the
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1:k−1
)

fyk
(ỹ
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in which a newly received concrete measurement ỹ
k

deter-
mines where to condition the joint distribution in order to get
the posterior state density as the corrected state estimate.

Problem at hand: Directly obtaining the true joint density
is still a burden. Nevertheless, samples drawn from it are
easily available, regardless of whether deterministic or random
sampling methods are used. As a result, the problem at hand is
to locally approximate this true joint density using high-quality
limited-quantity samples drawn from it. The key idea to solve
this problem is given in the next section. By subsequently
conditioning this approximate joint density representation on
the actual received concrete measurement, we aim to derive an
approximate posterior state density. In addition, this posterior
state density can take an arbitrary form and is not necessarily
Gaussian, even when starting with a Gaussian prior. Therefore,
it is re-approximated as a single Gaussian distribution through
moment matching. This approach ensures computational con-
sistency in recursive processing.

III. KEY IDEA AND GROUNDWORK

A. Optimal Mass Transport
We present a brief overview of the Optimal Mass Transport

(OMT) theory, highlighting only the aspects relevant to this
work. For a more comprehensive treatment, see [17].

OMT seeks to transport mass from one distribution to
another, preserving total mass while minimizing the trans-
portation cost. Concretely, let ν0 and ν1 be two probability
measures over a common space Rn. In the classical OMT
framework, the goal is to determine a transportation map
T : Rn → Rn that pushes the initial distribution ν0 forward
to the target distribution ν1, denoted as ν1 = T♯ν0. This map
is required to minimize the total transportation cost∫

Rn

c (x, T (x)) ν0(dx) , (4)

where c(x, y) is the cost of moving a unit probability mass
from x to y. To ensure this integral (4) is finite, both ν0 and ν1
are assumed to lie in the space of probability measures with
finite second moments.

However, due to the nonlinear dependence of the transporta-
tion cost (4) on the transport map, a minimizer may not always
be guaranteed [17]. To overcome this issue, the OMT problem
is reformulated in terms of a joint distribution Π(ν0, ν1) over
Rn × Rn, where the marginals are constrained to match ν0
and ν1 along their respective coordinate axes

inf
π∈Π(µ0,µ1)

∫
Rn×Rn

c(x, y) dπ(x, y) . (5)

In the Kantorovich formulation, an optimal joint distribution
π∗ always exists [18]. If ν0 and ν1 are absolutely continuous
with respect to the Lebesgue measure, having PDFs ρ0 and ρ1,
respectively, and the cost is defined as the squared Euclidean
distance, i.e., c(x, y) = ∥x−y∥22, then this joint distribution π∗

is also unique [19]. The square root of the minimal transporta-
tion cost in (5) thus defines the Riemannian Wasserstein metric
W2 on the space of probability densities, providing a natural
framework for comparison, interpolation, and averaging.
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Fig. 2: Illustration of barycentric interpolation between two one-dimensional
Gaussian distributions, depicted by the leftmost red and rightmost blue curves.

B. Gaussian Marginal Distributions
When both marginals ν0 and ν1 are continuous Gaussian

distributions, the problem simplifies significantly, allowing for
a unique closed-form solution. Let x and y be Gaussian
random vectors on a common space Rn, with PDFs fx(x)
and fy(y), and corresponding means µx, µy , and covariance
matrices Σx, Σy . Under the squared Euclidean distance cost,
the optimal transportation cost becomes

Efx,y

{∥∥x− y
∥∥2
2

}
= Efx̃,ỹ

{∥∥x̃+ µx − ỹ − µy
∥∥2
2

}
= Efx̃,ỹ

{
x̃⊤ x̃

}︸ ︷︷ ︸
= trace(Σx)

+Efx̃,ỹ

{
ỹ⊤ ỹ

}︸ ︷︷ ︸
= trace(Σy)

− 2 Efx̃,ỹ

{
x̃⊤ ỹ

}︸ ︷︷ ︸
= trace(S)

+
∥∥µx − µy

∥∥2
2
, (6)

where x̃, ỹ are the zero mean versions of x and y, and S
is the cross-covariance matrix Efx,y

{
x y⊤

}
. The transport

cost is minimized over all feasible Gaussian joint distributions,
yielding the optimal cross-covariance matrix S∗. This leads to

max
S

{
trace (S)

∣∣∣ [Σx S
S⊤ Σy

]
≥ 0

}
. (7)

The positive semi-definiteness of the block matrix is equiva-
lent, via the Schur Complement Condition, to the requirement

0 ≤ Σx − S (Σy)−1 S⊤,

S ≤ (Σx)1/2
[
(Σx)1/2 Σy (Σx)1/2

]1/2
(Σx)−1/2 . (8)

Consequently, the maximization in (7) is attained by the unique
closed-form cross-covariance

S∗ = (Σx)1/2
[
(Σx)1/2 Σy (Σx)1/2

]1/2
(Σx)−1/2 . (9)

In 1D cases, the cross-covariance term s∗ equals σx σy , indi-
cating a linear relationship between the two random variables.

Building on these results, barycentric interpolation traces
the 2-Wasserstein geodesic between any two Gaussian distri-
butions sharing the same support [20], [21]. Along this path,
the interpolant minimizes the weighted sum of the Wasserstein
distances to the given Gaussians and is itself Gaussian. Its
mean and covariance matrix are given in closed form by

µ
t
= (1− t)µx + tµy, weight t ∈ [0, 1] ,

Σt = (Σx)−
1
2 [(1− t) Σx + tΣ]

2
(Σx)−

1
2 ,

Σ =
[
(Σx)

1
2 Σy (Σx)

1
2

] 1
2

. (10)

See Fig. 2 for an illustrative example of this interpolation.



IV. METHOD DERIVATION

Leveraging closed-form Wasserstein barycentric interpola-
tion introduced above, we now turn to its use for novel
measurement updates. Several conditional Gaussian state den-
sities on discrete measurements are interpolated. This yields
a smooth approximate joint measurement/state density, from
which the backward inference is directly conducted.

A. Gaussian Process Construction

Instead of multiple formal definitions of the GP method
as found in the literature for diverse applications, such as
regression and classification, we follow an intuitive view in
[22]. A GP is a stochastic process composed of random
variables indexed by time or space, where any finite subset
follows a multivariate Gaussian distribution. For backward
inference in measurement updates, this definition is helpful
and provides the basis for modeling the hidden state’s condi-
tional Gaussian density on each measurement value along the
measurement axis. Furthermore, our approach to building the
GP model deviates from the conventional GP’s data-driven
training process, where the marginal likelihood function is
maximized to tune the hyperparameters in a predefined kernel
function. This optimization problem, due to its inherent non-
convexity, does not ensure a globally optimal solution and is
also computationally demanding.

In this work, we propose a novel approach that leverages
a unique, explicit Wasserstein barycentric interpolation. This
method directly derives an interpolated Gaussian PDF be-
tween any two given Gaussian distributions. For simplicity,
we assume that the measurement random variable is a scalar
throughout this paper. Within the joint space of measurement
and state, we first initialize a set of boundaries {bi}Mi=1 along
the measurement axis. At each boundary bi, a conditional
Gaussian state PDF fx(x | y = bi) = N (x; µ

i
, Σi) is defined

such that its realizations are represented in the state space.
Subsequently, for each adjacent pair of conditional Gaussian
distributions N (x; µ

i
, Σi) and N (x; µ

i+1
, Σi+1), we employ

Wasserstein barycentric interpolation to derive a continuum
of intermediate conditional Gaussians, each characterized by
explicit first and second moments in (10). This approach
yields an initial GP spanning the entire joint measurement/state
space, assigning a conditional Gaussian state PDF to each con-
crete measurement. An exemplary three-dimensional illustra-
tion is provided in Figure 3, where the joint measurement/state
space is augmented by an additional dimension representing
the conditional density function values.

More importantly, to ensure that the derived GP accurately
approximates the true underlying joint measurement/state den-
sity (3), the boundary positions must be highly flexible, con-
tinuously adapting along the measurement axis. Likewise, the
conditional Gaussian distributions defined at these boundaries
must dynamically adjust their parameters. Moreover, since
samples from the true joint density are readily available,
whether obtained deterministically or randomly, we can di-
rectly learn both the optimal boundary locations and the
corresponding Gaussian parameters in a data-driven manner.
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Fig. 3: An exemplary three-dimensional visualization of the constructed GP
model. Along the measurement axis, three boundary points {bi}3i=1 are de-
fined, each associated with a conditional Gaussian state density N (x; µi, σ

2
i )

(blue). Between adjacent boundaries, the Wasserstein barycentric interpolation
(WBI) generates a continuum of interpolated conditional Gaussian distribu-
tions (green) for the state, with the means (green dots) and variances (red)
linearly interpolated in the one-dimensional case. For clarity, only a subset of
the interpolation results is displayed.

B. Deterministic Gaussian Sampling

Samples drawn from the true joint measurement/state den-
sity provide essential and valuable information for estimating
all parameters that characterize the GP. However, direct sam-
pling from this joint density is challenging. To overcome this
difficulty, we adopt the approach in [16] by assuming that
the measurement noise is Gaussian-distributed. In this way,
we transform the problem into sampling from the Gaussian
joint density of the prior state and measurement noise. This
sampling process is simpler and more tractable. The obtained
samples are then propagated through the known measurement
equation to generate corresponding measurement realizations,
thereby enabling indirect sampling of the true joint density.

Several techniques exist for computing deterministic Gaus-
sian Dirac mixture approximations, such as those employed
by the UKF and Gaussian Filter (GF). We adopt a sampling
method based on generalized Fibonacci grids [23], which
efficiently covers the joint measurement/state space with fewer,
equally weighted samples at low cost. This approach is in-
spired by the unique spiral packing observed in sunflower
heads, the 2D Fibonacci grid, and its generalization to higher
dimensions [24]. Specifically, a uniformly distributed sample
set in higher dimensions is transformed to deterministically
approximate arbitrary multivariate Gaussian distributions.

C. Parameter Optimization for the Gaussian Process

In this subsection, we detail the parameterization of the
initial GP using samples {(xi, yi)}

N
i=1 drawn from the true

joint measurement/state density. This procedure ensures that
the optimized GP closely approximates the underlying joint
density. By leveraging the explicit formulation provided by
Wasserstein barycentric interpolation, we introduce a com-
prehensive set of parameters for the GP model. The param-



eter set Θ = {b2, . . . , bM+1} ∪ {θi}
M+2
i=1 comprises M

sequentially varying internal boundaries and M +2 parameter
sets. These M internal boundaries are not fixed and can
flexibly shift along the measurement axis within the joint
measurement/state space, enabling adaptive partitioning of
the measurement space. Additionally, two fixed boundary
points, b1 and bM+2, are defined a priori, serving as the
outermost limits of the entire sample set. At each boundary
position bi ∈ {bfixed

1 , bvar.
2 , . . . , bvar.

M+1, bfixed
M+2}, we define a

conditional Gaussian distribution for the state vector x. Each
of these Gaussian distributions fx(x | bi, θi) = N (x; µ

i
, Σi)

is parameterized by θi = {µ
i
, Σi} for i = 1, . . . , M + 2.

The parameter set Θ can be estimated based on
the sample set {(xi, yi)}

N
i=1 using Maximum Likeli-

hood Estimation (MLE). MLE determines the optimal pa-
rameter set Θ∗ that maximizes the likelihood function
f
(
{xi}Ni=1

∣∣∣ {y
i
}Ni=1, Θ

)
def
= ℓ(Θ) characterizing the prob-

ability of the observed data under the given parametric model.
During backward inference, each realization of the state ran-
dom vector {xi}Ni=1 is assumed to be drawn from a conditional
Gaussian distribution. More specifically, the key idea is that,
for each concrete measurement yi ∈ {y

i
}Ni=1 that falls within

the interval [bij , b
i
j+1], j = 1, . . . ,M + 1, the conditional

Gaussian distribution, from which xi of (xi, yi) is drawn,
is fully characterized by interpolation results. These results
are obtained via the Wasserstein barycentric interpolation
(10) between the two distinct Gaussian distributions defined
at bij and bij+1. The parameters of these two Gaussians
are given by θij:j+1 = {µi

j
, Σi

j , µ
i
j+1

, Σi
j+1}. In particu-

lar, we derive closed-form expressions for the interpolated
mean vector µWBI

i
(yi, b

i
j:j+1, θ

i
j:j+1) and covariance matrix

ΣWBI
i (yi, b

i
j:j+1, θ

i
j:j+1), respectively. In the following, the

interpolation results are mathematically expressed as

yi ∈ [bij , b
i
j+1] ,

xi ∼ N
(
x; µWBI

i
, ΣWBI

i

)
,

weight α =
yi − bij

bij+1 − bij
∈ [0, 1] ,

µWBI
i

(yi, b
i
j:j+1, θ

i
j:j+1) = (1− α)µi

j
+ αµi

j+1
,

ΣWBI
i (yi, b

i
j:j+1, θ

i
j:j+1) = (Σi

j)
−1
2

[
(1− α) Σi

j + αΣ
]2

(Σi
j)

−1
2 ,

Σ =
[
(Σi

j)
1
2 Σi

j+1 (Σ
i
j)

1
2

] 1
2

. (11)

Building upon the setting described above, we now highlight
how the optimal parameter set Θ∗ can be determined using
MLE in the interval [b1, bM+2]. In what follows, we first
focus on the construction of the likelihood function ℓ(Θ). For
simplicity, we assume that the individual sample pairs (xi, yi)

are independent from each other.

Θ∗ = argmax
Θ

ℓ(Θ) = argmax
Θ

f
(
{xi}Ni=1

∣∣∣ {y
i
}Ni=1, Θ

)
= argmax

Θ

N∏
i=1

f
(
xi

∣∣∣ y
i
, Θ

)
= argmax

Θ

N∏
i=1

N
(
xi; µ

WBI
i

, ΣWBI
i

)
= argmax

Θ
log

N∏
i=1

N
(
xi; µ

WBI
i

, ΣWBI
i

)
= argmax

Θ

N∑
i=1

log N
(
xi; µ

WBI
i

, ΣWBI
i

)
= argmax

Θ

N∑
i=1

− 1
2 log |ΣWBI

i |

− 1
2

(
xi − µWBI

i

)⊤
(ΣWBI

i )−1
(
xi − µWBI

i

)
= argmin

Θ

N∑
i=1

log |ΣWBI
i |

+
(
xi − µWBI

i

)⊤
(ΣWBI

i )−1
(
xi − µWBI

i

)
(12)

By transitioning from maximizing the (log) likelihood func-
tion to minimizing the negative log-likelihood, we derive an
objective function that consists of two primary terms for each
sample pair (xi, yi). The first term, the log-determinant term,
acts as a regularization term that penalizes excessively large or
small covariance matrices, thus ensuring numerical stability.
The second term, the Mahalanobis distance term, quantifies
the deviation of each given sample xi from the interpolated
mean vector, normalized by the corresponding interpolated
covariance matrix. This term helps the estimated parameters
closely match the actual data. The optimal parameter set Θ∗

is obtained by minimizing the negative log-likelihood.
However, this optimization problem is generally non-convex

due to the fact that small moves of boundary positions can
reassign which data pairs (xi, yi) fall into which segment,
unexpectedly changing the gradient with respect to bij:j+1 and
θij:j+1. Furthermore, even though the Wasserstein interpolation
formulas have closed-form expressions, matrix square roots are
present, which complicates the problem and tends to break
convexity with respect to Σi

j and Σi
j+1. Thus, there is no

guarantee that standard optimization procedures will reach the
global optimum. Multiple local optima typically exist, and the
algorithm may converge to any one of them.

D. Prior Constraints Consideration

While the pure MLE in the previous subsection attempts to
fit the sample set {(xi, yi)}

N
i=1 by maximizing the likelihood

ℓ(Θ), it lacks a mechanism to address two critical scenarios.
First, it does not provide any built-in means to extrapolate
beyond the observed range. When measurements fall outside
the interval [b1, bM+2] covered by the data, the model pa-
rameters remain undefined. Second, in regions where data



are sparse or even completely absent, relying on MLE alone
can yield unreliable or unstable estimates. To overcome these
limitations, we impose a prior constraint on the parameter set
Θ. By design, this prior encodes domain knowledge and steers
the model toward more plausible solutions in underrepresented
or unobserved regions. Generally, we impose:

• constraints on the external segments, so that for mea-
surements lying outside the interval populated by data,
the model maintains sensible behavior, and

• smoothness constraints on the internal segments and on
the transitions between these segments and the outer seg-
ments, which prevents abrupt and large jumps in the mean
or variance, thereby leading to smoother interpolations.

Let π(Θ) denote the prior distribution over the parameter
set Θ, encapsulating our domain knowledge regarding the
constraints above. By combining this prior with a likelihood
term that evaluates the data fit (12), we obtain a penalized
maximum likelihood formulation, also known as Maximum
A Posteriori Estimation (MAP) estimation. This concept is
inspired by the application of GP model in regression. In GP
regression, a function-space prior is established by specifying
a mean function and a covariance kernel. The mean function
reflects our expectations regarding the function’s output, while
the kernel encodes its smoothness properties and correlation
across the input domain. Consequently, even in regions with
sparse or no data, the GP’s predictions revert to the prior mean
in an elegant way, with the associated predictions’ uncertainty
determined by the kernel.

For simplicity, let us consider a scalar-valued state. The
prior constraints π(Θ) can then be defined as follows.

• External segments: The two external segments have
{µL, σL, µR, σR} to parameterize their respective Gaus-
sian distributions. Each of these parameters follows a
univariate Gaussian prior,

µL, µR ∼ N
(
µ∗, σ2

tol

)
, σL, σR ∼ N

(
σ∗, σ2

tol

)
, (13)

where {µ∗, σtol} are user-specified hyperparameters.
• Internal segments: For each internal segment, the mean

µi and standard deviation σi likewise follow univariate
Gaussian priors. For i = 1, . . . , M + 2,

µi ∼ N
(
µ∗, σ2

tol

)
, σi ∼ N

(
σ∗, σ2

tol

)
. (14)

• Smoothness between adjacent internal segments: For each
neighboring pair (i, i+1), i = 1, . . . ,M +1, we impose

(µi+1 − µi), (σi+1 − σi) ∼ N
(
0, σ2

tol

)
, (15)

preventing large or abrupt changes in the mean and
variance across adjacent internal segments.

• Smoothness between external and internal segments:

(µ1 − µL), (µM+2 − µR) ∼ N
(
0, σ2

tol

)
,

(σ1 − σL), (σM+2 − σR) ∼ N
(
0, σ2

tol

)
. (16)

• More spline-like smoothness: The second-order differ-
ence of the mean and standard deviation across con-
secutive segments can also be penalized. This second-
order difference approximates the “local curvature” in the

Measurement

Pr
io

r S
ta

te

Deterministic samples
Best Gaussian approximation
95%-CI: ±1.96*
Wasserstein barycentric interpolation
95%-CI: ±1.96·

Fig. 4: Illustration of the derived Gaussian Process model (green), whose
optimal parameters are determined via Maximum A Posteriori estimation
from samples (blue) drawn from the true joint measurement/state density.
This model achieves a non-Gaussian local approximation of the true joint
density by assigning a conditional Gaussian state PDF to each concrete
measurement along the horizontal axis. For comparison, we also depict the
family of conditional Gaussian densities (purple) for each measurement value,
with means and variances matching those of the true posterior density.

functions. By penalizing large curvatures, the solution be-
comes smoother and more spline-like. For i = 2, . . . ,M ,

(µi+1 − 2µi + µi−1) ∼ N (0, σ2
tol2), (17)

(σi+1 − 2σi + σi−1) ∼ N (0, σ2
tol2) . (18)

where σtol2 is another user-defined hyperparameter.
Collecting all these components yields a product of univariate
Gaussian priors over each parameter. As a result, the prior
distribution π(Θ) provides the necessary “pull” in data-sparse
or out-of-range regimes, ensuring that the solution remains
well-defined and smooth. The optimal parameter set Θ∗ is
then obtained by minimizing the negative log-posterior

Θ∗ = argmin
Θ

[
− log ℓ(Θ)− log π(Θ)

]
. (19)

Figure 4 presents an exemplary illustration of the derived GP
model with optimal parameters. This GP model provides a
robust non-Gaussian local approximation of the true joint den-
sity. More specifically, it assigns a conditional Gaussian state
PDF to each concrete measurement along the horizontal axis,
thereby representing the approximate posterior state density.
In data-sparse regions, incorporating prior information into
the parameter set prevents large or abrupt variations in both
the mean and variance. Moreover, our framework supports
the simultaneous acquisition of multiple measurements within
a single filter step. By conditioning this approximate joint
density on several measurements, we can select the best result
as the posterior state estimate.

V. EVALUATION

In this study, we evaluate the performance of the proposed
GADF using the well-known discrete-time cubic sensor prob-
lem. This problem is defined by the measurement equation,
corrupted by additive, zero-mean, state-independent Gaussian
measurement noise.

yk = 0.1x3
k + vk . (20)
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Fig. 5: Comparison of the average estimation quality across 100 independent measurement sequences over 500 time steps for the proposed algorithm and
state-of-the-art methods. To improve visualization, all results are smoothed using a moving average with a window size of five time steps.
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Fig. 6: Average measurement update runtimes in milliseconds of different filters at each time step.

We compare our filter against state-of-the-art GADFs in
recursive hidden-state estimation. The GPF draws 106 ran-
dom samples in each step for moment matching Gaussian
distributions. Despite its high computational cost and non-
reproducible results, it converges asymptotically to the optimal
MMSE estimator and thus establishes a benchmark for the
estimation quality achievable by a GADF. Since the measure-
ment equation (20) is a polynomial in the state, all moments
required to parameterize the joint Gaussian density of the state
and measurement under the second Gaussian assumption admit
closed-form expressions [13, eqs. (14)–(16)]. For example, the
expected measurement ŷk = E[yk] can be computed as

ŷk = 0.1

∫ ∞

−∞
x3
k f

p
xk

(xk) dxk = 0.1 x̂p
k + 0.3 x̂p

k σ
p
k .

Building on this analytic statistical linearization, we derive an
Analytic Linear Regression Kalman Filter (ALRKF), which

delivers the highest estimation quality among all LRKFs.
Additionally, we analyze a PGF [15] that, like our approach,
avoids linearizing the measurement model and outperforms
conventional filters. We also consider the GADF based on
the IGP-Interpolation, using the same deterministic sampling
strategy [23] and sample size as our approach. This controlled
setup allows us to compare estimation accuracy, computational
efficiency, and to demonstrate whether our filter can match or
exceed performance while reducing computational cost.

A Monte Carlo study, following [16], [25], was run with
100 independent state trajectories xi

k, i = 1, . . . , 100, over
500 time steps k = 1, . . . , 500. Each trajectory evolves under
the identity dynamics xk+1 = xk +wk, subject to Gaussian
noise wk with standard deviation of 1.0. The initial state
is fixed at x0 = 0.0. Noisy measurements are generated
via the prescribed measurement model (20) with additive
Gaussian noise of standard deviation 0.3. For each trajectory,



filter estimates x̂e, i
k , k = 1, . . . , 500, i = 1, . . . , 100 are

computed. Performance is assessed by the Root Mean Square
Error (RMSE) between the estimates and the true states. All
experiments were implemented in Julia and executed on an
Intel Core 1355U CPU with 1.70 GHz.

Figure 5 demonstrates that our filter’s estimates nearly
coincide with the benchmark provided by the GPF, despite
using only 200 deterministic samples per measurement update.
While minor RMSE increases appear in certain areas, overall
performance remains competitive with other state-of-the-art
GADFs, offering a robust, high-quality solution for nonlinear
state estimation. Furthermore, our filter easily outperforms the
ALRKF by a substantial margin by avoiding any linearization
of the nonlinear measurement model. Table I compares the
computational complexities of various filters during measure-
ment updates. For sample-based methods, N denotes the total
number of samples drawn, whether via random or determinis-
tic sampling. M represents the number of internal boundaries
in our approach, which is treated as a user-defined parameter.
As Fig. 6 demonstrates, although our approach incurs only a
slight accuracy loss, it significantly outperforms the IGP-based
method in average measurement-update runtime.

TABLE I: Computational and memory complexities of different filters.

Filter Sample-Based Time Complex. Space Complex.
Proposed Yes O(N ·M) O(N +M)
IGP [16] Yes O(N3) O(N2)
GPF [5] Yes O(N) O(N)
PGF [15] Yes O(N) ON)
ALRKF No O(1) O(1)

VI. CONCLUSION

In this paper, we introduce a novel GADF for nonlinear state
estimation. Our likelihood-free measurement update builds a
non-Gaussian local approximation of the true joint measure-
ment/state density based on samples from it. Specifically, a
GP is defined over the joint measurement/state space via an
innovative, closed-form Wasserstein barycentric interpolation,
parameterizing a conditional Gaussian state PDF for each
measurement value. The optimal parameters of the GP model
are inferred by MAP estimation. By conditioning the resulting
approximate joint density on concrete measurements, our
method yields high-quality Gaussian posterior state estimates.

In 1D cases, MAP estimation easily yields analytic updates
for the scalar means and variances of conditional Gaussians,
either by fixing boundaries as hyperparameters or by means
of an alternating optimization scheme. However, in higher
dimensions this exact MAP may become computationally
intractable and lose its closed-form solution. Future work will
adopt a variational lower-bound formulation that smooths the
objective function and enables efficient mini-batch updates.
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