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Abstract—In this paper, we present novel results and insights
into tracking extended objects using the Stochastic Medial Axis
Transform (SMAT). Unlike conventional methods that depend
on explicit shape parameterization with basic priors, SMAT
employs an implicit inside-out representation by constructing
maximum inscribed circles within the object. This is achieved
by simultaneously fitting two Bézier curves: one that defines the
medial manifold, providing the centers of the maximum inscribed
circles, and the other that characterizes the scalar thickness
field, assigning positive radii to these centers. This dual-curve
formulation leverages the concept of inverse skeletonization and
offers a flexible, parametric shape model capable of tracking
diverse shapes, whether convex or non-convex, symmetric or
asymmetric. Furthermore, we obtain a closed-form likelihood
function in 2D space that facilitates the application of advanced
recursive Bayesian state estimators. Finally, we conduct two
simulation studies to demonstrate and evaluate the effectiveness
of the proposed approach.

Index Terms—Extended object tracking, Stochastic Medial
Axis Transform, Bayesian inference, nonlinear filtering, Gaussian
assumed density filter, measurement association problem

I. INTRODUCTION

A. Context

We consider the problem of extended object tracking (EOT),
where the main objective is to simultaneously estimate the
target’s kinematic state and its spatial extent (or shape) recur-
sively over time, using noisy position measurements obtained
from the target’s surface. While EOT is widespread in au-
tonomous navigation, it is equally critical for advancing parti-
cle measurement techniques. Accurate shape reconstruction of
particulate solids is essential, as morphology directly affects
their behavior in industrial processes. Integrated with novel
tracking methods, this combination enables significant gains in
measurement accuracy across diverse particulate applications.

Recent advances in sensor resolution and multi-modal in-
tegration have dramatically increased the quantity and qual-
ity of tracking data, which benefits EOT, where targets are
modeled by their spatial extent rather than as points. These
rich measurements enable a more accurate joint estimation of
both the object’s pose and its shape via probabilistic nonlinear
filtering. In this framework, the system state includes the
object’s position, orientation, shape parameters, and optionally
velocities or accelerations. Since the system state is usually
not directly observable, it must be inferred from measurement
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Fig. 1: Illustration of diverse shapes generated by the presented method. A
Bézier curve, parameterized by its control points (red dots), defines the medial
axis (red solid line) within the target, thereby establishing the centers of all
maximum inscribed circles (gray). A second Bézier curve specifies the scalar
thickness field, assigning radii to these centers. Consequently, envelopes (blue)
that enclose all maximum inscribed circles are derived to approximate the
target shape, with the envelope boundaries completed by two solid black lines.

data. Thus, a key objective of EOT is to effectively inter-
pret and process position measurements using a reasonable
measurement model.

B. State of the Art

Prior to defining a measurement model, it is essential to
establish the spectrum of shape models. The complexity of
these models is governed by both the richness of the mea-
surement data and the amount of prior knowledge available,
ranging from basic, robust approximations to highly detailed,
flexible reconstructions. When the target is a priori assumed
to have a simple shape, elementary geometric models such as
lines [1] or rectangles [2] are commonly used and can still
yield robust tracking, even with sparse surface measurements.
Among parametric models, ellipses are particularly widespread
in high-noise scenarios, supported by the analytical framework



of Random Matrix (RM) theory [3], [4]. For lower noise envi-
ronments, more expressive models like the Random Hypersur-
face Model (RHM) [5], [6] are feasible, where measurements
are assumed to stem from a randomly scaled version of the
target boundary. For complex, irregular, or non-convex targets
that cannot be captured by simple parameterizations, more
flexible shape models become essential. Examples include
parametric radial representations based on Fourier series [7]
and non-parametric approaches using Gaussian processes [8].

EOT is typically formulated as a nonlinear state estimation
problem solved via recursive Bayesian filtering. However, the
resulting state probability density functions (PDFs) are often
multi-modal or non-Gaussian, making closed-form solutions
infeasible. Therefore, simplifications are introduced in the
form of Gaussian Assumed Density Filters (GADFs), which
approximate the true complex state PDF as a single Gaussian
after each processing step. Various Nonlinear Kalman Filters
(NKFs), including the Unscented Kalman Filter (UKF) [9]
and the Smart Sampling Kalman Filter (S2KF) [10], [11],
have been employed to track targets modeled by star-convex
RHMs [7]. During each measurement update, they linearize
the nonlinear measurement equation and then apply Kalman
Filter formulas. Nevertheless, in the presence of strong non-
linearity, these filters exhibit reduced estimation accuracy due
to large linearization errors. Alternatively, particle flow-based
Progressive Gaussian Filters (PGFs) [12], [13] avoid such
linearization by a progression mechanism, which decomposes
each measurement update into successive sub-updates and
gradually integrates measurement information into state es-
timates. A closed-form likelihood function for target tracking
has been derived by leveraging the PGF framework [14].

A closely related approach is spline-based tracking of
curved extended targets [15]. Here, the target is modeled as a
“thick” Bézier curve with non-zero width and is approximated
by a rectangle chain. While this method allows for modeling of
both convex and non-convex shapes, approximation of a con-
tinuous boundary with a set of discrete rectangles may intro-
duce modeling errors. Moreover, the computational complexity
may rise as the number of rectangles increases, particularly
when capturing highly irregular target deformations.

C. Contributions

In this work, we introduce Stochastic Medial Axis Trans-
form (SMAT), an innovative extension of the long-established
MAT theory. Our key novelty is to transform the traditionally
intractable computation of an object’s exact medial representa-
tion into a stochastic state estimation problem, thereby making
it inherently tractable. To realize this reformulation in practice,
we introduce a tailored dynamic system, where all parameters
necessary for constructing the SMAT are recursively estimated
over time. Notably, such a treatment has rarely been discussed
and remains unexplored.

Although rooted in MAT theory, our novel method deviates
significantly from existing MAT algorithms, which primarily
aim to approximate the exact internal medial axis and lack an-
alytical solutions [16], [17]. Instead, we leverage our estimated

SMAT model to reconstruct a smooth boundary of an unknown
object. Rather than relying on predefined shape assumptions
through, e.g., parameterizing explicit basic shape priors or
combining multiple parametric models, SMAT employs a
flexible, parametric shape model, specifically tailored for EOT.
This strategy effectively tracks a wide range of shapes, whether
convex or non-convex, symmetric or asymmetric.

More precisely, we adopt a synthetic medial representation
by constructing maximum inscribed circles within the target
of interest. This is achieved by simultaneously defining and
parameterizing two Bézier curves: one modeling a continuous
medial manifold that provides the centers of the largest circles,
and the other representing a continuous scalar thickness field
that assigns corresponding positive radii to these centers.
Moreover, by adjusting the control points of both curves,
non-rigid deformations such as bending and compression are
effectively captured. In this dual-curve formulation, the target’s
boundary is implicitly reconstructed by the envelope of all the
maximum inscribed circles from the inside out with arbitrary
flexibility. Based on this shape model design, a closed-form
likelihood function is derived, enabling the application of
advanced recursive Bayesian estimators for nonlinear filtering.

II. PROBLEM FORMULATION

Our goal is to estimate an unknown extended object’s
parameters, in particular its shape, position, and orientation,
based on noisy position measurements collected from its
surface in a two-dimensional plane. At time step k, the system
state xk, which encapsulates all necessary kinematic and
extent parameters, is denoted by

xk =
[
(xkin.

k )⊤, (xext.
k )⊤

]⊤
. (1)

The kinematic state xkin.
k typically consists of the target’s

position, velocity magnitude, heading angle and turn rate. The
random vector xext.

k represents the parameters of the target
shape and will be discussed in Section IV.

During each measurement update, we assume the avail-
ability of a measurement set Yk = {ỹ

k,i
}Nk
i=1, consisting of

Nk individual position measurements in Cartesian coordinates.
The total number of measurements Nk can vary over time.
These measurements are highly informative to infer the hidden
system state, as they not only provide evidence about the
target’s kinematic state, but also reflect characteristics of its
spatial extent. Each individual measurement ỹ

k,i
is modeled

as a noisy observation of an unknown two-dimensional point
zx
k,i, referred to as the measurement source, which is assumed

to lie on the target boundary, i.e.,

ỹ
k,i

= zx
k,i + vk,i , i = 1, . . . , Nk , (2)

where vk,i denotes additive zero-mean Gaussian white noise
with a known probability distribution. Noise terms for different
measurements are mutually independent and also independent
of the state.

We denote the PDF of the state xk at time step k condi-
tioned on the k received measurement sets Y1, . . . ,Yk as

fe
xk

(xk) = fxk
(xk | Y1, . . . ,Yk) = fxk

(xk | Y1:k) , (3)



and the predicted state density, namely the state PDF at time
step k conditioned only on Y1, . . . ,Yk−1 as

fp
xk

(xk) = fxk
(xk | Y1:k−1) . (4)

One of our primary objectives is to correct the predicted
state estimate fp

xk
(xk) using the newly arrived measurements

Yk = {ỹ
k,i

}Nk
i=1. Typically, this refinement is performed by ap-

plying Bayes’ rule and assuming that the current measurement
set Yk is conditionally independent of the already processed
measurement sets Y1:k−1 given the predicted state estimate

f (Yk | xk, Y1:k−1) = f (Yk | xk) . (5)

The corrected state density then follows as

fe
xk

(xk) ∝ f(Yk | xk) f
p
xk

(xk) . (6)

By exploiting the mutual independence of the noise terms, we
obtain a likelihood function that simultaneously processes all
the measurements within a single filter step

f(Yk | xk) =

Nk∏
i=1

fyk
(ỹ

k,i
| xk) . (7)

A key benefit of this factorization is that each measure-
ment ỹ

k,i
can be processed independently. First, we express

the generative measurement model (2) in probabilistic form
as the conditional density fyk

(y
k,i

| xk). We then define
the likelihood function for a specific observation ỹ

k,i
as

fL
k,i(xk)

def
= fyk

(ỹ
k,i

| xk). Once this likelihood function
fL
k,i(xk) is explicitly obtained, it can be incorporated into a

recursive Bayesian filter for extended object tracking.

III. KEY IDEA AND GROUNDWORK

A. Medial Axis Transform

We present a brief overview of the MAT theory, highlighting
only the aspects relevant to this work. For a more compre-
hensive treatment, see [18]. As detailed in [19], there are
multiple ways to define the MAT, each producing a valid and
informative representation. In this work, we employ the most
widely recognized definition [20].

Definition 1. Let O be a connected bounded domain in R2.
The Medial Axis Transform of O is the set of centers C and
corresponding radii R of all maximally inscribed circles inside
O. Each of these circles is tangent to O at least at two points.

In general, MAT produces a medial representation by char-
acterizing an object’s solid geometry as the union of infinitely
many circles with varying centers and radii, whose centers
form a continuous medial manifold, commonly referred to as
the medial axis (see Fig. 2). However, exact MAT computation
is generally intractable, and our focus is not on deriving the
precise medial representation from a given boundary. Instead,
we approximate the medial representation via two spline
parameterizations: a continuous medial manifold and a positive
scalar thickness field. Together, they facilitate an inside-out
analytical reconstruction of the object’s boundary.

Fig. 2: Example illustration of the MAT of a square. Traditional MAT
approaches extract the medial axes (red) from the given object boundary
(purple). They intersect at the square’s center and mark the loci of infinitely
many maximum inscribed circle centers. A representative subset of these
circles (gray) is shown, and their envelope reconstructs the square’s boundary
(blue) analytically in an inside-out fashion.

B. Synthetic Medial Representation

In this subsection, we approximate the medial representation
of a two-dimensional object O ⊂ R2 by two bounded Bézier
curve parameterizations, namely a smooth medial manifold by
a cubic Bézier curve

m(u, P1:4) = (1− u)3 P1 + 3 (1− u)2 uP2

+ 3 (1− u)u2 P3 + u3 P4 , (8)

where the control points {Pi ∈ R2}4i=1 control the shape and
curvature of the medial axis, and an associated scalar positive
thickness field defined by another quadratic Bézier curve

R(u, r1:3) = (1− u)2 r1 + 2 (1− u)u r2 + u2 r3 (9)

with {ri ∈ R}3i=1 defining the thickness variation along the
medial axis. Both curves share the parameter u ∈ [0, 1],
ensuring a well-defined, bounded parameterization.

C. Inverse Skeletonization

After constructing a synthetic medial representation using
two Bézier curves, our method applies the concept of inverse
skeletonization [21], [22]. In this framework, the medial struc-
ture is defined first, and the object boundary is subsequently
reconstructed in closed form. We subsequently derive suffi-
cient conditions under which a single manifold, equipped with
a positive thickness field, constitutes the complete skeleton of
a simple object. When these criteria are satisfied, an explicit
parametric expression for the boundary follows analytically.

According to the literature, the inverse skeletonization prob-
lem can be formulated as follows.

Definition 2. Given a bounded medial manifold M equipped
with a positive scalar field R, find a simple object O, whose
skeleton is given by M and R, and express the boundary ∂O
of O as a function of M and R.

While defining a synthetic medial manifold and its asso-
ciated thickness field is straightforward, this alone does not
ensure a valid skeleton for arbitrary shapes. We therefore
analyze the medial geometry to derive the precise conditions
under which it constitutes a valid skeleton.

Let the synthetic medial representation, comprising a single
medial manifold m(u, P1:4) and a positive scalar thickness



field R(u, r1:3), accurately model a simple object O. In this
setting, each circle centered on the manifold is maximal within
O and is tangent to the true, but unknown, boundary ∂O at
least at two distinct points. Denoting these tangent points by
Z = [Zx,Zy]

⊤, they satisfy the implicit equation

∀Z, ∃u ∈ [0, 1], S(Z, u) = ∥m(u)− Z∥22 − R2(u) = 0 ,

ensuring they lie on both the corresponding maximum in-
scribed circle and the true boundary. As u varies, the loci of
these tangency points trace out two continuous envelopes that
jointly approximate ∂O. Our reconstruction strategy therefore
consists of extracting this envelope of maximum inscribed
circles to recover the unknown boundary. In Fig. 2, the blue
solid curves exemplify this envelope.

In the following, we restrict our attention to a single
envelope of the synthetic medial representation parameter-
ized by m(u) and R(u), and omit the control points for
clarity. To parameterize this envelope, we define a mapping
u ∈ R 7→ Z(u) = [Zx(u), Zy(u)]

⊤ ∈ R2, which traces the
locus Z = {Z(u) | u ∈ [0, 1]}. By construction, Z(u) must
fulfill the following two sufficient conditions [21]

S (Z(u), u) = ∥m(u)− Z(u)∥22 − R2(u) = 0 , (10)
∂

∂u
S (Z(u), u) = 0 . (11)

Recall that the envelope of a circle family is the set of
points at which each circle is tangent to its envelope. Hence,
every envelope point corresponds uniquely to one maximum
inscribed circle, ensuring that condition (10) holds.

To detail the second condition (11), consider the derivative[
d
duZ

x(u), d
duZ

y(u)
]⊤ ∣∣

u=u∗ , which is the tangent vector of
the envelope curve Z at parameter value u∗. The correspond-
ing tangent point on the envelope is Z(u∗). Conversely, the
same parameter u∗ defines the maximum inscribed circle
with center m(u∗) and radius R(u∗). This circle can be
written implicitly as

{
P ∈ R2

∣∣ S(P, u∗) = 0
}

. The outward
normal to this circle at any point P is given by the gra-
dient

[
∂

∂Px S(P, u
∗), ∂

∂Py S(P, u
∗)
]⊤

. Assuming the synthetic
medial representation faithfully models the object’s interior,
the tangent point Z(u∗) must satisfy S (Z(u∗), u∗) = 0.
Moreover, the circle’s normal at Z(u∗) must be perpendicular
to the envelope’s tangent at the same parameter value u∗,
yielding the orthogonality condition[

d

du
Z(u)

]⊤∣∣∣∣∣
u=u∗

[
∂

∂P
S(P, u∗)

]∣∣∣∣
P=Z(u∗)

= 0 . (12)

From the first condition (10), we have d
duS (Z(u), u) = 0.

Differentiating S (Z(u), u) with respect to u gives

∂

∂Zx S (Z, u)
d

du
Zx(u) +

∂

∂Zy S (Z, u)
d

du
Zy(u)

+
∂

∂u
S (Z, u) = 0 .

In combination with the zero scalar product condition (12), this
confirms that the second sufficient condition (11) is satisfied.

D. Closed-Form Shape Reconstruction
With both sufficient conditions satisfied, our Bézier-based

synthetic medial representation yields a robust framework
for deriving an exact analytic parametrization of the object
boundary. Specifically, for each u ∈ [0, 1], the corresponding
maximum inscribed circle is tangent to the object boundary at
two points, Z±(u), which satisfy the sufficient conditions (10)
and (11), and admit the following closed-form expressions

Z±(u) = m(u) + R(u) U±(u) ,

U±(u) = −∇mR(u)±
√
1− ∥∇mR(u)∥22 Nm(u) . (13)

A detailed derivation of the above expressions is provided in
the Appendix, and an example illustration is shown in Fig. 4.
In (13), Nm(u) is the unit normal along the medial manifold.
∇mR(u) projects the gradient of the thickness field onto the
tangent direction of the medial manifold. In particular, the
gradient of R(u) with respect to the arc length s(u) along the
medial manifold m(u) is given by

d

ds
R(u) =

dR(u)/du

ds/du
=

R′(u)√
[x′(u)]2 + [y′(u)]2

,

and its projection onto the medial tangent is

∇mR(u) =
d

ds
R(u)

m′(u)

∥m′(u)∥2

=
R′(u)√

[x′(u)]2 + [y′(u)]2
m′(u)

∥m′(u)∥2
.

U±(u) denotes the unit vector from the circle center to its
tangency points Z±(u), and the constraint ∥∇mR(u)∥22 ≤ 1
ensures that the resulting expressions remain real-valued.

Our dual-curve medial formulation combines a parameter-
ized medial manifold with an associated thickness field to pro-
duce a smooth and analytically tractable shape reconstruction.
More importantly, it contributes significantly to the design of
a novel flexible parametric shape model for EOT.
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Fig. 3: Example illustration of the reconstructed shape (blue) obtained from
the envelope of all maximum inscribed circles. These circles are produced
by a smooth, continuous medial manifold (red) and a positive thickness field
(gray), ensuring a smooth and analytically consistent shape representation.

IV. METHOD DERIVATION

So far, we have established the theoretical foundation of this
work. In this section, we develop our Stochastic Medial Axis
Transform framework for extended object tracking.



A. State Parameterization

Given that the shape model, comprising two Bézier curves,
is stochastically associated with noisy measurements, the
uncertainty in their control points is captured by the ran-
dom vector xext. within (1). The model’s representational
flexibility depends directly on the number and placement
of control points. Increasing them improves expressiveness
and adaptability, but leads to higher computational cost in
state estimation. To balance expressiveness and efficiency, we
employ a cubic Bézier curve with four control points P1:4 for
the medial manifold and a quadratic Bézier curve with three
control points r1:3 for the thickness field, as expressed in

xext.
k = [Px

1 , P
y
1, . . . , P

x
4 , P

y
4, r1, r2, r3] . (14)

For elongated, curved extended targets, accurately capturing
variations in length and curvature is considerably more impor-
tant than accounting for minor width variations. Consequently,
our approach prioritizes enhanced flexibility in modeling
changes along the object’s length and curvature.

B. Explicit Likelihood Function

Based on the analytical boundary definition in (13), obtained
via our synthetic medial representation and inverse skele-
tonization, the generative measurement model (2) becomes

y
k
= Z±(u, xk) + vk . (15)

Assuming additive Gaussian noise with covariance matrix
Σv , the explicit likelihood for a concrete measurement ỹ

k
,

namely fL
k (xk) = fy

k (ỹk | xk), can be easily computed. The
derivation proceeds as follows

fy
k (yk | xk) =

∫
R2

f(y
k
, vk | xk) dvk

=

∫
R2

δ
(
y
k
− Z±(u, xk)− vk

)
fv
k (vk) dvk

= fv
k

(
y
k
− Z±(u, xk)

)
= Nv

(
y
k
; Z±(u, xk) , Σ

v
)
; (16)

fL
k (xk) = fy

k (ỹk | xk) = Nv

(
ỹ
k
; Z±(u, xk) , Σ

v
)
,

f(Yk | xk) = f
(
{ỹ

k,i
}Nk
i=1

∣∣∣xk

)
=

Nk∏
i=1

fy
k,i

(
ỹ
k,i

| xk

)
=

Nk∏
i=1

Nv

(
ỹ
k,i

; Z±(u, xk) , Σ
v
)
. (17)

C. Measurement Association Solution

Nonetheless, several challenges remain. Due to the sensor
noise, directly associating individual measurements with the
system state is problematic. Specifically, each position mea-
surement must be matched to its corresponding maximum
inscribed circle, i.e., the parameter u ∈ [0, 1], and to the
correct tangency point on it, Z+ or Z−. Consequently, further
assumptions regarding the measurement source must be intro-
duced. Once this association issue is resolved, the likelihood

in (17) can be directly incorporated into the recursive Bayesian
estimator detailed in Subsection IV-E.

In this work, we adopt the widely used Greedy Association
Model (GAM) framework [23], [24] to address the measure-
ment source association problem. It requires no prior assump-
tions on how measurement sources are distributed along the
target boundary. Instead of considering solely distance-based
criteria, we integrate the analytic medial structure and mini-
mize a collinearity-based cost that incorporates both distance
and angular consistency with the local boundary.

In our implementation, each measurement ỹ
k

is first as-
sociated with its corresponding envelope curve. Hence, we
conduct a grid search over discretized values of u ∈ [0, 1]
and compute the inscribed-circle center mk(u, xk) and its
two tangency points Z±

k (u, xk). We then define the vectors
ak

def
= ỹ

k
−mk(u, xk), b

±
k

def
= Z±

k (u, xk)−mk(u, xk), and
evaluate the angles between ak and b±k , given by

θ±k (u) = arccos

(
a⊤
k b±k

∥ak∥2 ∥b±k ∥2

)
. (18)

For each u ∈ [0, 1], the candidate tangency point is chosen as

Zk(u, xk) =

{
Z−

k (u, xk), if θ+k (u) ≤ θ−k (u),

Z+
k (u, xk), otherwise.

(19)

Next, we exploit the geometric properties of the synthetic
medial representation to determine the correct parameter value
u∗ corresponding to ỹ

k
. According to (13), bk is expressed

as Rk(u)Uk(u), which is aligned with the local normal at
mk(u). Under the specific assumption that ỹ

k
lies on the

normal ray through mk(u) and Zk(u), the points ỹ
k
, mk(u)

and Zk(u) must be collinear. The following cross product
magnitude is computed for each u as the evaluation metric

Ck(u) =
∣∣∣[ỹ

k
−mk(u)]× [Zk(u)−mk(u)]

∣∣∣ . (20)

The optimal parameter u∗ is obtained by minimizing the
collinearity metric Ck(u) over the search interval. An illus-
trative example is provided in Fig. 4.

Measurement
Medial manifold
Envelope Z
Envelope Z
Maximal inscribed circle
- mR(u)
Medial manifold's normal
Tangency point

Fig. 4: Example illustration of measurement-source association. Given a
position measurement (purple), the envelope curve (blue) that could contain its
source is identified first. After evaluating a geometric collinearity metric (20)
over the parameter u, the optimal maximum inscribed circle (gray) and its
corresponding tangency point (blue circle) on this envelope are determined.
This procedure resolves source association in a simple, principled manner,
without any prior assumptions on source distribution.



D. Constraints on Extent Parameters

In EOT, shape and extent parameters are often constrained
to predefined intervals, posing challenges in practical estima-
tion. Within the SMAT framework, enforcing strictly positive
radii for all maximum inscribed circles is essential. We model
the thickness field as a quadratic Bézier curve over u ∈ [0, 1],
where the control points {ri ∈ R}3i=1 define a convex combi-
nation. Therefore, the thickness values remain strictly positive
if and only if all three scalars {ri ∈ R}3i=1, which themselves
are part of the state vector, are strictly positive. However,
enforcing such positivity constraints in common nonlinear
Kalman filters is challenging due to their unbounded support.
Inspired by [25], we address this by applying a bijective,
monotonically increasing state transformation function to each
ri, allowing the filter to operate on unconstrained variables
while guaranteeing ri > 0:

t(x) =

{
x+ log (1 + e−x) , x > 0 ;

log (1 + ex) , x ≤ 0 .
(21)

This function is widely used as a neural network’s activa-
tion function [26]. A continuous piecewise-defined alternative
appears in [25], but its first derivative is non-smooth at the
origin and its second derivative is discontinuous. In contrast,
our formulation is infinitely differentiable and ensures that the
function and all its derivatives vary smoothly across R.

Moreover, the first derivative of our transformation function

t′(x) =
ex

1 + ex
, (22)

is strictly bounded within (0, 1) for all x ∈ R. Hence,
infinitesimal input perturbations are not exponentially am-
plified, as they would be under the mapping x 7→ ex, but
are instead attenuated by its bounded slope. This leads to
corresponding likelihood values that vary within a moderate
range, which is an essential property for Bayesian filters that
employ likelihoods explicitly for inference, such as the PGF
[13]. It relies on log-likelihood magnitudes to determine pro-
gression step sizes during measurement updates. Importantly,
our transformation (21) preserves the sample spread without
significantly distorting the likelihood landscape.

Besides, as inputs grow, the function (21) closely approx-
imates the identity function t(x) = x as the additive term
log (1 + e−x) rapidly vanishes.

Additionally, we impose another geometric constraint for a
valid shape reconstruction, namely ∥∇mR(u)∥22 ≤ 1 in (13).
This constraint is relatively complex and cannot be directly
implemented through a simple parameter transformation. Upon
closer examination, it can be expressed as

[R′(u)]2

[x′(u)]2 + [y′(u)]2
≤ 1 → |R′(u)| ≤ ∥m′(u)∥2 . (23)

The thickness field should not vary faster than the medial
manifold w.r.t. the parameter u. For elongated targets, our
modeling has already prioritized accurately capturing vari-
ations in length and curvature by assigning more control
points to the medial manifold. In contrast, the thickness field

inherently exhibits smoother and slower variations. As a result,
the inequality (23) is satisfied by construction.

E. Recursive Bayesian State Estimation
By introducing appropriate assumptions within the GAM

framework, we effectively resolve the measurement-source
association problem. Besides, to enforce parameter constraints,
a smooth state transformation is introduced to allow estimation
in an unbounded state space, thus yielding constrained param-
eter estimates. Based on these results, the explicit likelihood
in (17) is employed, and the PGF [13] is selected for recursive
Bayesian inference, benefiting from its superior accuracy and
computational efficiency.

V. EVALUATION

In this section, we assess the proposed SMAT’s ability to
track arbitrary target shapes, whether convex or non-convex,
symmetric or asymmetric, using synthetic data corrupted by
isotropic Gaussian noise. We restrict our evaluation to closed
shapes of finite size that contain no holes. Performance is
quantified via the intersection over union (IoU) between the
estimated boundary ∂Ok and the ground-truth boundary ∂OGT

k

IoUk =
Area(∂Ok ∩ ∂OGT

k )

Area(∂Ok ∪ ∂OGT
k )

. (24)

For numerical evaluations, each continuous closed curve is
approximated by a polygonal boundary composed of line
segments, which allows direct computation of intersection and
union areas. An IoU of 1 indicates perfect overlap, while 0
implies no overlap at all. In our experiments, IoU serves as
a high-level qualitative performance indicator rather than an
exact quantitative metric.

For simplicity, we evaluated two static targets: a convex
symmetric shape and a non-convex asymmetric shape. Extend-
ing to dynamic scenarios requires propagating the augmented
state estimates through a stochastic motion model. For compar-
ison, we applied a non-parametric extent model via recursive
Gaussian Process (GP) regression [8] to the same measurement
sets. During each measurement update, the analytic posterior
GP model conditioned on all concrete measurements estimates
the target boundary in closed-form. This flexible GP-based
approach serves as a benchmark against our method.

Fig. 5 and Fig. 6 depict two representative runs. In each
figure, subplots (a-d) illustrate the results produced by our
method. In both cases, we initialize our filter with a deliber-
ately conservative, enclosing shape. Specifically, we model the
medial manifold as a straight segment and assign a uniform
radius that fully contains the first batch of measurements.
Such an initialization deployed in the absence of a precise
prior allows the estimator to freely shrink and bend the shape
inward toward the ground truth. Empirically, this accelerates
IoU convergence and enhances robustness, especially when
tracking challenging non-convex shapes. Fig. 7 plots the IoU
values over 50 time steps, demonstrating that our method
rapidly reaches high overlap across both target geometries.
Nevertheless, in the non-convex asymmetric case, the GP-
based method fails to achieve comparable results.
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(a) SMAT: Initialization
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(b) SMAT: 15th time step
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(c) SMAT: 35th time step
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(d) SMAT: 50th time step
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(e) GP-EOT: Initialization
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(f) GP-EOT: 15th time step
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(g) GP-EOT: 35th time step
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Fig. 5: Recursive tracking of a static, elongated, convex, and symmetric target from noisy boundary measurements (blue). Subplots (a-d) show four milestones
obtained with the proposed SMAT framework, namely initialization and the 15th, 35th, and 50th time steps. SMAT starts from a deliberately enclosing
envelope (gray), whose medial manifold is a straight line segment (red). As new measurements arrive, the estimate (gray) rapidly contracts and bends toward
the ground-truth boundary (purple). Subplots (e-h) present the GP-based benchmark (brown) applied to the identical sets of boundary measurements. Its online
recursive GP regression, combined with the absence of an explicit time-consuming measurement–source association procedure, allows for faster convergence.

A. Computational Complexity Analysis

To complement the qualitative results, we analyzed the
algorithmic cost of each stage executed within the recursive
estimation loop. Let d be the state dimension, Mk the number
of measurements at time step k, Nu the grid resolution over
the interval [0, 1] for the measurement association, Ns the
number of deterministic Gaussian samples per progression in
the PGF, and Pmax the maximum number of PGF recursions.

1) Prediction Step: Under the static target assumption, the
time update reduces to preserving the previous posterior state
PDF while augmenting it with process noise. These operations
require O(d2) time and memory complexity, respectively.

2) Measurement Association: Each measurement under-
goes an exhaustive search over Nu uniform grid points, with
each geometric evaluation costing O(1). This yields a total
time complexity of O(Mk · Nu) per measurement update.
The algorithm stores one candidate tuple per grid point, each
consisting of a scalar parameter u and geometric vectors. This
results in the same O(Mk ·Nu) space complexity.

3) Filtering: The dominant cost within a single progression
step of the PGF arises from evaluating likelihoods over all Ns

samples and Mk measurements, resulting in a time complexity
of O(Ns ·Mk) and a space complexity of O(d ·Ns) for storing
the samples. Thus, the overall complexity per time step is
O(Pmax ·Ns ·Mk) in time and O(d ·Ns) in space.

TABLE I: Computational complexities of individual modules within the
proposed SMAT framework.

Module Time Complex. Space Complex.
Time Update O(d2) O(d2)

Measurement Association O(Mk ·Nu) O(Mk ·Nu)
Filtering with PGF [13] O(Pmax ·Ns ·Mk) O(d ·Ns)
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Fig. 7: Illustration of the IoU evolution for two distinct target geometries.
In both cases, the proposed SMAT approach consistently converges to higher
IoU levels. While the GP-based benchmark exhibits faster convergence in the
convex scenario, its performance degrades markedly in the non-convex case.

VI. CONCLUSION

In this paper, we introduce SMAT, a novel extension of
traditional MAT theory that reformulates the generally in-
feasible computation of the exact medial representation as
a tractable stochastic Bayesian state estimation problem. All
model parameters are estimated recursively over time. Based
on this formulation, a target boundary can be reconstructed an-
alytically by first internally parameterizing a synthetic medial
representation via two continuous Bézier curves: one for the
medial manifold, defining the centers of maximum inscribed
circles, and the other for the thickness field, assigning positive
radii to these centers. Subsequently, an inverse skeletonization
process is applied to recover the external boundary as the
envelope formed by the union of all such inscribed circles.
Our flexible parametric shape model supports a wide range
of geometries, including convex, non-convex, symmetric, and
asymmetric forms.
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(a) SMAT: Initialization
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(b) SMAT: 15th time step
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(c) SMAT: 35th time step
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(d) SMAT: 50th time step
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(e) GP-EOT: Initialization
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(f) GP-EOT: 15th time step
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(g) GP-EOT: 35th time step
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Fig. 6: Recursive tracking of a static, elongated, non-convex, and asymmetric target from noisy boundary measurements (blue). A similar initialization strategy
for the SMAT is adopted, composed of a deliberately enclosing envelope (green) with a straight line segment (red) as the medial manifold. Our method
converges gradually toward the challenging non-convex ground-truth shape (purple), showing its robustness in handling complex geometries. In contrast, the
GP-based approach (orange) struggles with non-convex geometries and fails to achieve comparable results, despite its flexible non-parametric shape model.

Several limitations of our current approach remain to be
addressed in future work. The analytic reconstruction in (13)
yields two curve branches, Z+(u) and Z−(u), both param-
eterized over u ∈ [0, 1]. However, at the endpoints u = 0
and u = 1, the maximum inscribed circle contacts the outer
envelope along entire continuous arcs, producing infinitely
many tangency points rather than a single one. These arcs,
depicted as black solid curves in Fig. 3, are not explicitly
parameterized in the current shape model. Consequently, mea-
surements originating from this ambiguous region may be
misattributed to the Z+(u) and Z−(u) branches.

The employed GAM method suffers from the length prob-
lem introduced in [15], where the reconstructed shape could
diverge and expand infinitely outward along the envelope’s
normal direction without correction. A potential remedy is
to use Spatial Distribution Models, which implicitly associate
measurements with all potential sources. Additionally, nega-
tive measurements [27], which are known not to originate from
the object, are useful and can further constrain the estimation
by excluding regions where the object cannot be located.

Generalizing the SMAT to three-dimensional space and
extending it to support multiple medial manifolds stemming
from a single junction enables capturing a broader spectrum
of geometries. This extension offers multiple advantages,
including more accurate shape analysis of particulate solids.
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APPENDIX

To establish that the closed-form solutions in (13) rigorously
satisfy both sufficient conditions (10) and (11) for inverse skeletoniza-
tion, and thus provide stronger support for our derivation, we proceed
as follows. First, we verify the first sufficient condition (10).

⟨∇mR(u), Nm(u)⟩ = ∇⊤
m R(u) Nm(u)

=
d

ds
R(u) T⊤

m (u) Nm(u)︸ ︷︷ ︸
= 0

= 0 ,

S
(
Z±(u), u

)
=

∥∥m(u)− Z±(u)
∥∥2

2
− R2(u)

=
∥∥R(u) U±(u)

∥∥2

2
− R2(u)

= R2(u)

∥∥∥∥−∇mR(u)±
√

1− ∥∇mR(u)∥22 Nm(u)

∥∥∥∥2

2

− R2(u)

= R2(u) ∥∇mR(u)∥22 − R2(u)

+ R2(u)

∥∥∥∥√1− ∥∇mR(u)∥22 Nm(u)

∥∥∥∥2

2︸ ︷︷ ︸
=1−∥∇mR(u)∥22

∓ 2R2(u)

√
1− ∥∇mR(u)∥22 ⟨∇mR(u),Nm(u)⟩︸ ︷︷ ︸

=0

= 0 → The first sufficient condition is satisfied.

Having verified the first condition, we now address the second
sufficient condition (11), which can be equivalently formulated as

∂

∂u
S (Z(u), u) =

∂

∂u
∥m(u)− Z(u)∥22 − ∂

∂u
R2(u)

= 2 [m(u)− Z(u)]⊤
dm(u)

du
− 2R(u)

dR(u)

du
= 0 . (25)



Next, we introduce the closed-form expressions from (13)

Z± −m(u)

R(u)
= U±(u)

= −∇mR(u)±
√

1− ∥∇mR(u)∥22 Nm(u)

= − d

ds
R(u) Tm(u)±

√
1− ∥∇mR(u)∥22 Nm(u)

into (25). Leveraging the orthonormality and unit-norm properties of
the medial tangent and normal vectors, we reach the following result[
Z±(u)−m(u)

R(u)

]⊤
dm(u)

du
= − d

ds
R(u) T⊤

m (u)
dm(u)

du

±
√

1− ∥∇mR(u)∥22 N⊤
m (u)

dm(u)

du

= − d

ds
R(u) T⊤

m (u) Tm(u)︸ ︷︷ ︸
=1

∥∥m′(u)
∥∥
2

±
√

1− ∥∇mR(u)∥22 N⊤
m (u)Tm(u)︸ ︷︷ ︸

=0

∥∥m′(u)
∥∥
2

= −dR(u)/du

ds/du

√
[x′(u)]2 + [y′(u)]2

= − R′(u)√
[x′(u)]2 + [y′(u)]2

√
[x′(u)]2 + [y′(u)]2

= −R′(u) = −dR(u)

du
.

After straightforward algebraic manipulations, the second suffi-
cient condition (11) is fulfilled

∂

∂u
S (Z(u), u) = 2 [m(u)− Z(u)]⊤

dm(u)

du
− 2R(u)

dR(u)

du
= 0 .
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