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Abstract - In this paper we attempt to lay the foun-

dation for a novel filtering technique for the fusion

of two random vectors with imprecisely known sto-

chastic dependency. This problem mainly occurs in

decentralized estimation, e.g., of a distributed phe-

nomenon, where the stochastic dependencies between

the individual states are not stored. Thus, we de-

rive parameterized joint densities with both Gaussian

marginals and Gaussian mixture marginals. These

parameterized joint densities contain all informa-

tion about the stochastic dependencies between their

marginal densities in terms of a parameter vector ξ,

which can be regarded as a generalized correlation pa-

rameter. Unlike the classical correlation coefficient,

this parameter is a sufficient measure for the sto-

chastic dependency even characterized by more com-

plex density functions such as Gaussian mixtures.

Once this structure and the bounds of these para-

meters are known, bounding densities containing all

possible density functions could be found.

Keywords: Stochastic systems, data fusion, decentral-

ized estimation, parameterized joint density, generalized

correlation parameter

1 Introduction

In a wide variety of applications estimating the state of
a dynamic system by fusing uncertain information is a
topic of extraordinary importance, e.g., robot localiza-
tion [1], multiple target tracking [2], and decentralized
observation of a distributed phenomenon, to name just
a few. In most cases, an appropriate system model to-
gether with a stochastic noise model is given and then
the state is estimated by means of a Kalman filter or
one of its variations [3].

Problems mainly occur when the stochastic depen-
dency between the states and/or the sensor noises are
not precisely known. In that case, classical concepts
like the Kalman filter conveniently assume stochastic
independence or precisely known correlation, which au-
tomatically leads to unjustified improvement of estima-
tion results. For understanding the source of unknown
stochastic dependency a typical application problem is
considered: observation of a distributed phenomenon
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Figure 1: Simple example scenario for a decentralized
sensor-actuator-network used for the observation of a
distributed phenomenon.

by means of a sensor-actuator-network, see Fig. 1.
This scenario suffers from two types of imprecisely

known stochastic dependencies. The first type is im-
manent to the system and caused by partially stochas-
tic dependent noise sources for different sensor nodes.
In other words, there are usually additional external
disturbances affecting more than one sensor, e.g. sun-
shine, wind, or the same origin of a pollutant cloud.
Even for ideal sensor properties, this already would
lead to a partially stochastic dependency between the
measured states.

In general, using a centralized approach, the distrib-
uted phenomenon can be easily observed by applying
a standard estimator to the augmented state vector
containing all the physical quantities estimated by in-
dividual sensor nodes; in the linear case this can be
achieved by a Kalman filter, see [4]. In that case, the
estimator stores the associated stochastic dependencies
and use them for the next estimation step. However,
for practical applications it is often desirable to reduce
the heavy computational burden and to reduce com-
munication activities between the individual nodes to
a minimum. This leads to a decentralized estimation
approach, which implies that just parts of the state
vector are manipulated at each update step.

Hence, the decentralized estimation process itself
causes a second source of imprecisely known stochas-
tic dependency. Let us assume that a physical quan-
tity is measured and processed only locally. In order
to estimate the physical quantity at non-measurement
points, i.e., by means of a distributed parameterized
system (PDE), the individual sensor nodes exchange



and fuse their local estimates. In this case the resulting
estimates become automatically stochastic dependent
after the first fusion of the individual estimates. Unfor-
tunately, applying the Kalman filter for decentralized
problems while ignoring the existing dependencies be-
tween the individual states leads to overoptimistic es-
timation results. Coping with such problems is one of
the main justifications for robust filter design [1].

Based on the correlation coefficient r, which is a
measure for the stochastic dependency of random vari-
ables, two robust estimators have been introduced to
solve the previous mentioned problems, namely Co-
variance Intersection [5, 6] and Covariance Bounds [7].
Basically, these filters do not neglect the unknown sto-
chastic dependency, but consider them by producing
conservative estimates for prediction and measurement
step, which are compatible with all correlations within
an assumed correlation structure. Besides, the general-
ization of the Covariance Intersection which is based on
a minimization of the Chernoff information is worth-
while mentioning [8].

Although robust filters like Covariance Intersection
and Covariance Bounds are efficient for linear state-
space models and linear measurement models, they
cannot be directly applied to nonlinear models, e.g.
of a distributed phenomenon. In addition, these filters
are not able to work with more complex density func-
tions such as Gaussian mixtures, which are known as
universal approximators and thus, well-suited for non-
linear estimation [9].

In this paper, we attempt to lay the foundation for
a novel filtering technique, which we believe could pos-
sibly cope with all previously mentioned drawbacks.
The main problem of a robust decentralized estima-
tion based on more complex density functions, such as
Gaussian mixtures, is that for these functions the clas-
sical correlation coefficient r is not a sufficient mea-
sure for the stochastic dependency. This means that
for such density functions no obvious correlation coeffi-
cient exists that can be bounded and thus, no bounding
density can be found in the classical sense.

The main contribution of this paper is to derive pa-
rameterized joint densities with both Gaussian mar-
ginals and Gaussian mixture marginals. These para-
meterized joint densities contain all information about
the stochastic dependency between their marginal den-
sity functions in terms of a parameter vector ξ. This
parameter vector can be regarded as a kind of gener-
alized correlation parameter for the assumed structure
of stochastic dependency. Once this structure and the
bound of the correlation parameter vector ξ are known,
bounding densities which are compatible with all sto-
chastic dependency structures can be found. In [10],
a definition for lower and upper bounding densities is
given, and their potential use in robust estimation is
shown.

The remainder of this paper is structured as fol-
lows. In Section 2, a rigorous formulation of the prob-
lem of state estimation with unknown correlations is
given. Section 3 then derives several types of parame-
terized joint densities with Gaussian marginals. These
joint densities are useful for robust linear estimation.

Furthermore, they are helpful to gain some insight
about the generalized correlation parameter vector ξ.
Whereas, in section 4 we generalize these ideas to pa-
rameterize joint densities with Gaussian mixture mar-
ginals. Bounding the parameter vector of these joint
densities, it is possible to find a conservative estima-
tion even for nonlinear problems and for more complex
density functions.

Throughout this paper, we use the notation
N (z,C(r)) to represent a joint Gaussian density,
which is defined as

N (z,C(r)) =
1

2π |C(r)|
exp

{
−1

2
zT C(r)−1z

}
,

where

z =
[
x− x̂
y − ŷ

]
, C(r) =

[
Cx r

√
CxCy

r
√

CyCx Cy

]
,

are state vector and covariance matrix, respectively.
The expected value of the states are denoted by x̂ and
ŷ, and r ∈ [−1, 1] denotes the classical correlation co-
efficient.

2 Problem Formulation

As mentioned in the introduction, there are many
sources of stochastic dependencies. In this section,
we take up the previously mentioned example, the ob-
servation of a distributed phenomenon with a sensor-
actuator-network. By this means we are able to clarify
the main problem common to all sources of imprecisely
known stochastic dependency: imprecisely known joint
densities with given marginal densities.

For the sake of simplicity, consider a simple discrete-
time dynamic model with the system state xk ∈ IR,
and the system input uk ∈ IR according to

xk+1 = ak(xk) + bk(uk) . (1)

The corresponding density functions of the estimates
are given by fe

x(xk) and fe
u(uk).

In the case of a precisely known joint density
fe

k(xk, uk), the predicted density fp
k+1(xk+1) is given

by

fp
k+1(xk+1)

=
∫

IR2
δ(xk+1 − ak(xk)− bk(uk))fe

k(xk, uk)dxkduk ,

(2)

where δ denotes the Dirac delta distribution.
With the justification of the considered example sce-

nario we assume that the state estimate xk and the sys-
tem input uk are stochastically dependent with an im-
precisely known structure. Hence, although the mar-
ginal density functions fe

x(xk) and fe
u(uk) are known,

the joint density fe
k(xk, uk), which contains all infor-

mation about the stochastic dependency, is unknown.
However, as it can be seen in (2), the knowledge of the
joint density or at least its parameterization in terms of
a correlation parameter is essential for the estimation
process.



If the joint density, i.e., the correlation structure,
would be known precisely, this correlation could easily
be tracked and be considered in the next processing
step. However, when the correlation structure is not
precisely known, the joint densities need somehow to
be reconstructed.

In the next section, the reconstruction of joint den-
sities f(x, y) based on known marginal densities fx(x)
and fy(y) is discussed in more detail. For all intro-
duced types this leads to a joint density parameterized
by a generalized correlation parameter vector ξ con-
taining the information about the stochastic depen-
dency between the considered random variables.

3 Gaussian Marginals for
Linear Estimation

In this section, we describe possible parameterizations
of joint densities for given Gaussian marginal densities.
We have identified three types of parameterized joint
densities. The first two types mainly serve for didactic
purposes for understanding the problem of imprecisely
known stochastic dependency. The third type, how-
ever, is useful for robust decentralized linear estimation
and thus, is of practical relevance.

3.1 Piecewise Gaussian Densities with
Different Weighting Factors

This section consists of a description for the simplest
non-Gaussian joint density with Gaussian marginals;
this type frequently appears in informal discussions on
the internet. Basically, a jointly Gaussian density is
“sliced” into different pieces, which are raised or low-
ered, respectively. The visualization of two examples
for this simple type of parameterized joint density is
shown in Fig. 2.

THEOREM 3.1 Given two Gaussian marginal densi-
ties fx(x) = N (x̂, Cx) and fy(y) = N (ŷ, Cy), a family
of possible joint densities f(x, y) can be parameterized
by

f(x, y) =

{
ξ1 f̃(x, y) x · y ≥ 0
ξ2 f̃(x, y) x · y < 0

(3)

where ξ1 = 2 (1− ξ) and ξ2 = 2 ξ.
The free parameter ξ ∈ [0, 1] can be regarded as a

generalized correlation parameter, which specifies the
member of the family. To assure that the parameter-
ized joint density f(x, y) is a valid joint density for the
given marginals fx(x) and fy(y), the density f̃(x, y)
must be defined according to

f̃(x, y) = N (x− x̂, Cx) N (y − ŷ, Cy) .

Proof. To prove this, it must be shown that the
marginal densities of f(x, y) in (3) are represented by
fx(x) = N (x − x̂, Cx) and fy(y) = N (y − ŷ, Cy), re-
spectively. The marginal density fx(x) can be derived
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Figure 2: Gaussian density with piecewise different
weighting factors; “sliced” in (a) four pieces and (b)
nine pieces with different weighting factors.

by direct integration over y. Assuming x > 0, it follows

fx(x) =
∫ ∞

0

ξ1f̃(x, y) dy +
∫ 0

−∞
ξ2f̃(x, y) dy

= 2(1− ξ)
∫ ∞

0

f̃(x, y) dy + 2ξ

∫ 0

−∞
f̃(x, y) dy

= 2

∞∫
0

f̃(x, y)dy − 2ξ

∞∫
0

f̃(x, y)dy + 2ξ

0∫
−∞

f̃(x, y)dy

Due to the symmetry property of the Gaussian density
this integral can be simplified, which yields

fx(x) =
∫ ∞

−∞
f̃(x, y) dy = N (x− x̂, Cx) .

Similar calculations for x ≤ 0 justify the choices for ξ1

and ξ2. This proves Theorem 3.1. �

This simple parameterized joint density is depicted
in Fig. 2 (a). It is possible to extend this type of
parameterized joint density to more complex ones, i.e.,
the joint density could be “sliced” into more pieces, as
shown in Fig. 2 (b).

3.2 Sum of Positive and Negative
Gaussians

A second type of non-Gaussian density with Gaussian
marginals could be constructed by the sum of positive
and negative jointly Gaussian densities. The mean val-
ues, variances, and weighting factors of the individual
joint densities need to be chosen appropriately, i.e., in
such way that the joint density is both a valid density
function and the marginals are Gaussian densities. For
the sake of simplicity we consider only three compo-
nents in the following theorem.

THEOREM 3.2 Given two Gaussian densities fx(x) =
N (x− x̂, Cx) and fy(y) = N (y − ŷ, Cy), the unknown
joint density f(x, y) can be defined by the sum of pos-
itive and negative Gaussians according to

f(x, y) = f1(x, y) + f2(x, y)− f3(x, y) , (4)
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Figure 3: Joint density consisting of the sum of pos-
itive and negative Gaussian densities, (a) three com-
ponents, (b) eight components.

where the individual densities f1(x, y), f2(x, y), and
f3(x, y) are given by

f1(x, y) = N (x− x̂∗, Cy) N (y − ŷ, Cx) ,
f2(x, y) = N (x− x̂, Cx) N (y − ŷ∗, Cy) ,
f3(x, y) = N (x− x̂∗, Cy) N (y − ŷ∗, Cy) .

To assure that the parameterized joint density
f(x, y) is a valid joint density, the mean values and
variances of the individual joint densities need to be
chosen so that f(x, y) ≥ 0 holds.

Proof. The marginal density fx(x) can be derived by
direct integration over y according to

fx(x) =
∫

IR

f(x, y)dy

=N (x− x̂∗, Cy) +N (x− x̂, Cx)−N (x− x̂∗, Cy)
=N (x− x̂, Cx) .

Similar calculations for the marginal density fy(y) jus-
tify the choices for individual mean values and vari-
ances of the parameterized joint density, and finally
conclude the proof. �

Fig. 3 (a) visualizes the simplest case for this type
of parameterized joint density consisting of three com-
ponents. It is possible to extend this type to joint den-
sities with more components, for example with eight
components as depicted in Fig. 3 (b).

3.3 Mixtures of Correlated Jointly
Gaussian Densities

In this section, we derive a parameterized joint density
with practical relevance, which is based on the inte-
gral of jointly Gaussian densities with different clas-
sical correlation coefficients. The weighting factors of
the individual joint densities need to be chosen in such
a way that the marginals are represented by the given
Gaussian marginal densities.

THEOREM 3.3 Given two Gaussian marginal densi-
ties fx(x) = N (x̂, Cx) and fy(y) = N (ŷ, Cy), a family
of possible joint densities, depending on the generalized
correlation function ξ(r), can be parameterized by

f(x, y) =
∫ 1

−1

ξ(r)N
([

x− x̂
y − ŷ

]
,C(r)

)
dr , (5)

where ξ(r) is defined on r ∈ [−1, 1].
The parameterized continuous Gaussian mixture

f(x, y) is a valid normalized density function for

ξ(r) ≥ 0 ,

∫ 1

−1

ξ(r)dr = 1 .

Proof. The results directly follow from the integra-
tion of the joint density f(x, y) over y and x, respec-
tively. Hence, the marginal density fx(x) can be de-
rived by direct integration of the joint density f(x, y)
over y according to

fx(x) =
∫

IR

∫ 1

−1

ξ(r)N
([

x− x̂
y − ŷ

]
,C(r)

)
dr dy

=
∫ 1

−1

ξ(r)
∫

IR

N
([

x− x̂
y − ŷ

]
,C(r)

)
dy dr .

With reference to [3] it can be shown that the solu-
tion of the integral does not depend on the correlation
coefficient r at all. Thus, it can easily be obtained

fx(x) =
∫ 1

−1

ξ(r)N (x− x̂, Cx) dr = N (x− x̂, Cx) ,

which justifies the condition
∫ 1

−1
ξ(r)dr = 1. Similar

calculations for the marginal density fy(y) leads to the
same condition and finally concludes the proof. �

Two examples for this type of parameterized joint
density are depicted in Fig. 4.

In the following, a rough idea is shown on how this
type of parameterized joint density can be used for the
development of a novel estimator for an imprecisely
known correlation coefficient. Consider two marginal
densities fx(x) and fy(y). Let us assume that just the
mean value r̂ and variance Cr of their classical corre-
lation coefficient r is known. In this case, a density
function ξ(r) for the correlation coefficient can be de-
fined according to

ξ(r) = cnN (r − r̂, Cr) r ∈ [−1, 1] ,

with normalization constant cn

(cn)−1 =
∫ 1

−1

N (r − r̂, Cr) dr .

The density function ξ(r), which is depicted in the
right column of Fig. 4 (b), can be regarded as a gener-
alized correlation function. That means, this function
contains all information about the correlation struc-
ture. Using this information, the joint density f(x, y)
can be parameterized by

f(x, y) =
∫ 1

−1

cnN (r − r̂, Cr) N (z,C(r)) dr . (6)
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Figure 4: Joint density consisting of sum of corre-
lated Gaussian density for different generalized corre-
lation function ξ(r), (a) ξ(r) = 7

2 r6, and (b) ξ(r) =
N (r − r̂, Cr).

It is possible to use this parameterized joint density
as the estimated joint density fe

k(xk, uk) in (2). The
predicted density fp

k+1(xk+1) depending on the para-
meters of the generalized correlation function ξ(r) can
then be derived. This idea could lay the foundation for
a novel filtering technique taking into account the im-
precisely known classical correlation coefficient r and
gives a bounding density for the prediction result. The
actual calculation of a bounding density is left for fu-
ture research work.

4 Gaussian Mixture Marginals
for Nonlinear Estimation

So far, we have only considered parameterized joint
densities with Gaussian marginals. In this section, we
generalize these ideas to the parameterization of joint
densities with Gaussian mixture marginals. Gaussian
mixtures consist of the convex sum of weighted
Gaussian densities. Due to the fact that Gaussian mix-
tures are universal approximators, they are well-suited
for nonlinear estimation problems [11].

Thus, finding a parameterization for the imprecisely
known joint density with Gaussian mixture marginals,
it is possible to develop a novel filtering technique,
which could possibly cope with both nonlinear system
models and nonlinear measurement models in a robust
manner. As it was mentioned in the introduction, the
challenge of a robust decentralized estimation based on
Gaussian mixtures is that the classical correlation co-
efficient r is not a sufficient measure for the stochastic
dependency of Gaussian mixtures. Therefore, we de-
fine in this section a generalized correlation parameter
vector ξ for Gaussian mixtures. Finding bounding den-
sities, which are compatible with all stochastic depen-
dency structures in terms of ξ, it is possible to derive
a robust filtering technique for distributed nonlinear
problems.

For the sake of simplicity consider two scalar

x

y

w12 w22

w11 w21

ŷ2

Cy,2

wy,2

ŷ1

Cy,1

wy,1

x̂2 Cx,2 wx,2x̂1 Cx,1 wx,1

Figure 5: Notation for marginal densities and joint
density for Gaussian mixtures.

Gaussian mixtures marginals according to

fx(x) =
m∑

i=1

wx,iN (x− x̂i, Cx,i) , (7)

fy(y) =
n∑

i=1

wy,iN (y − ŷi, Cy,i) , (8)

where x̂i and ŷi are the individual means, Cx,i and Cy,i

are the individual variances, and wx,i and wy,i are the
individual weighting factors, which must be positive
and sum to one. The notation for the marginals and
their joint density are visualized in Fig. 5.

THEOREM 4.1 Given two Gaussian mixture marginal
densities fx(x) and fy(y), a family of possible joint
densities f(x, y) depending on the weighting factors wij

is defined by

f(x, y) =
m∑

i=1

n∑
j=1

wij N
([

x− x̂i

y − ŷj

]
,Cij(rij)

)
. (9)

To assure that the parameterized Gaussian mixture
f(x, y) is a valid normalized density function, the
weighting factors wij must be positive and sum to one

wij ≥ 0 ,
m∑

i=1

n∑
j=1

wij = 1 . (10)

In addition, the weighting factors must satisfy
n∑

j=1

wij = wx,i ,
m∑

i=1

wij = wy,j , (11)

to ensure that the parameterized joint density f(x, y) is
a valid joint density for the marginal density functions
fx(x) and fy(y).

Proof. These properties and conditions can be
proven by showing that the marginal densities of
f(x, y) are represented by fx(x) and fy(y), given by
(7) and (8), respectively. The marginal density fx(x)
can be derived by direct integration over y according
to

fx(x) =
∫

IR

m∑
i=1

n∑
j=1

wij N
([

x− x̂i

y − ŷj

]
,Cij(rij)

)
dy

=
m∑

i=1

n∑
j=1

wij

∫
IR

N
([

x− x̂i

y − ŷj

]
,Cij(rij)

)
dy
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Figure 6: (a) Gaussian mixture marginal densities with two individual components (wx,i = wy,i = 0.5), fx(x)
with x̂1 = −3, x̂2 = 1, Cx,1 = 2, Cx,2 = 1.6, and fy(y) with ŷ1 = −4, ŷ2 = −1, Cy = 2.1, Cy = 1.4.
Parameterized joint densities for various generalized correlation parameter ξ, (b) ξ = 0, (c) ξ = −1, (d) ξ = 1.

Refering to [3] it can be shown that the integral
solution does not depend on the correlation coefficient
rij at all. Thus,

fx(x) =
m∑

i=1

n∑
j=1

wij N (x− x̂i, Cx,i)

can easily be obtained. Now, it is obvious that for the
condition

∑n
j=1 wij = wx,i this leads to the desired

Gaussian mixture marginals

fx(x) =
m∑

i=1

wx,iN (x− x̂i, Cx,i) .

Similar calculations for marginal density function fy(y)
leads to the desired condition

∑m
i=1 wij = wy,j . This

concludes the proof. �

For the following calculations it is more convenient
to rearrange the weighting factors of the joint Gaussian
mixture density wij from matrix form to vector form
according to

w =
[
w11 · · · w1n, w21 · · · w2n, · · · wmn

]T

The weighting factors of marginals are given by

wx =
[
wx,1 · · · wx,m

]T
,

wy =
[
wy,1 · · · wy,n

]T
.

The conditions (11) for a valid joint density f(x, y)
with marginals fx(x) and fy(y) can be expressed by a
linear equation, which transforms weighting factors of
joint density to weighting factors of marginals. This
linear transformation is given by

Tw =
[
wx

wy

]
.

Due to the fact that the matrix T ∈ IR(n+m)×n m in
general is not a square matrix and does not have full
rank, there exists a null space (kernel) kerT, which is
given by

(kerT)w = ξ .

The null space kerT is spanned by the free parameter
vector ξ. Thus, for the calculation of valid weighting
factors w we propose following Lemma.

LEMMA 4.2 The weighting factors w of the joint den-
sity f(x, y) can be derived according to

w = T†e

wx

wy

ξ

 , Te =
[

T
kerT

]
,

where Te describes a unique transformation of weight-
ing factors for valid joint densities to weighting factors
of given marginal densities. The pseudo-inverse is de-
noted by T†e.

Similar to the other types of parameterized joint
densities the free parameter vector ξ can be regarded
as a kind of generalized correlation parameter for
Gaussian mixtures. This parameter vector needs to
be specified in order to define the joint density f(x, y)
uniquely.

Here, the individual components of the Gaussian
mixture are assumed to be uncorrelated, i.e., rij = 0.
Thats why the resulting generalized correlation vector
ξ is derived only by the weighting factors w; and not
the correlation coefficients rij .

Example 4.1 Now, we will consider possible joint den-
sities f(x, y) for two given Gaussian mixture marginals
fx(x) and fy(y), depicted in Fig. 6 (a). The weighting
factors for components of the joint density are obtained
by

w11

w12

w21

w22

 =
1
8


3 −1 3 −1 −2

−1 3 3 −1 2
−1 3 −1 3 2

3 −1 −1 3 −2

 ·


wx,1

wx,2

wy,1

wy,2

ξ

 ,

where ξ is the free parameter. Possible joint densities
for various parameters ξ are depicted in Fig. 6(b)–(d).

Furthermore, it is possible to combine all the types
of parameterized joint densities introduced in this pa-
per. The most relevant combination is applying the
mixtures of correlated jointly Gaussian (Sec. 3.3) to
the individual components of a Gaussian mixture. For
simplicity we consider the previous example and as-
sume the generalized correlation function ξij(r) for the
ij-th component to be given by

ξij(r) = δ(r − α) ,

where δ is the Dirac delta distribution and α denotes
the classical correlation coefficient. In Fig. 7 the para-
meterized joint density is depicted for different α and ξ.



fx(x) fy(y) fx(x) fy(y)

(a) (b)

Figure 7: Combination of two types of parameterized
joint densities. (a) ξ = −1, α = −1, (b) ξ = 1, α = 1.

It turns out that in the case of α = −1 and ξ = −1 the
two considered random variables, which are described
by Gaussian mixtures, are fully correlated, i.e., similar
to the Gaussian case r ⇒ −1.

Similar to the previous example and with refer-
ence to (2), let us consider possible joint densities
fe

k(xk, uk) for two given Gaussian mixture marginals,
fe

x(xk) and fe
u(uk). The Gaussian mixtures consisting

of three components is visualized in Fig. 8 (a). It
turns out that the free parameter vector is given by
ξ = [ξ(1), . . . , ξ(4)]T , which completely describes the
stochastic dependency between the random variables
xk and uk.

In Fig. 9 (a)–(d) the parameterized joint density is
depicted for variation of the individual free parameters
ξ(i) from their minimum value to their maximum value,
respectively.

In order to visualize that all possible joint densities
can be described just by the generalized correlation
parameter vector ξ, various joint densities are depicted
in Fig. 10 (a)–(d).

Furthermore, the predicted density fp
k+1(xk+1) de-

pending on the generalized correlation parameter vec-
tor ξ can be derived, which is shown in the lower row
in Fig. 9 (a)–(d) and Fig. 10 (a)–(d).

For a next step toward a nonlinear decentralized
filtering technique robust against unknown correlation
it would be necessary to find a bounding density which
somehow contains the density functions of all possible,
regarding ξ and/or ξ(r).

5 Conclusion and Future Work

This paper focuses on the parameterization of differ-
ent types of joint densities both with Gaussian mar-
ginals and Gaussian mixture marginals. It is shown
that assuming a specific stochastic dependency struc-
ture these joint densities contain all information about
this dependency in terms of a generalized correlation
parameter vector ξ and/or a generalized correlation
function ξ(r). Unlike the classical correlation coef-
ficient r the generalized correlation parameter vector
ξ is a sufficient measure for the stochastic dependency
between two random variables represented by Gaussian
mixtures.

More detailed prediction results and measurement
results depending on the generalized correlation para-
meter will be covered in a forthcoming paper. Finding
a bounding density fulfilling the stochastic dependency

constraints, and thus containing all possible values of
the generalized correlation parameter ξ, is left for fu-
ture research work; a possible direction for solving this
problem can be found in [10]. It is obvious that once
such a bounding density is found, a filtering technique
can be derived, which can cope with nonlinear mod-
els and is robust against imprecisely known stochastic
dependencies.
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Figure 8: (a) Gaussian mixture marginal densities fe
k(xk) and fe

k(uk), and (b) their joint density f(xk, uk) for
the uncorrelated case, i.e. ξ(i) = 0, (c) predicted density fp

k+1(xk+1).
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Figure 9: Parameterized joint density f(xk, uk) and predicted density fp
k+1(xk+1) for variation of the individual

free parameter ξ(i) from their minimum values to their maximum values, ξ(i) = 0 except (a) ξ(1) = −1/3 . . . 2/3,
(b) ξ(2) = −1/3 . . . 2/3, (c) ξ(3) = −1/3 . . . 2/3, and (d) ξ(4) = −1/3 . . . 2/3.
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Figure 10: Parameterized joint density f(xk, uk) and predicted density fp
k+1(xk+1) for various free parameter

vectors, (a) ξ = [23 , 1
3 , 1

3 , 2
3 ]T , (b) ξ = [− 2

3 ,− 1
3 ,− 1

3 , 1
3 ]T , (c) ξ = [13 , 2

3 , 2
3 , 1

3 ]T , and (d) ξ = [13 ,− 1
3 ,− 1

3 ,− 2
3 ]T .




