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Summary. Indoor positioning approaches based on communication systems typi-
cally use the received signal strength (RSS) as measurements. In order to work prop-
erly, such a system often requires many calibration points before its start. Based on
theoretical propagation models (RF planning) and on self-organizing maps (SOM)
an adaptive approach for Simultaneous Localization and Learning (SLL) has been
developed. Applying SLL, a self-calibrating RSS-based positioning system with high
accuracies can be realized without the need of cost intensive calibration measure-
ments during system installation or maintenance.

The main aspects of SLL are addressed as well as convergence properties and sta-
tistical conditions for successful use. Results for real world DECT and WLAN setups
are given, showing that the localization starts with a basic performance slightly bet-
ter than Cell-ID, finally reaching the accuracy of pattern matching using calibration
points.

1 Introduction

Localization is almost a synonym for the ubiquitous Global Positioning Sys-
tem (GPS). Within the car navigation systems GPS can successfully be ap-
plied [17]. Unfortunately GPS does not achieve the same accuracy in indoor
or campus environments as in outdoor due to signal attenuation and multi-
path propagation The indoor localization systems can be classified in systems
using dedicated sensors and those that use existing infrastructure, as a com-
munication system. In the first category fall many systems like those which
make use of infrared beacons, e.g., the Active Badge location System [27],
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ultrasound time of arrival, e.g., the Active Bat System [10] and the Cricket
Location Support System [20], and received signal strength (RSS), e.g., the
LANDMARC [16] with RFIDs. In the second category, there are systems
based on GSM networks that combine the RSS with the time advance of mo-
biles terminals [12], use smart antennas to measure angles [14], or based on
WLAN / DECT networks measuring the RSS [1, 2, 22, 25, 26] or measuring
the propagation time [9]. There are still many other systems which use even
contact sensors and images retrieved from cameras. Those systems are most
suitable for robotics application.

For localization systems based on communication systems, the computa-
tion of location out of measured features can be done using theoretical prop-
agation models. The advantage of such solution is the low complexity due
to the absence of pre-calibration. The disadvantage of such systems is that
its accuracy is generally low, being more accurate only for special cases, e.g.,
measuring propagation time in Line of Sight (LOS) conditions [18, 19]. Un-
fortunately, this limits highly the solution applicability. Another approach is
the measurement of RSS and use pattern matching on pre-calibration mea-
surements. The achievable accuracy is suitable for localization of humans and
objects, but the pre-calibration and maintenance costs are high.

In this chapter a unsupervised learning algorithm is developed. The Simul-
taneous Localization and Learning (SLL) avoids the requirement for manually
obtained reference measurements using an initial propagation model with few
parameters, which can be adapted by a few measurements, like the mutual
measurements of the access points. Linear propagation models and more in-
volved dominant path models incorporating map information are applied for
the initialization. Thus, a feature map is obtained with the predicted RSS
measurements at the map grid points. After the initialization the operating
phase starts, which performs two tasks: localization and learning. Localiza-
tion is done by pattern matching using the feature map. In addition, the RSS
measurements are collected and used batch-wisely for learning. The learning
is a refinement of the feature map, so that it corresponds better to the reality,
therefore reducing the localization error. This new developed method uses a
modified Kohonen’s SOM learning algorithm. A closed form formulation for
the algorithm, as well as algebraic and statistical conditions that need to be
satisfied are given, deriving some convergence properties.

In Sect. 2 an overview of signal propagation models typically used for lo-
calization is given. Section 3 describes localization algorithms using the prop-
agation models. The SLL approach is first presented in Sect. 4 and tested in
different real world scenarios in Sect. 5.

2 RF Propagation Modelling

For RSS based indoor positioning system, it is important to know the RSS
distribution accurately. Typically, two kinds of approaches are used: model
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Fig. 1. (a) Spatial distribution of received power; (b) Temporal distribution of
received power at a fixed point

based and pattern matching. The model based approach assumes that the
propagation of radio signals follows a parameterized channel model. If the
parameters are known, the RSS distribution can be predicted. In contrast, a
pattern matching approach does not assume any prior information of radio
propagation. It measures received power at various sample points to construct
the radio distribution of the whole area. In the following these two categories
of approaches are discussed.

2.1 Characteristics of the Indoor Propagation Channel

The propagation of Radio Frequency (RF) signals can be modelled at two
scales. At large a scale the RSS decreases with the propagation distance. At a
small scale, obstacles in the propagation path (due to walls, windows, cabinets
and people), shadowing and multi-path effects cause a strongly varying RSS
on small distances. Due to the complexity of indoor environments, this effect
is unpredictable and typically modelled as a random variable.

Figure 1 shows an example of the spatial variation of the RSS in a real
scenario. In subplot (a) it can be observed that the RSS has a decreasing
trend, when the transmitter-receiver distance increases. This tendency is su-
perimposed with different distortions effects due to shadowing and fading. In
subplot (b) the time variation for the RSS measurement at a fixed position is
shown.

2.2 Parametric Channel Models

The following models use a parameterized description of the radio channel.
The parameters can be fit to a set of measurements so that the model is more
accurate.
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Fig. 2. Example of Linear Model and Piecewise Linear Model with 3 segments

Linear Model (LM)

The theoretical propagation in free space follows a linear decay of the received
power with distance on a logarithmic scale, [21]:

pr = p0 − 10 · γ · log

(

d

d0

)

, (1)

where pr is the received power in dBm as a function of distance d and p0 is
a constant term representing the received power in dBm at distance d0. The
model parameter γ is in free space equal with 2. In indoor environments γ
typically has a value between 2 and 6.

There are two ways to obtain the parameters of the LM: One way is to use
standard values found in literature. However, since radio properties in indoor
scenarios vary a lot, this approach may cause a large model error. Another
way is to use the values from several calibration points to tune the model.
With m calibration points, the linear model can be defined as a system with
m equations and two variables, the parameters p0 and γ, while d0 is fixed.
These parameters can be estimated using least squares optimization [24].

Piecewise Liner Model (PLM)

Another common model is the piecewise linear model (PLM) [8]. A PLM
is fitted to calibration measurements with N segments, with slopes given
by {γ1, · · · , γN}, specified by N − 1 breakpoints {d1, · · · , dN−1}. Different
methods can be used to determine the number and location of breakpoints [8].
Once these are fixed, the slopes corresponding to each segment can be obtained
by linear regression, similarly to the least square estimation used for the LM.
An example of LM and PLM is shown in Fig. 2.

2.3 Geo Map Based Models

The following models use also a parameterized description of the radio chan-
nel. Additionally, information about the environment geometry, i.e., a map,
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Fig. 3. Groups of Calibration Points with Different Number of walls

and physical properties are used with the measurements to fit the model pa-
rameters.

Multi-Wall Model (MWM)

In indoor environments, walls are the major obstacles and they cause large
attenuation of the RSS. In Fig. 3, the received signals in an indoor environment
are plotted. Additionally, the number of walls between the transmitter and
the receiver is shown. From the plot, we can see that at the same distance,
the lower received power typically refers to a high number of walls between
the transmitter and the receiver. To compensate the influence of walls, a new
channel model based on the building layout is needed.

One such model is named Multi-Wall Model (MWM) or Motley-Keenan
Model [21], described by the following equation:

pr = p0 − 10 · γ · log

(

d

d0

)

−
{∑

WAF if l < w
C if l ≥ w

, (2)

where γ and p0 have the same meaning as in the LM. WAF is Wall Atten-
uation Factor, which represents the partition value of the walls encountered
by a single ray between the transmitter and the receiver. l is the number of
walls encountered. The equation means that if the number of encountered
walls is less than w, the power loss by walls can be computed as the sum of
each WAF . And if the number of the encountered walls is more than w, the
maximum path loss takes the value C.

The key parameter in the multi-wall model is the WAF . This parameter
can either be set to a standard value or be estimated from the measurements
at calibration points. A lot of experiments and simulations are made to get
the value of WAF [6, 8, 15, 23]. These reported values differ due to the signal
frequency, the type, the material, the shape and the position of the walls.
Typically, some standard values, which average the results of several different
experimental environments, are used in the modeling. A table with standard
WAF values at 2GHz can be found at [21].
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If there are calibration data available, it is possible to obtain the mean
value of WAF from the real measurements by the regression estimation. As-
suming uniform WAF for each wall, (2) can be expressed as:

pr = p0 − 10 · γ · log

(

d

d0

)

−
{

l · WAF if l < w
w · WAF if l ≥ w

(3)

Using m calibration points, a system with m equations and three vari-
ables, the parameters p0, γ and WAF , can be resolved also by least square
estimation, similarly to LM.

Dominant Path Model (DPM)

The MWM only takes the direct ray between the transmitter and the receiver
into consideration. This will lead to an underestimation in many cases. Ray
tracing algorithms take into consideration every possible path between trans-
mitter and receiver, requiring a high computation effort. In Fig. 4, the BS
emits many possible rays to the receiver Rx. The direct path penetrates three
walls and some paths bounce, reflect and refract until reach Rx, each of them
with single contribution to the RSS that will be added by ray tracing. One
path particularly has the strongest contribution among all others, present-
ing the optimal combination of distance, number of walls crossed and other
attenuation factors. This is the dominant path.

The DPM [28] aims to find the dominant path, which could be a direct path
as well, and use this single contribution to estimate the RSS. This overcomes
the underestimation of only using the direct path and is considerably faster
than ray tracing. Refs. [24, 28] give the algorithm to find the dominant path,
which will not be described here.

2.4 Non-Parametric Models

Another radio map generation approach is based only on recording of cali-
bration data. Considering the propagation profile as a continuous function,
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then the calibration procedure is actually the sampling of this function at the
positions specified for the radio map. The task can be understood as a regres-
sion problem, i.e., to estimate a continuous function from a finite number of
observations.

The simplest way is to use a sampled radio map instead of a continuous one.
This approach only takes the calibration points in consideration, neglecting
other locations in the map. Therefore, estimated locations using matching
algorithms are also restricted to these calibration points or the interpolation
of them. Such radio map sampling is used in the pattern matching localization.

3 Localization Solution

Since the RSS vectors can be modelled as random variables, the statistical
theory can be used to solve the matching problem. Being x the location of
a mobile terminal, and p = [p1, · · · , pN ]T the vector with RSS from N BSs,
where {p1, · · · , pN} are the respective RSS values from BS1 to BSN . Then
the probability of being at the true location x given the measurement p is
expressed as Pr(x|p), which can be written using the Bayesian rule as:

Pr(x|p) =
Pr(p|x) · Pr(x)

∫

Pr(p|x) · Pr(x) dx
(4)

Usually the prior probability Pr(x) is set as uniformly distributed, assum-
ing that all positions are equally probable, hence independent of x. Then (4)
can be simplified as:

Pr(x|p) =
Pr(p|x)

∫

Pr(p|x) dx
(5)

The conditional probability Pr(p|x) is determined from the data stored in
the radio map. Using Pr(x|p) a location estimate of the of mobile terminal
can be obtained using Bayesian inference.

There are two common methods for solving Bayesian estimation prob-
lems. The first one uses the Minimum Mean Variance Bayesian Estimator
or Minimum Mean Square Error (MMSE) Estimator. This method gives an
unbiased estimator with minimum mean square error. Considering x as the
true location and x̂ as its estimate, the mean square error is written as

Cost =
∫ ∥

∥x − x̂
∥

∥

2

2
· Pr(x|p) dx. Making ∂Cost/∂x = 0, the best estima-

tion for x is given by:

x̂ = E[x|p] =

∫

x · Pr(x|p) dx, (6)

where E [x|p] is the expected value for x given p.
Another method uses the Maximum A Posteriori (MAP) estimator:

x̂ = arg max
x

Pr(x|p) (7)
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From (5) and taking into account that
∫

Pr(p|x) dx is a normalizing con-
stant, it follows that (7) can also be written as:

x̂ = argmax
x

Pr(p|x), (8)

which is also known as the Maximum Likelihood (ML) method.
In practice, an expression for Pr(p|x) is hard to model, so several simpli-

fying assumptions are made: First, the measurements from several BSs are
assumed independent so that Pr(p|x) can be factorized. Further on, it is as-
sumed that the measurements follow a Gaussian distribution. Then:

Pr(p|x) =

N
∏

n=1

1

σn

√
2π

exp

(

− (pn − p̄n)2

2σ2
n

)

, (9)

where p̄n is the mean RSS from BSn at position x, and σn is the standard
deviation at this position.

With these assumptions, the Maximum Likelihood solution becomes:

x̂ = arg min
x

N
∑

n=1

(

lnσn +
(pn − p̄n)2

2σ2
n

)

(10)

If the standard deviation σn for every position is constant, then (10) re-
duces to:

x = arg min
x

N
∑

n=1

(pn − p̄n)2 (11)

This equation describes the method known as Nearest Neighbor (NN),
which compares the distances in signal space between an input vector (here
as p) and each stored data (here the recorded radio map calibration data).
The nearest stored data to the input, i.e., with smallest distance in signal
space, is chosen as best match and the position of this data is returned as the
estimation for x. The advantage of this algorithm is that it does not require
any statistical prior knowledge of the calibration data since only the mean
is recorded. However, due to this simplicity, the accuracy is degraded if the
hypothesis of constant σ does not correspond to the measurements.

4 Simultaneous Localization and Learning

In order to work with a reasonable accuracy, pattern matching often requires
many measurements as a way to build a detailed feature map. Thus, the
calibration effort prior to system start (offline phase) is usually very time
consuming and expensive. The collection of measurements is labelled with the
true location where they were taken until the samples are significant enough
to represent the desired feature.
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For this reason, the research aiming at so called calibration free systems
has risen rapidly in the past few years. In [5] a first version of a new algorithm
was presented to reduce the calibration effort significantly: the Simultaneous
Localization and Learning (SLL). The SLL is a modified version of the Koho-
nen Self Organizing Map (SOM) [13] that can straightforwardly be used for
RSS-based localization in environments with already available infrastructure
as WLAN or DECT.

4.1 Kohonen SOM

SOMs are a special class of neural networks, which are based on competitive
learning. In a SOM, the neurons are placed at the nodes of a lattice that is
typically one- or two-dimensional. The neurons become selectively adapted to
various input patterns in the course of a competitive learning process. The
locations of the adapted, i.e., winning neurons become ordered with respect
to each other in such a way that a meaningful coordinate system for different
input feature is created over the lattice [13]. A SOM is therefore characterized
by the formation of a topological map of input patterns in which the spatial
locations of the neurons are indicative of intrinsic statistical features contained
in the input patterns [11].

The principal goal of Kohonen’s SOM is to transform an incoming signal
pattern of arbitrary dimension into a one- or two-dimensional (1D or 2D)
discrete map, and to perform this transformation adaptively in a topologi-
cally ordered fashion. This is achieved by iteratively performing three steps
in addition to the initialization: competition, cooperation and adaptation.
During the initialization the synaptic weights in the neural network are set,
typically using a random number generator. In the competitive step the win-
ning neuron i with the weight vector wi = [wi1, · · · , win] in the n dimensional
input space shows the smallest cost with respect to a given input feature vec-
tor ξ = [ξ1, · · · , ξn]T, that is, i = arg min{|ξ − wj |}, with the index j going
through all neurons in the lattice. The winning neuron will be the center for
the adaptation process.

The cooperation determines which neurons will be adapted together with
the winning neuron i. A neighbourhood function hij(k), dependent on the
discrete time step k, is used to find the neuron j close to the winner and
to weigh it accordingly with the distance to the winner in the lattice. The
amount of adaptation decreases monotonically with distance from the center
neuron, i.e., the winner.

A typical choice for the neighbourhood function at 1D problems is the
constant function, set to 1 for the winner and for an equal number of neigh-
bours, forward and backward (usually just 2 neighbours are taken). For two
or three dimensional maps the Gaussian function is usually chosen, so that:

hij(k) = η(k) · exp

(

−
(

dij

2 · σ(k)

)2
)

, (12)
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where η(k) is the learning rate, σ(k) is the effective width of the topological
neighbourhood, both dependent on k. dij is the distance from neuron j to
neuron i at the center. The adaptation law, given by

wj(k + 1) = wj(k) + hij(k) ·
(

ξ(k) − wj(k)
)

, (13)

ensures that the response of the winning neuron to the subsequent application
of a similar input pattern is enhanced [27].

The adaptive process consists of two phases: the self-organizing or order-
ing phase and the convergence phase. In the ordering phase the topological
ordering of the weight vectors takes place. During this phase the learning rate
and the neighbourhood area should decrease. The neighbourhood area goes
from complete coverage to a few neurons or even to the winning neuron itself.
In the convergence phase the fine tuning of the feature map takes place in
order to provide an accurate statistical quantification of the input space. The
learning rate should stay constant or it could decay exponentially [11].

The Kohonen algorithm is surprisingly resistant to a complete mathemat-
ical study (cf. [7]). The only thorough analyses could be achieved for 1D case
in a linear network. For higher dimensions, the results are only partial.

4.2 Main Algorithm

The SLL is an iterative algorithm that can be understood as the following
scenario describes: a measurement is taken and then used to locate a user,
based on a coarse feature map. The found location is then used as center for
a learning step, where the neighbourhood surrounding this center is adapted
towards the measurement. These operations continue repeatedly at each new
measurement, improving the feature map.

The modelling used for the SLL originally assumed that the feature map
contained the mean value of RSS of each BS as a function of position. This
feature map was then termed radio map [5]. However, the SLL is by no means
constrained to this feature only. Other features with spatial gradients, like
propagation times or angles of arrival, could be used as well.

The model pk(x) describes the RSS propagation through space at the
discrete time k. The dimension of pk(x) defines the number of BSs considered
for the localization scenario. x defines a position in some fixed reference frame.
p0(x) represents the initial model at the initial time k = 0. The measurement
pM is associated to xM, a (not necessarily known) measurement position.
pM,k is the measurement taken at the discrete time k.

Starting from this model, the SLL is defined by the following feedback or
update law (implicitly described in [5]):

pk+1(x) = pk(x) + fc,k+1 ·
(

pM,k+1 − pk(x)
)

, (14)

where fc,k = f(xc,k, x, κ, φ) is a function of the centering position xc,k

at time k, of x, and of the SLL control variables κ and φ. fc,k spatially
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bounds and weights the update based on the difference between the actual
measurement pM,k+1 and the present model pk(x).

fc,k can have different forms, like a polynomial or Gauss distribution.
Its important characteristics is that it is symmetric around xc,k and has its
magnitude bounded by the interval [0;κ], with κ < 1. If the distance from x

to xc,k is greater than φ then fc,k = 0. The function fc,k reaches its maximum
at xc,k with value κ, and falls to smaller values until the boundary defined
by φ. The location xc,k = xc,k(pM,k) corresponds to the measurement pM,k.
The determination of xc,k depends on the localization technique chosen (see
Sect. 3). Fig. 5 shows a qualitative 1D example for the function fc,k and the
meaning of the function arguments.

4.3 Comparison between SOM and SLL

It is noteworthy the resemblance between (13) and (14); in fact the update
law for SLL is the same as for SOM. However, the SOMs exist over a discrete
lattice with a finite number of neurons, as the SLL can work in a continuous
space (in which case the concept for a single neuron vanishes, since there
are infinite neurons). The neighbourhood function hij becomes the weighting
function fc,k and the input vector ξ becomes the measurement vector pM.

The SLL starts with a coarse initial model, which at least presents some
plausible physical property (for example, a radio map where the maximum
RSS is placed at the BS position and decays with increasing distance). This
ensures that the initial model can be used for localization queries, even if it
is not very accurate. Proceeding with the analogy to SOM, the initial model
represents an already ordered state, as the feature map is never initialized
with random values, therefore only the cooperation and convergence phases
are of interest for the SLL.

The localization has also an important role for the SLL. Since it determines
the location where the update will be made, if the localization delivers a xc

very far from the (usually) unknown measurement position, the SLL will fail
to improve the initial model.

In [3, 4] some algebraic properties as well as the statistical conditions for
a successful use of SLL were presented. The analysis was then focused on the
1D problem. Now some generalizations for more dimensions are presented.
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4.4 Convergence Properties of SLL

The recursive SLL formula given in (14) can be written in closed form:

pk(x) = p0(x) +

k
∑

j=1



fc,j ·
(

pM,j − p0(x)
)

k
∏

i=j+1

(1 − fc,i)



 , (15)

with
b
∏

i=a

(·) = 1, ∀a > b, (16)

as it has been proved in [3]. Defining the utility functions:

Fk =
k
∑

j=1



fc,j

k
∏

i=j+1

(1 − fc,i)



 , (17)

and

PM,k =

k
∑

j=1



fc,j · pM,j

k
∏

i=j+1

(1 − fc,i)



 . (18)

Then (15) can be compactly written as:

pk(x) = p0(x) − p0(x)Fk + PM,k. (19)

Limit Value

In [3, 4] it has been proved that limk→∞ Fk = 1 inside a closed interval for
the one dimensional case. This result can be extended to higher dimensions,
as long as the weighting function fc,k has the properties explained in the last
section and that the series xc,k, where the fc,ks are centered, cover repeatedly
the entire closed interval.

PM,k, in contrast to Fk, cannot reach a steady state. Each measurement
pM,j, as it appears in (18), pushes PM,k towards pM,j inside the hypersphere
centered in xc,j and with radius φ . Since the measurements vary through
space, PM,k continuously changes.

In this way, when k → ∞, pk(x), as given in (19) tends to:

lim
k→∞

pk(x) = p0(x) − p0(x) + lim
k→∞

PM,k = lim
k→∞

PM,k (20)

This shows an important result of SLL: Eventually, the initial model p0(x)
will be replaced entirely by PM,k, a term that depends on the measurements
and on the location estimation. Since p0(x) disappears with increasing itera-
tions, there is no need to make the initial model extremely precise. It suffices
to start with a coarse and hence relatively simple model, e.g. linear model. The
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requirement for feature map initialization is a reasonable location estimation.
Another effect of SLL is that old measurements have a smaller contribution
to PM,k than newer ones. This can clearly be seen in (18), where the pM,js
are multiplied by products of (1 − fc,i) ≤ 1 ∀i. The older the measurements
are, the bigger is the number of terms in the product, which will tend to
zero. The consequence is that the model is always updated, as long as new
measurements are considered and as the control parameters are non-zero.

Measurement noise

Assuming that each measurement pM is corrupted by stationary Gaussian
noise ζ(x) with mean µ(x) and variance σ2(x), it is desirable to know the
remaining effect of this noise after some iterations of the SLL.

Returning to (14), the recursive equation regarding the noise ζk+1 =
ζ(xM,k+1) at the new measurement position xM,k+1 becomes:

pk+1(x) = pk(x) + fc,k+1 ·
(

pM,k+1 + ζk+1 − pk(x)
)

, (21)

which, similarly to (15), leads to the closed form:

pk(x) = p0(x) +

k
∑

j=1



fc,j ·
(

pM,j + ζj − p0(x)
)

k
∏

i=j+1

(1 − fc,i)



 (22)

The noise term can be separated from (22) defining the utility function

Z(x, xM,1:k, xc,1:k) = Zk =

k
∑

j=1



fc,j · ζj

k
∏

i=j+1

(1 − fc,i)



 , (23)

such that the following short form is attained using (17) and (18):

pk(x) = p0(x) − p0(x)Fk + PM,k + Zk, (24)

which corresponds to (19) with the extra term Zk modelling the influence
of the measurement noise. It is important to note that Zk depends not only
on the considered location x, but also on the sequence of true measurement
locations, defined by xM,1:k = {xM,1, · · · , xM,k} as well as on the sequence of
estimated locations, defined by xc,1:k = {xc,1, · · · , xc,k}, where the weighting
functions are centered.

The similarity between PM,k in (18) with Zk in (23) is notable. They
differ only in the scalar term introduced with new iterations: i.e., pM,j and
ζj , respectively.

Zk cannot reach a steady state for the same reason as PM,k. However, de-
parting from the assumption that each ζj is an independent Gaussian random
variable, it is possible to calculate expectations of mean and variance of Zk

based on the mean µj and variance σ2
j of each ζj .
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For one particular fixed point xf, (23) shows that Z(xf, xM,1:k, xc,1:k) =
Zk(xf) is formed as a weighted sum of random variables. And therefore, the
following properties for linear operations on independent random variables
can be used, provided that a and b are scalars:

mean{a + bζi} = a + bµi mean{ζi + ζj} = µi + µj

var{a + bζi} = b2σ2
i var{ζi + ζj} = σ2

i + σ2
j

In this way, using the recursive formulation for (23):

Zk+1(xf) = Zk(xf) · (1 − fc,k+1) + fc,k+1 · ζk+1, (25)

setting mean{Zk(xf)} = MZ(xf, xM,1:k, xc,1:k) = MZ,k(xf) and var{Zk(xf)}
= S2

Z(xf, xM,1:k, xc,1:k) = S2

Z,k(xf), and using the properties above listed, it
is possible to express the mean of Zk(xf) recursively as:

MZ,k+1(xf) = MZ,k(xf) ·
(

1 − fc,k+1(xf)
)

+ fc,k+1(xf) · µ(xM,k+1), (26)

and similarly for its variance as:

S2

Z,k+1(xf) = S2

Z,k(xf) ·
(

1 − fc,k+1(xf)
)2

+ f2
c,k+1(xf) · σ2(xM,k+1) (27)

Comparing (26) with the recursive formulation for Fk in [3], it follows that
(26) has also the form of an exponential filter with the variable parameter
fc,k+1(xf) and with the variable input µ(xM,k+1). limk→∞ MZ,k(xf) = µ

holds for constant µ(xM,k) = µ ∀k, constant measurement location xM, and
constant estimated location xc.

Notwithstanding the similarity between (26) and (27), the latter cannot
be treated as an exponential filter due to its quadratic terms. Even if σ2

is constant in all space, S2

Z,k(x) will vary according to the sequence of xcs.

However, S2

Z,k(x) is upper-bounded by a maximum value. This maximum
can be estimated considering a constant update center, i.e., xc,k = xc for all
k and assuming space-invariant and therefore also time-constant noise, i.e.,
σ2(x) = σ2 and µ(x) = µ.

Since xc,k is constant in time, so is fc,k = fc too for all k (assuming that
neither κ nor φ vary with time). The recursive equation for S2

Z,k+1 can be
written as:

S2

Z,k+1 = S2

Z,k · (1 − fc)
2 + f2

c · σ2 (28)

Assuming a steady state, i.e., S2

Z,k+1 = S2

Z,k = S2

Z,steady,

S2

Z,steady =
f2
c · σ2

1 − (1 − fc)2
=

fc · σ2

2 − fc

, (29)

holds. In particular at the position x = xf = xc:

S2

Z,steady(xc) =
κ · σ2

2 − κ
, (30)

which is the maximum for this function.
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Considering that κ ∈ [0; 1], and that the upper bound is given by (30), it
is easy to verify that S2

Z,steady ≤ σ2. This indicates that the variance of Zk

at one particular position will be at most σ2, and that only if κ = 1.
The important result is the noise reduction property of SLL: by expo-

nential filtering and spatial weighting due to fc, the variance of the learned
radio map is reduced. At one particular position xf, this noise averaging is
achieved not only using the single measurements at xf, but also using the
noisy measurement of neighbouring positions (e.g. the measurement sequence
xM,1:k).

Limit Area for Perfect Localization

The concept of limit area appears if only one dimension in space is considered
and with perfect localization. The extension of this result in more dimensions
would result in limit hyper volumes and will not be treated here.

Perfect localization implies that, for a given measurement pM,k, the as-
sociated position xc,k corresponds exactly to the real measurement position
xM,k, i.e., xc,k = xM,k. The measurements follow a propagation law g:

pM(xM) = g(xM, pout, γ), (31)

where pout is the output power of a BS and γ is an attenuation factor. The
signal propagation is assumed to be monotonic, i.e., ∂g/∂x is always negative.
Without loss of generality, the BS is assumed to be placed on the left side of
the radio map such that the measurement at xf − φ is:

pM(xf − φ) = pM+ = g(xf − φ, pout, γ), (32)

being xf a fixed position and the measurement at xf + φ > xf − φ is:

pM(xf + φ) = pM− = g(xf + φ, pout, γ) < pM+, (33)

A perfect initialization means that the starting radio map at the instant
k = 0 has exactly the same propagation profile as the measurements. Hence,
the start model at some position xf is:

p0(xf) = g(xf, pout, γ) (34)

As the weighting function fc has a bounded support, the measurement
positions xM which can change the radio map at the considered position xf

belong to the interval [xf −φ; xf +φ]. Hence, there are two measurement cases
to consider:

If xM lies outside of the support of the weighting function f , i.e., xM /∈
(xf − φ; xf + φ), then fc,k+1(xf) = 0 and the update law in (14) results in
pk+1(xf) = pk(xf). In this case, at xf no update is made.

If xM ∈ (xf − φ; xf + φ) then fc,k+1(xf) ∈ (0; κ] and the update will cover
xf. Accordingly, the update law reduces the difference between the radio map



16 Henning Lenz, Bruno Betoni Parodi, Hui Wang, Andrei Szabo et al

at xf and the current measurement: |pk+1(xf) − pM,k+1| ≤ |pk(xf) − pM,k+1|.
Due to perfect initialization, for k = 0 the model will stay unchanged at xf

only if the measurement equals the radio map, i.e., pM = p0(xf) and xM = xf.
In this case no improvement can be accomplished since the radio map is
already perfect. For all other measurement values in the interval [pM+; pM−]
the model will be disturbed at xf towards the actual measurement. Since
pM,k+1 ∈ [pM+; pM−] and considering the assumed monotony, pk+1(xf) is also
limited by this interval. The maximal positive disturbance at xf is given by
pM+ and the maximal negative disturbance is given by pM−. pM+ or pM− can
be obtained, if and only if measurements are repetitively taken either at xf−φ
or at xf + φ, respectively.

Since there is no assumption on the placement of xf, this result can be
generalized to the whole radio map interval [0;L]. Thus a upper and lower
limit curve can be defined for the whole interval [0;L], where pk(x) is not
expected to cross. The radio map is restricted to a limit area, which is defined
by moving the true propagation model by φ to the left and to the right:

g(x + φ) ≤ pk(x) ≤ g(x − φ) (35)

If the measurements are not taken repeatedly at the same position, i.e.,
any position inside the interval [0;L] could be taken, then the radio map pk(x)
still stays inside the defined limit area.

Relaxing the initialization constraint, i.e., allowing an arbitrary wrong
initial model, it can be shown that with perfect localization and sufficient
iterations the model can be brought in finite time to the limit area.

The starting model can, e.g., be defined as:

p0(x) = g(x, pout + ∆pout, γ + ∆γ), (36)

where ∆pout and ∆γ are offsets on the output power and on the attenuation
factor, respectively. Considering xf, there are again two measurement cases to
be looked at. Case 1 behaves as with perfect initialization: if xM lies outside
of the support of the weighting function no update is made.

Considering the measurement case 2, the inequality |pk+1(xf)− pM,k+1| ≤
|pk(xf) − pM,k+1| still holds, but now p0(xf) is arbitrary wrong and a finite
number of iterations is required in order to bring the radio map at xf into
the limit area, defined before. In order to reach a radio map that is inside the
limit area, all positions on the radio map must be sufficiently updated and
therefore the measurements must be taken to cover the complete area.

Assuming that the initial radio map lies completely outside the limit area
and that the considered fixed position xf is given by xM, i.e., xf = xM ∀k, so
that pM(xf) is constant, then applying (36) on (19) at xf gives:

pk(xf) = g(xf, pout + ∆pout, γ + ∆γ) · (1 − Fk) + pM(xf) · Fk (37)

Due to the constant measurement positions and the exponential filter form
of Fk [3], the following relation holds:
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Fk(xf) = 1 − (1 − κ)k (38)

Hence, the influence of the initialization will decrease according to (1−κ)k

and the measurement term will reach pM(xf) according to 1−(1−κ)k. In finite
time pk(xf) will reach the bounded region defined by pM+ and pM−.

Assuming a linear propagation model, making pM(xf) = pout−γ·xf, making
g(xf, pout +∆pout, γ +∆γ) = pout +∆pout− (γ +∆γ) ·xf and setting pk(xf) at
the bounded region as pout − γxf + γφ, then substituting these terms in (37)
an inequality can be written:

(1 − κ)k ≤ γφ/(∆γxf − ∆pout), (39)

which can be used to determine the required convergence time k.
The analytical investigations show that both SLL parameters should be

small: φ should be small to enable a tight limit area; κ should be small to
reduce noise effects. Otherwise the larger the two parameters are, the faster
(large κ) and wider (large φ) the radio map learning is. A good trade-off
between accuracy and speed could be achieved by starting with larger param-
eters reducing them over time.

4.5 Statistical Conditions for SLL

In this section the influence of real localization on the performance of SLL
is investigated. After definition of real localization, statistical conditions for
convergence towards the analytical bound are identified using simulations.
The statistical conditions are confirmed by real world experiments.

Real Localization

When the localization is not perfect, then the estimated position xc, where
the update function fc is centered, is not guaranteed anymore to be the mea-
surement position xM.

Now xc,k is estimated using the measurement pM,k and a NN search (cf.
Sect. 3) on pk−1(x), looking for the best x = xc,k for whom pk−1(xc,k) is the
closest match for pM,k. For the simulations the NN algorithm is run on the
quantized 1D space comprised in the interval [0;L].

Simulations

In [5] first results with SLL applied to real world data have been shown.
In [3,4] an analysis was performed in order to reveal the statistical conditions
that need to be satisfied to reliably obtain a good result. For that, some
experiments were defined in order to determine those statistical conditions:

The experiments performed differ with respect to the distribution and the
order of measurements. From the analytical considerations it is known that
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Fig. 6. Radio map learning for sequentially ordered measurements. The distance
between two succeeding measurement positions is smaller than φ

both SLL parameters, κ and φ, should be small at the end of learning time to
achieve a high accuracy and larger at the beginning to achieve a fast learning.
To avoid a superposition of the statistical effects here investigated with effects
possibly introduced by time-varying parameters, κ and φ are set to fixed values
and kept constant over time.

The radio map is defined on the interval [0; 15] meters. The distance ∆x
between consecutive positions on the discrete radio map is 0.1m. The learn-
ing parameter κ is set to 0.5. The measurement positions xM are uniformly
distributed over space. The plots show the radio map at the initialization
(dashed lines) and at the end of simulation (bold lines), the measurements
(thin line or circles) and the limit area (dash dotted lines), with power as a
function of position. The plots also show the radio map error, defined as the
RMS error between the measurements (as labelled data and taken at once)
and the actual radio map at some instant k:

eRM,k =

√

(

pk(x) − pM(x)
)T(

pk(x) − pM(x)
)

/m, (40)

with m as the number of reference positions on the radio map.
Fig. 6 (a) and (b) depicts the experiment 1. The distance ∆xM between two

succeeding measurement positions is 0.1m, which results in 150 measurements.
φ is set to 1m, which is bigger than ∆xM. The initial radio map, as well as
the measurements are given by the linear equation p0(x) = pout − γ · x, with
pout = −20 dBm, γ = 2 dBm/m (since the initial radio map and measurements
are coincident, only the dashed line is plotted).

The measurements are sequentially ordered, taken at increasing coordinate
values, i.e., from 0 to L. The final radio map is given by the solid line after the
ordered sequence of measurements is cyclically used 70 times,which results in
10570 iterations. The black line shows the final radio map. Noteworthy is that
the slope of the final radio map depends directly on ∆xM.

eRM,k departs from 0, as the initialization is perfect and increases until a
steady state is reached. The small oscillations visible in the radio map error
are caused by the periodicity of the measurement locations. An equivalent
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Fig. 7. Radio map learning for sequentially ordered measurements. The distance
between two succeeding measurement positions is equal to φ

and complementary experiment, with the sequence of positions going from L
to 0 was shown in [3]. eRM for that case was exactly the same and the same
properties were verified.

An important feature of SLL, called edge effect, is shown in this figure.
Due to the sequence of narrowing close positions, almost the entire radio map
lay outside the theoretical limit area. However, because of the limitation of
the localization space between 0 and L together with the monotonicity of the
propagation function, the strongest RSS will be learned at x = 0 and the
weakest RSS will be learned at x = L, even for real localization. If the local-
ization tries to locate a measurement outside the given interval, the estimated
position is set to the corresponding edge.

Fig. 7 (a) and (b) shows the experiment 2, which has a slightly different
setup as the first one. Here, the distance between measurement positions ∆xM

has the same value as φ, set to 3m, i.e., xM = {0, 3, 6, 9, 12, 15}m, marked with
circles on the plot. The initial radio map and the measurements follow the
same linear propagation as in the last simulation, for which reason once again
only the dashed line is shown. Each measurement is taken repeatedly at the
same position 30 times before going to the next position, which gives 180
iterations.

The final radio map is given by stair steps, with a spacing of φ and achieved
with the measurement positions going from 0 to L. This result can be ex-
plained: At the beginning the radio map is perfect and real localization deliv-
ers the exact true position. After 30 updates at this same position a step is
formed, with wideness defined by φ. On the next measurement position the
real localization still delivers the exact position, since the radio map has not
been changed at this position by the last update series. A new step is formed
at this position, and one half of the previous step is entirely replaced by this
new one, the other half remains.

eRM,k again starts from 0 and rises, although the radio map remains inside
the limit area this time. This flattening effect, which forms the stair steps, is
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Fig. 8. Radio map learning for real world data

a direct result of (20), with the replacement of the initial model by a term
dependent on the measurements pMs.

In [3] another experiment shows that the uniform distribution of measure-
ment positions is a requirement in order to SLL works well. In this example, a
logarithmic propagation profile is learnt as a linear profile because the distri-
bution was uniform in respect to the measurements rather to their positions.

Yet in [3], a discontinuity imposed by a wall is smoothly learnt, showing
the versatility of the SLL.

1D Real World Experiment

A real world experiment with data collected at a LOS scenario has been
performed. Real world experiments are different from the previously described
simulations in the sense that real world signal propagation is more complex
and not necessarily linear but close to logarithmic as can be seen in Fig. 8. The
radio map has been initialized with a linear propagation profile, and with a
large offset, being far from the true measurements such that the improvement
by the SLL can be clearly seen.

Due to the findings in the previous subsection, SLL has been applied us-
ing a uniform distribution of measurement positions in combination with a
random order. ∆xM is set to 0.6m. Each of the 24 positions was measured
30 times, so that a representative collection of noisy measurements for each
position was achieved, being then randomly selected during 1000 iterations.

The final radio map (bold black line) shows that the real world propaga-
tion, which is close to logarithmic, is learned. The noise (see error bars) is
significantly reduced by SLL such that the final error is within the analytical
boundary, given by φ = 3m.

Hence, the found statistical conditions, that is, the uniform distribution
in space and random ordering of measurements, are verified by the real world
experiment.
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Fig. 9. Office plant with DECT (a) and WLAN (b) BSs

5 Results on 2D Real World Scenarios

Part of the proofs so far has only been shown for 1 dimensional examples,
and that for the same reason as the counterparts proofs for SOM: they are
unfeasible for more dimensions, although there always been practical examples
in 2 or 3 dimensions that do converge.

The SLL was tested in real world scenarios with successful results and
the results here verify the validity of this algorithm beyond theoretical set of
containments.

Since SLL is independent from the radio technology used, here are shown
examples with DECT and WLAN. The usual pattern matching with NN is
compared with SLL using the same validation data and for different initial
models.

The localization error ex is calculated as the mean localization error among
all validation positions at one given instant, i.e., the distance between the
location of all validation positions and their correspondent located positions
with the actual radio map pk(x).

The weighting function fc,k used for the 2 dimensional SLL has the form:

fc,k(x) =







κ ·
(

1 − dc,k(x)

φ

)

, if dc,k(x) ≤ φ

0 , if dc,k(x) > φ
(41)

with dc,k(x) =
√

(x − xc,k)T(x − xc,k) and which correspond to Fig. 5, only
that here fc,k has the shape of a cone.

The first test environment is an office plant with 9 DECT BSs installed
(marked as squares), as depicted in Fig. 9(a). There are 223 training po-sitions
(crosses) which are also used as validation points. The second test environment
is also an office plant with 14 WLAN BSs installed (squares), as seen in Fig.
9(b). There are 114 training positions (crosses) used also as validation points.
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Considering the DECT office plant, the 223 training positions were ran-
domly selected, with repetitions allowed, during 5000 iterations and their
measurements used as unlabeled input data for the SLL. The initial mod-
els considered were the LM and the DPM, as described in Sect. 2.

Figure 10 (a) shows the evolution of SLL for 5000 iterations, displaying ex

and the SLL parameters κ and φ. From this plot it can be stated that the linear
model is simpler than the DPM as the initial error is bigger for the first. In fact,
the DPM is more complex than the LM, since environment layout information
is built in the model. Nevertheless, the SLL steps improve both models, as it
can be seen with the fall of the localization error. A steady state is achieved
very near the theoretical lower bound for accuracy using common pattern
matching, which for this scenario is calculated as

√

ADECT/223 = 4.5m, where
ADECT is the area of the considered office facility.

For the WLAN office plant, the same proceeding as for the DECT set
up was used: 114 training positions were randomly selected, with repetitions
allowed, and their measurements were used as unlabeled input data during
5000 iterations. The initial models were again the LM and the DPM.

Figure 10 (b) shows the results of SLL for this setup. Here, the initial error
difference between the linear model and the DPM is even bigger. This can be
explained by the fact that the walls at this office are covered with metallic
foils that attenuates highly the signals. Accordingly the information about
the walls gives already a very good initial model leading to low localization
error prior to the start of learning (4.8m). Further learning by the SLL brings
improvement, as it can be seen with the fall of the localization error, but not
much. A steady state is again achieved near the theoretical accuracy lower
bound using common pattern matching, calculated as

√

AWLAN/114 = 3.3m,
where AWLAN is the area of the WLAN office facility.
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6 Conclusions

Indoor positioning based on communication systems typically use the RSS
as measurements. For proper operation such a system often requires many
calibration points before its start. Applying SLL a self-calibrating RSS-based
positioning system can be realized.

The algebraic and statistical conditions required to perform SLL have been
explored. Important properties of SLL are the replacement of the initial radio
map by the measurements, the reduction of noise by exponential filtering of
different measurements, and the existence of a boundary limit defined by the
adaptation width φ and by the profile of the signal propagation. φ and the
learning rate κ should be kept as small as possible in order to achieve a high
accuracy. A good trade-off between accuracy and speed can be achieved by
starting with larger parameters and reducing them over time.

The statistical conditions impose the use of a uniform distribution of mea-
surement positions over a limited interval and in combination with random
ordering. Such implementation can be easily achieved by starting the system
and performing SLL in batch, i.e., measurements are collected until the space
is sufficiently covered, then the measurement collection is randomly ordered
and SLL is performed to self-calibrate the RSS-based positioning system.

The initial model must be physically plausible and its complexity reflects
directly the starting accuracy. Nevertheless, SLL iterations will improve the
initial model and finally reach the accuracy boundary imposed by the mea-
surement position density. The advantage of SLL is significant: in contrast to
existing solutions no manual calibrations are required. The approach is self-
calibrating thereby realizing a RSS based localization system with truly low
costs for installation and maintenance.
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