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Abstract—This paper presents a method for the simultaneous
state and parameter estimation of finite-dimensional models of
distributed systems monitored by a sensor network. In the
first step, the distributed system is spatially and temporally
decomposed leading to a linear finite-dimensional model in state
space form. The main challenge is that the simultaneous state and
parameter estimation of such systems leads to a high-dimensional
nonlinear problem. Thanks to the linear substructure contained
in the resulting finite-dimensional model, the development of an
overall more efficient estimation process is possible. Therefore,
in the second step, we propose the application of a novel density
representation – sliced Gaussian mixture density – in order to
decompose the estimation problem into a (conditionally) linear
and a nonlinear problem. The systematic approximation proce-
dure minimizing a certain distance measure allows the derivation
of (close to) optimal and deterministic results. The proposed
estimation process provides novel prospects in sensor network
applications. The performance is demonstrated by means of
simulation results.
Keywords: Distributed systems, simultaneous state and pa-
rameter estimation, sensor networks, nonlinear estimation.

I. INTRODUCTION

Recent developments and miniaturization of sensor nodes
make it possible to use a wireless sensor network for mon-
itoring natural large-area phenomena. In such scenarios, the
individual sensor nodes are densely deployed, either inside
the phenomenon or close to it. By the distribution of local
information through the sensor network the phenomenon to be
observed can be coöperatively reconstructed in an intelligent
and autonomous manner [1], [2].

That means, the sensor network can be regarded as a huge
information field collecting data from its surrounding and then
providing useful information both to mobile agents and to
humans. Based on the extended perception provided by the
sensor network they would be able to accomplish certain tasks
more efficiently or could be warned in dangerous situations,
such as avalanches, forest fires or seismic sea waves. Examples
of such distributed physical quantities could be: temperature
distributions, chemical concentrations, fluid flows, structural
deflections or vibrations in buildings, and the surface motion
of a beating heart in minimally invasive surgery [3].

The main challenge in the estimation of distributed systems
by means of a sensor network is that the individual nodes
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Figure 1. Procedural methods for the state and parameter estimation of
distributed systems by means of a sensor network. (a) Strict separation of
the parameter estimation (identification phase) and the state estimation (re-
construction phase). (b) Simultaneous reconstruction of the entire distributed
system and identification of unknown parameters.

are able to measure the distributed physical quantity only
at discrete time steps and discrete spatial coordinates. That
means, no information between nodes and measurement steps
is available.

In the literature, various techniques can be found for the
interpolation and extrapolation of a random field, i.e., the re-
construction of the entire distributed system. The most popular
approach, especially in the geostatistic field, is the Kriging
interpolation [4]. This approach is based on a stochastic
model of the spatial dependency in terms of either vari-
ograms or mean and variance functions. Since the technique
relies solely on the measured data available, the interpolation
only of a realization of the distributed system is possible.
That means, uncertainties in the measurements cannot be
sufficiently considered. Another serious disadvantage is that
additional background knowledge, such as knowledge of the
physical characteristics of the distributed phenomena cannot
be considered. In the statistical community the same approach
is also known as Gaussian process regression [5], [6].

However, by exploiting additional background informa-
tion about the physical characteristics of the phenomenon
in form of a mathematical model, more accurate estimates
can be derived; especially between the individual nodes [7].
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Figure 2. Overview and components of the procedure for model-based simultaneous state and parameter estimation of distributed systems.

Furthermore, by means of the model-based approach, non-
measureable quantities can be identified, and thus additional
information about the phenomenon can be obtained, such
as material properties, sources of chemical concentrations
or leakages. That means, one of the most important issues
concerning distributed systems is the parameter estimation,
also refered to as parameter identification or inverse problem.
The main goal is the estimation of parameters in the system
model from observed measurements such that the predicted
state is close to the observations. The identification of such
system parameters becomes even more essential for sensor
network applications in harsh and unknown environments, and
for unpredictable variations of the distributed system to be
monitored. In Fig. 1, procedural methods for the state and
parameter estimation of distributed systems are visualized:
(a) the strict separation of the parameter estimation from the
state estimation and (b) the simultaneous estimation approach.

For the estimation of distributed systems, the conversion of
the mathematical description into a finite-dimensional model
was proposed by various authors [8]–[10]. The main chal-
lenge is that the simultaneous state and parameter estimation
of distributed systems leads to a high-dimensional strongly
nonlinear estimation problem. To cope with this difficulty,
special estimators based on linearizations at consecutive state
trajectories [11] or linearization of the system description [12]
were employed. Due to the estimation based on a linearized
model, accurate results and convergence are not assured.

Fortunately, the finite-dimensional model for the simulta-
neous state and parameter estimation of distributed systems
includes a large substructure with linear equations subject to
Gaussian noise. In this case, a decomposition of the entire
estimation problem into a (conditionally) linear and a nonlin-
ear problem allows for an overall more efficient estimation
process and more accurate results. The novelty of this paper
is the exploitation of this linear substructure for the estimation
of distributed system by means of a sensor network.

There are several methods to solve the combined lin-
ear/nonlinear estimation problem. The marginalized particle
filter [13], [14] integrates over the linear subspace in order
to reduce the dimensionality of the state space. Based on this

marginalization, the standard particle filter [15] is extended
by applying the Kalman filter to find the optimal estimate for
the linear subspace (which is associated with the respective
individual particles). Although the marginalized filter certainly
improves the performance in comparison with the standard
particle filter, some drawbacks still remain. For instance, in
order to avoid effects like sample degeneration and impover-
ishment, special measures have to be taken. More important, it
does not provide a measure on how well the true joint density
is represented by the estimated one.

In this paper, we present a novel estimator for the simul-
taneous state and parameter estimation of distributed sytems.
There are two key features leading to a significantly improved
estimation result: (a) the application of a special kind of
density for decomposing the estimation problem, and (b) a
systematic approximation method leading to (close to) op-
timal estimation results. To be more specific, as a density
representation a so-called sliced Gaussian mixture density is
employed. The simultaneous state and parameter estimation
based on such a density representation makes a systematic
estimation approach feasible for large-area distributed sys-
tems. Furthermore, the uncertainties occuring in the system
and arising from noisy measurements are considered by an
integrated treatment. By means of the model-based approach,
it is possible to identify and track unpredictable variations both
of the distributed system and of the sensor network itself.

The remainder of this paper is structured as follows: Sec-
tion II contains a rigorous formulation of the problem and
challenges of the simultaneous state and parameter estimation
of distributed systems. Section III is devoted to the spatial
and temporal discretization allowing the conversion of the
distributed system into a system description in state space
form. It turns out that the parameter identification of such sys-
tems usually leads to a high-dimensional nonlinear estimation
problem, however, with a linear substructure. Accordingly, in
Section IV, we introduce a novel estimator, the so-called Sliced
Gaussian Mixture Filter (SGMF), exploiting (conditionally)
linear substructures in general nonlinear systems. In Section V,
the performance of the proposed simultaneous estimation
approach is demonstrated by means of simulation results.
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Figure 3. Exemple of a two-dimensional distributed system: (a) Visualization of the considered two-dimensional L-shaped domain, assumed boundary
conditions, and system inputs. (b) Realization ep(x, y) of the distributed system with assumed true diffusion coefficient αtrue = 0.8 at time step k = 100. (c)
Estimation result p(x, y) derived with standard Kalman filter based on nominal diffusion coefficient αmodel = 0.4.

II. PROBLEM FORMULATION

The main goal is to design an efficient algorithm for the
simultaneous state and parameter estimation of distributed
systems. The evolution of a large number of physical, physio-
logical, and even ecological systems can be described in terms
of a set of partial differential equations.

In this paper, we consider only two-dimensional linear par-
tial differential equations for simplicity and brevity, although
similar expressions can be found for the multi-dimensional
case. In its most general form, the two-dimensional linear par-
tial differential equation without cross-derivatives is given by

L
(
p(z, t), s(z, t),

∂p

∂t
, . . . ,

∂ip

∂ti
,∇p, . . . ,∇jp

)
= 0 , (1)

where p (z, t) denotes the distributed state of the physical
system at time t and location z = [x, y] and the operator ∇j
is defined as ∇j := ∂j

∂xj + ∂j

∂yj . Furthermore, the source term
s(z, t), the distributed state p(z, t), and its derivatives are
related by a linear operator denoted by L( · ).

The aforementioned partial differential equation (1) can be
regarded as the infinite-dimensional form of the distributed
system. However, the application of a Bayesian approach for
the state and parameter estimation based on such system
description is a challenging task. For that reason, the partial
differential equation (1) is usually converted into a finite-
dimensional system in state space form.

Due to the nonlinear relationship between the distributed
system state p(z, t) and the unknown parameter vector
ηP (z, t) of the distributed system (1), the conversion leads
to a nonlinear finite-dimensional system model according to

xk+1 = ak

(
xk,η

P
k
, ûk

)
+wx

k , (2)

where xk contains the converted states characterizing the state
of the distributed system, ûk denotes the system input, and wx

k

represents the system uncertainties. The parameter vector ηP
k

contains all the unknown parameters to be identified in the
system model, such as unpredictable variations of physical
constants. In addition, unknown constraints at the boundary
of the distributed system and unknown system inputs could be
considered in the parameter vector ηP

k
. The system model and

examples of parameters to be estimated by a sensor network
are visualized in Fig. 2.

Besides, there is a measurement model describing the phys-
ical properties of the sensor network itself. In general, the
measurements ŷ

k
are related nonlinearly to the state vector

xk, according to

ŷ
k

= hk

(
xk,η

S
k

)
+ vk , (3)

where vk is the uncertainty in the measurement model. The
parameter vector ηS

k
contains unknown parameters to be

identified in the measurement model. Sensor bias and sensor
variances, for example, could be included in the unknown
parameter vector ηS

k
for the purpose of tracking physical wear

of the sensor nodes. Furthermore, one could imagine to collect
unknown node locations and correlations in the parameter
vector ηS

k
, see Fig. 2.

It is shown that for the simultaneous state and parameter
estimation of distributed systems, the nonlinear system func-
tion ak ( · ) includes a high–dimensional linear substructure.
This allows a decomposition of the total state vector zk to be
estimated into two substate vectors,

zk =
[
(xk)T (η

k
)T
]T

, (4)

with the high–dimensional state vector xk ∈ Rr (characteriz-
ing the conditionally linear system) and the lower–dimensional
parameter vector η

k
∈ Rs (characterizing the nonlinear part

of the system).
For the estimation of the total state vector zk, the decom-

position into a state vector xk and parameter vector η
k

is
exploited for the derivation of a more efficient estimator than
nonlinear estimators operating on the entire vector zk. This
decomposition of the estimation problem into a linear and
a nonlinear problem is mainly achieved by a novel density
representation, the so-called sliced Gaussian mixture density,
and the systematic approximation of arbitrary densities by this
representation.

Here, we emphasize that the estimation approach intro-
duced in this paper is not restricted to the application to
distributed systems. This approach can always be applied
when the simultaneous state and parameter estimation task
of a general dynamic system leads to a conditionally linear
system description. In the case of distributed systems, the
linear substructure can be significantly larger compared to the
nonlinear substructure.



III. SIMULTANEOUS STATE AND PARAMETER
ESTIMATION OF DISTRIBUTED SYSTEMS

In this section, we explain a method for the state and param-
eter estimation by means of discrete space-time measurements
performed by a sensor network. The methods introduced here
can be applied to the general case of linear partial differential
equations (1) and could even be extended to the multi-
dimensional case in a straightforward fashion. However, we
restrict our attention to a certain distributed system, the so-
called diffusion equation.

Example 1 (Diffusion equation)
Throughout this paper, we consider the following two-
dimensional linear partial differential equation,

L (p(z, t)) =
∂p(z, t)

∂t
− α(z, t)∇2p(z, t)− s(z, t) = 0 , (5)

where the diffusion coefficient α(z, t) could be both time and
space varying. The aim is the estimation of the solution p(z, t)
and the identification of the unknown parameter ηP = α(z, t) in
a simultaneous fashion.

A. Conversion of the Distributed System
The model-based state estimation of distributed systems

based on a distributed-parameter description is quite complex.
The reason is that for a Bayesian estimation method usu-
ally a lumped-parameter system description is used. To cope
with this problem, the system description is converted from
a distributed-parameter into a lumped-parameter form. This
conversion can be achieved by methods for solving partial
differential equations, such as finite-difference method [16],
the finite-element method, modal analysis [3] and finite-
spectral method [17].

The simplest method for the spatial and temporal discretiza-
tion of distributed system is the finite-difference method.
In order to solve the partial differential equation (5), the
derivatives need to be approximated with finite differences
according to

∂p(z, t)
∂t

≈
pi,jk+1 − p

i,j
k

∆t
,

∇2p(z, t) ≈
pi+1,j
k + pi−1,j

k + pi,j+1
k + pi,j−1

k − 4pi,jk
∆h2

,

where ∆t is the sampling time and ∆h denotes the spatial
sampling period. The superscript i, j and subscript k in pi,jk
denote the value of the distributed system at discretization
node (i, j) and at time step k, respectively.

Example 2 (Rectangular solution domain)
In this example, we illustrate the structure of the converted
diffusion equation (5) derived by means of the finite-difference
method. Here, we assume to have a rectangular solution domain
with respective boundary conditions. Then, the conversion of
the distributed system (5) results in the following system matrix
Ak ∈ Rm2×m2

,

Ak =
αk ∆t

∆h2

26666664

eAm Im 0 . . . 0

Im
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Figure 4. Root mean square error êk and error variance Crms
k for the

estimated distributed system for 50 Monte Carlo simulation runs. The true
parameter αtrue is given by αtrue = 0.8. (a) Kalman filter (green) based on
various incorrect parameters αmodel = {0.2, 0.4, 0.5, 0.6}. (b) Kalman filter
(green) based on incorrect model parameter (αmodel = 0.2) and simultaneous
state and parameter estimation approach (blue). Thanks to simultaneous ap-
proach the performance of the estimation result can be significantly improved.

where Im2 ∈ Rm2×m2
represents the identity matrix and the

sub-matrices eAm ∈ Rm×m are given by

eAm =

266664
−4 1 0 . . . 0
1 −4 1 . . . 0
...

. . .
. . .

. . .
...

0 . . . 1 −4 1
0 . . . 0 1 −4

377775 .

The state of the distributed system is characterized by the state
vector xk = [p1,1

k , . . . ,p1,m
k , . . . ,pm,m

k ]. For the conversion of
the entire distributed system, the input function s(z, t) needs to
be discretized in the same way as the system state. This leads to
the input vector uk = [s1,1

k , . . . , s1,m
k , . . . , sm,m

k ]. The input ma-
trix Bk relating the input uk of the distributed system to its state
vector xk is given by a diagonal matrix with the sampling time ∆t
as the diagonal entries, according to Bk = diag {∆t, . . . ,∆t}.
The detailed description of the boundary conditions, such as
Dirichlet boundary condition and Neuman boundary condition,
and how these need to be considered during the conversion
process is omitted in this paper; instead we refer to [16].

B. System and Measurement Equation

In the previous section, we presented the spatial and tem-
poral discretization allowing the conversion of the distributed-
parameter system into a lumped-parameter form. The ap-
plication of the aforementioned methods to linear partial
differential equations (1) always results in a linear system
of equations for the state vector characterizing the distributed



system [8], [12]. Adding noise terms and modelling error terms
leads to the following system equation

xk+1 = Akxk + Bk (ûk +wx
k) , (6)

where the structure of the system matrix Ak and the input
matrix Bk merely depends on the applied conversion method.

The measurement equation providing a mapping of the
finite-dimensional state vector xk to the individual discrete-
time measurements ŷ

k
can always be stated in a linear form

according to
ŷ
k

= Hkxk + vk , (7)

independent on the used method for the conversion. The
measurement matrix Hk is defined on the basis of geometric
relations between the state vector xk and the sensor locations.
Thus, it essentially depends on the shape functions used for the
spatial discretization. Here, we refer to our previous research
work [7] for a more detailed description on the structure and
derivation of the measurement matrix for distributed systems.

C. Reconstruction with Incorrect Model Parameters

In general, depending on the structure of the system model
and the measurement model, i.e., being linear or nonlinear, an
appropriate estimator has to be chosen in order to estimate the
state characterizing the distributed system. Due to the fact that
both system equation (6) and the measurement equation (7) are
linear, it is sufficient to use the linear Kalman filter to obtain
the best possible estimate.

It is well known that the Kalman filter requires a rather
precise model of the system under consideration and a pre-
cisely known noise statistics. If any of these assumptions
is violated, the performance of the filter estimates quickly
degrades. However, in many cases the real system deviates
from the nominal model. The resulting degradation leading to
poor performance is illustrated in the next example.

Example 3 (System model with incorrect parameters)
In this example, we consider the two-dimensional diffusion
equation (5) in an L-shaped solution domain with respec-
tive boundary conditions and system inputs as visualized
in Fig. 3 (a). The distributed system is converted into a lumped-
parameter system described by m = 243 state variables pi,j

k .
The nominal parameter values for the system model (6) are
given by

∆t = 0.01 , ∆h = 0.5 , αtrue = 0.8 ,

where αtrue is assumed to be the true parameter. The system
input ûi

k at the locations visualized in Fig. 3 (a) are given by

ûi
k =


8 for 0 ≤ k ≤ 100 ,

0 for 100 ≤ k ≤ 200 .

Furthermore, there are sensor nodes at every discretization
node (i, j) with the measurement noise variance Cv

k = 0.02.
At every time step, 20 randomly chosen sensor nodes are
performing a measurement step in order to estimate the entire
state of the distributed system. The state estimation of the
distributed system was performed on the basis of a Kalman filter
with the nominal parameter set for the diffusion coefficient α
according to

αmodel = {0.2, 0.4, 0.5, 0.6} ,
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Figure 5. Visualization of a dynamic system with a linear substructure. The
parameter η

k
characterizes the system matrix Ak and the input matrix Bk ,

and thus the dynamic behavior of the conditionally linear system.

with the true parameter αtrue = 0.8. For each parameter value,
50 independent Monte Carlo simulation runs have been per-
formed, resulting in n=50 true realizations exi

k of the state vector.
The simulation results are shown in Fig. 3 and Fig. 4.

In Fig. 3 (b), (c) a true realization of the distributed
system and the respective estimation result based on a deviated
parameter of αmodel = 0.4 is depicted. It is obvious that the
estimated distributed state p(x, y) based on incorrect model
parameters strongly deviates from the true realization p̃(x, y).

The root mean square error and the error variance is
approximated by calculating the average according to

ê2k ≈
1

n ·m

n∑
i=1

‖x̃ik− x̂
i
k‖ , C rms

k ≈ 1
n− 1

n∑
i=1

(
eik − êk

)2
,

where x̂ik denotes the mean of the estimated state vector. The
root mean square error êk and error variance C rms

k for each
nominal parameter value are shown in Fig. 4 (a). The more
the nominal parameters deviate from the true parameters, the
more the performance of the estimation results degrades.

In Fig. 4 (b), the error between the Kalman filter based on
incorrect parameters and the simultaneous state and parameter
estimator is compared (see Sec. III-D and Sec. IV). It is
obvious that thanks to the simultaneous state and parameter
estimation the performance can be significantly increased.

D. State and Parameter Estimation of Distributed Systems

For the simultaneous state and parameter estimation of
distributed systems, the unknown parameter vector η

k
is

treated as an additional part of the state vector. By this means,
conventional estimation techniques can be used to estimate
the parameter and states simultaneously (also called joint
estimation).

Hence, an augmented state vector zk containing the system
state xk and the additional unknown parameters is defined by

zk :=
[
xk
η
k

]
.



In the case of system identification, the augmentation results
in the following augmented system model[
xk+1

η
k+1

]
=
[
Ak(η

k
)xk + Bk(η

k
)ûk

ak(η
k
)

]
+
[
Bk(η

k
)wx

k

wη
k

]
, (8)

and measurement model

ŷ
k

= Hk xk + vk , (9)

where the nonlinear function ak( · ) describes the dynamic
behavior of the parameter η

k
to be estimated. The structure of

the augmented system is visualized in Fig. 5. It can be clearly
seen that the parameter η characterizes the system matrix Ak

and the input matrix Bk, and thus the dynamic behavior of
the conditionally linear system.

In the case of the simultaneous state and parameter esti-
mation of distributed systems, the augmented system model is
nonlinear in the augmented state zk. This is mainly due to the
multiplication of Ak(η

k
) containing the unknown parameter

η
k

and the system state xk. However, the system model (8)
contains a high-dimensional linear substructure, which can be
exploited by the application of a more efficient estimator. In
the following section, we describe a novel estimator – Sliced
Gaussian Mixture Filter (SGMF) – allowing the decomposi-
tion of the estimation problem.

IV. SLICED GAUSSIAN MIXTURE FILTER (SGMF)

For the exploitation of linear substructures in general nonlin-
ear systems, we introduced in our previous research work [18]
a systematic estimator, the so-called Sliced Gaussian Mixture
Filter (SGMF). There are two key features leading to a
significantly improved estimation result compared to other
state of the art estimation approaches.
• Novel density representation: The utilization of a spe-

cial kind of density allows the decomposition of the
general estimation problem into a linear and nonlinear
problem. To be more specific, as a density representation
the so-called sliced Gaussian mixture density is employed
for the simultaneous state and parameter estimation of
distributed systems.

• Systematic approximation: The systematic approxima-
tion of the density resulting from the estimation update
leads to (close to) optimal approximation results. Thus,
less parameters for the density representation are neces-
sary and a measure for the approximation performance is
provided.

Despite the high-dimensional nonlinear character, the system-
atic approach of the simultaneous state and parameter estima-
tion for large-area distributed phenomena is feasible thanks to
the decomposition based on sliced Gaussian mixture density.
Furthermore, the uncertainties occuring in the mathematical
system description and arising from noisy measurements are
considered by an integrated treatment.

The Sliced Gaussian Mixture Filter basically consists of
three steps: the decomposition of the estimation problem, the
utilization of an efficient update, and the reapproximation of
the density representation.

ηk

xk

ηk

xk

Reapproximation

Efficient update

ηk xk

(a) Sliced Gaussian mixture density

Gaussian mixture density

Sliced Gaussian mixture density

(b) Efficient update and reapproximation

Figure 6. (a) The estimator is based on sliced Gaussian mixture densities
consisting of a Gaussian mixture in xk subspace and Dirac mixture in η

k
subspace. By this means, the estimation problem can be decomposed into a
linear and a nonlinear problem. (b) Procedure of the simultaneous estimation
of the state xk and the parameter η

k
. The estimation result of the Sliced

Gaussian Mixture Filter leads to posterior Gaussian mixture density, which is
then reapproximated.

a) Decomposition: The nonlinear high-dimensional esti-
mation problem is decomposed into a linear high-dimensional
problem (state estimation) and a nonlinear low-dimensional
problem (parameter estimation). This can be achieved by
means of the sliced Gaussian mixture density, see Fig. 6 (a).
The sliced Gaussian mixture density f(xk, ηk) is represented
by a Dirac mixture in the nonlinear subspace η

k
(parameter

space) and Gaussian mixture in the linear subspace xk (state
space),

f(xk, ηk)=
M∑
i=1

αikδ
(
η
k
− ξi

k

) Ni∑
j=1

βijk N
(
xk − µijk ,C

ij
k

)
.

(10)
where ξi

k
∈ Rs can be regarded as the position of the slices of

the individual sliced Gaussian mixture density f(xk, ηk). The
βijk , µij

k
∈ Rr, and Cij

k ∈ Rr×r denote the weights, means,
and covariance matrices of the j-th component of the Gaussian
mixture density of the i-th slice.

b) Efficient update: Thanks to the novel density rep-
resentation (10) and the structure of the augmented system
model (8) an overall more efficient estimation update can be
derived. The proof can be found in our previous research work
[18]. By this means, the predicted density f̃p results in a
Gaussian mixture both in linear subspace xk and nonlinear
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γij
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“
ŷ

k
−Hkµ

pij
k ,HkCpij

k Hk
T +Cv

”
µeij

k := µpij
k + K

“
ŷ

k
−Hkµ

pij
k

”
Ceij

k := Cpij
k −KHkCpij

k

with K := Cpij
k Hk

T
“
Cv + HkCpij

k Hk
T
”−1

Table I
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ξpi
k+1
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ξei

k
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eij
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w

Table II
PREDICTION STEP: PARAMETERS OF PREDICTED DENSITY.

subspace η
k

f̃p(xk+1, ηk+1
) = c ·

M∑
i=1

Ni∑
j=1

αikβ
ij
k γ

ij
k

· N
(
η
k+1
− ξpi

k+1
,Cn

w

)
N
(
xk+1 − µpijk+1

,Cpij
k+1

)
, (11)

where the mean and covariance matrices in linear subspace
xk are calculated by applying the standard Kalman prediction
and measurement step. The mean in nonlinear subspace η

k
is

derived by simply repositioning the density slices according
to the nonlinear system equation (8), see Table I and II.

c) Reapproximation: The estimation based on the sliced
Gaussian mixture density leads to a density representation
consisting of Gaussian mixtures in all subspaces. In order to
bound the complexity, the resulting density needs to be reap-
proximated by means of the sliced Gaussian mixture density.
There are several approaches to perform this approximation.
One possible approach for the approximation is to derive the
location of the density slices by only considering the marginal
density f̃p(ηS

k+1
). The approximation of arbitrary marginal

densities by Dirac mixture densities can be achieved by: batch
approximation [19] or sequential approximation [20].

The batch approximation is an efficient solution procedure
for arbitrary density functions on the basis of homotopy
continuation (Progressive Bayes). This procedure results in
an optimal solution. The sequential approximation is based
on inserting one component of the density slices at a time.
In the scalar case every slice corresponds to an interval in the
nonlinear subspace and approximates the true marginal density
only in the corresponding interval. Then, based on the splitting
of the intervals and their respective slices arbitrary densities
can be approximated [18].

After the approximation of the marginal density f̃p(ηS
k+1

) in
the nonlinear subspace, the Dirac approximation is extended to
a sliced Gaussian mixture representation over the entire sample
space. Basically, this is achieved by evaluating the Gaussian
mixture density f̃p(xk+1, η

S
k+1

) at every Dirac position, i.e.,
at every slice position. This leads to a sliced Gaussian mixture
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Figure 7. Comparison of the Sliced Gaussian Mixture Filter (SGMF) using 20
slices and the marginalized particle filter (MPF) using 40 particles for assumed
true parameter ηP

k = 0.8. (a) Mean estimation η̂P
k of the parameter for an

example simulation run. (b) Root mean square error (rms) of 50 simulation
runs. (c) Rms averaged of all simulation runs for various number of sensor
nodes.

density (10), which can be used for the next processing step.
A more detailed description can be found in [18].

V. SIMULATION RESULTS

In this section, the performance of the simultaneous state
and parameter estimation of distributed systems based on the
Sliced Gaussian Mixture Filter is demonstrated by means of
simulation results. In particular, the accuracy of the identified
parameter vector ηk characterizing the distributed system is
investigated in comparison to another nonlinear estimation
method. The following distributed system is considered:

Example 4 (Considered distributed system)
In this simulation, we consider the two-dimensional diffusion
equation on a L-shaped solution domain, see Fig. 3 (a), and with
assumed boundary conditions and system inputs as described
in Example 1–3. The aim is the simultaneous estimation of
the distributed system and the unknown diffusion coefficient
ηP

k = αk, where the true parameter is given by αtrue = 0.8.
The system noise term for the individual discretization nodes is
assumed to be Cw

k = 0.01. Furthermore, there is a sensor node
at every discretization node pi,j

k with a measurement noise vari-
ance Cv

k = 0.02. At every time step, 20 randomly chosen sensor
nodes are performing a measurement step. The comparison of
the Sliced Gaussian Mixture Filter and the marginalized particle
filter for 50 Monte Carlo runs is shown in Fig. 7.



In Fig. 7 (a) an example simulation run for the estimation
of the parameter ηPk derived by the Sliced Gaussian Mixture
Filter (SGMF, 20 slices) and the marginalized particle filter
[13] (MPF, 40 particles) is visualized. It is obvious that after
a certain transition time the SGMF offers a nearly exact
parameter estimation, while the MPF strongly jitters. The
root mean square errors (rms) of all 50 runs are depicted
in Fig. 7 (b), where it can be clearly seen that the SGMF
always outperforms the MPF. This is basically due to the
systematic (non-random) positioning of the slices in the case of
the SGMF, while the slices for the MPF are placed randomly.
In Fig. 7 (c) the root mean square error averaged over all
50 simulation runs is shown for various numbers of sensor
nodes. It can be seen that more sensor nodes result in a more
accurate estimation of the unknown parameter ηPk . In this
simulated case, the application of more than approximately
40 sensor nodes does not lead to further improvements of the
estimated parameter ηPk . Furthermore, Fig. 4 (b) clearly shows
that thanks to the simultaneous state and parameter estimation
based on the Sliced Gaussian Mixture Filter the accuracy of
the estimated distributed system can be increased.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we introduce an efficient method for the
simultaneous state and parameter estimation of distributed
systems. The spatial and temporal decomposition of the dis-
tributed system results in a finite-dimensional model in state
space form (usually characterized by a high-dimensional state
vector). Hence, the augmentation of the system state with the
parameter to be estimated leads to a high-dimensional nonlin-
ear system description. Based on a novel density representa-
tion – sliced Gaussian mixture density – the linear substruc-
ture contained in the finite-dimensional model is exploited.
This leads to an overall more efficient estimation process
of distributed systems. The performance is demonstrated by
means of simulation results and it turned out that, compared to
other nonlinear estimators, the Sliced Gaussian Mixture Filter
achieves a higher accuracy.

The application of simultaneous state and parameter esti-
mation methods to sensor network provides novel prospects.
The network is capable of estimating the entire state of
the distributed system, identifying non-measurable quantities,
verifying and validate the correctness of the estimation results,
and adapt autonomously their algorithms and behavior to
changes.

So far, the node locations were assumed to be precisely
known for the estimation of distributed systems. In many
real world applications, however, the node locations contain
uncertainties, or even could be completely unknown. By means
of the estimation method introduced in this paper, it is possible
to consider this uncertainty in the node locations or localize
the sensor nodes based on local observations of the distributed
system. For the observation of large-area distributed systems,
decentralized methods are inevitable in order to cope with
high-dimensional state vectors. Hence, further decompositions
both in the linear subspace and nonlinear subspace are neces-
sary. This is left for future research work.

VII. ACKNOWLEDGMENTS

This work was partially supported by the German Research
Foundation (DFG) within the Research Training Group GRK
1194 “Self-organizing Sensor-Actuator-Networks”.

REFERENCES

[1] T. Kumar, F. Zhao, and D. Shepherd, “Collaborative Signal and Infor-
mation Processing in Microsensor Networks,” IEEE Signal Processing
Magazine, vol. 19, pp. 13–14, 2002.

[2] T. C. Henderson, C. Sikorski, E. Grant, and K. Luthy, “Computational
Sensor Networks,” in Proceedings of the 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2007), San Diego,
USA, 2007.

[3] T. Bader, A. Wiedemann, K. Roberts, and U. D. Hanebeck, “Model-
based Motion Estimation of Elastic Surfaces for Minimally Invasive
Cardiac Surgery,” in IEEE International Conference on Robotics and
Automation (ICRA), Roma, Italia, April 2007.

[4] P. J. Curran and P. M. Atkinson, “Geostatistics and Remote Sensing,”
Progress in Physical Geography, vol. 22, pp. 61–78, 1998.

[5] C. K. I. Williams and C. E. Rasmussen, “Gaussian Processes for
Regression,” in Proc. Conf. Advances in Neural Information Processing
Systems (NIPS), D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo,
Eds., vol. 8. MIT Press, 1995.

[6] C. K. I. Williams, “Prediction with Gaussian Processes: From Linear
Regression to Linear Prediction and Beyond,” Learning in graphical
models, pp. 599–621, 1999.

[7] F. Sawo, K. Roberts, and U. D. Hanebeck, “Bayesian Estimation of
Distributed Phenomena using Discretized Representations of Partial
Differential Equations,” in 3rd International Conference on Informatics
in Control, Automation and Robotics (ICINCO’06), Setubal, Portugal,
Aug. 2006, pp. 16–23.

[8] D. Ucinski and J. Korbicz, “Parameter Identification of Two-
Dimensional Distributed Systems,” International Journal of Systems
Science, vol. 21, no. 12, pp. 2441–2456, 1990.

[9] J. Yin, V. L. Syrmos, and D. Y. Y. Yun, “System Identification using
the Extended Kalman Filter with Applications to Medical Imaging,” in
Proceedings of the American Control Conference (ACC), 2000.

[10] F. Sawo, M. F. Huber, and U. D. Hanebeck, “Parameter Identification
and Reconstruction Based on Hybrid Density Filter for Distributed
Phenomena,” in 10th International Conference on Information Fusion
(Fusion 2007), Quebec, Canada, Jul. 2007.

[11] H. Malebranche, “Simultaneous State and Parameter Estimation and
Location of Sensors for Distributed Systems,” International Journal of
Systems Science, vol. 19, no. 8, pp. 1387–1405, 1988.

[12] L. A. Rossi, B. Krishnamachari, and C.-C. Kuo, “Distributed Param-
eter Estimation for Monitoring Diffusion Phenomena Using Physical
Models,” in First Annual IEEE Communications Society Conference
on Sensor and Ad Hoc Communications and Networks (SECON), Los
Angeles, USA, 2004, pp. 460–469.

[13] T. Schön, F. Gustafsson, and P.-J. Nordlund, “Marginalized Particle
Filters for Mixed Linear/Nonlinear State-Space Models,” IEEE Trans-
actions on Signal Processing, vol. 53, no. 7, pp. 2279–2289, 2005.

[14] R. Chen and J. S. Liu, “Mixture Kalman Filters,” Journal of the Royal
Statistical Society, vol. 62, no. 3, pp. 493–508, 2000.

[15] C. Andrieu and A. Doucet, “Particle Filtering for Partially Observed
Gaussian State Space Models,” Journal of the Royal Statistical Society,
vol. 64, no. 4, pp. 827 – 836, 2002.

[16] T. Chung, Computational Fluid Dynamics. Cambridge University Press,
2002.

[17] G. E. Karniadakis and S. Sherwin, Spectral/hp Element Methods for
Computational Fluid Dynamics. Oxford University Press, 2005.

[18] V. Klumpp, F. Sawo, U. D. Hanebeck, and D. Fränken, “The Sliced
Gaussian Mixture Filter for Efficient Nonlinear Estimation,” in 11th In-
ternational Conference on Information Fusion (Fusion 2008), Cologne,
Germany, July 2008.

[19] O. C. Schrempf and U. D. Hanebeck, “A State Estimator for Nonlinear
Stochastic Systems Based on Dirac Mixture Approximations,” in 4th
Intl. Conference on Informatics in Control, Automation and Robotics
(ICINCO 2007), vol. SPSMC, Angers, France, May 2007, pp. 54–61.

[20] U. D. Hanebeck and O. C. Schrempf, “Greedy Algorithms for Dirac
Mixture Approximation of Arbitrary Probability Density Functions,” in
IEEE Conference on Decision and Control (CDC 2007), Dec. 2007.


