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Abstract – In this paper, a new class of nonlinear
Bayesian estimators based on a special space partition-
ing structure, generalized Octrees, is presented. This
structure minimizes memory and calculation overhead.
It is used as a container framework for a set of node
functions that approximate a density piecewise. All nec-
essary operations are derived in a very general way in
order to allow for a great variety of Bayesian estima-
tors. The presented estimators are especially well suited
for multi-modal nonlinear estimation problems. The
running time performance of the resulting estimators is
first analyzed theoretically and then backed by means of
simulations. All operations have a linear running time
in the number of tree nodes.

Keywords: Bayesian estimation, nonlinear estimation,
space partitioning, tree structure.

1 Introduction
There exists a variety of different methods for estimat-

ing a system’s state over time from noisy measurements.
The most popular class of estimators are the Gaussian
assumed density estimators, and of those the probably
best known estimator is the Kalman filter [1] for linear
models, and its extensions to slightly nonlinear models,
such as the Extended Kalman filter [2] or the Sample-
Based Gaussian estimator [3]. These estimators have
the virtue of “fixed finite-dimensional sufficient statis-
tics,” meaning that their complexity does not increase
over time. The development of such estimators, which
are limited to exponential densities, is still an active
topic of research [4].

A different approach is taken by particle filters [5].
These filters represent the estimated density by means of
a set of discrete realizations, i.e., particles, which allows
for a representation of arbitrary densities. These filters
can cope with highly nonlinear systems and multi-modal
densities, but are not deterministic.

This work leads to a class of flexible and adaptive
state estimators that allow for the efficient treatment of
nonlinear problems. Instead of defining a single Bayesian
estimation algorithm that deals with a given density
representation, a more general container-based frame-
work is presented in this paper, which is not restricted
to a single density representation.

The key idea is to recursively partition the state space
into smaller parts, leading to a hierarchical tree struc-
ture, where each tree node is a container. The partition-
ing from one layer to the next is similar to n-dimensional
Octrees [6] or B-trees [7].
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Figure 1: A binary tree: On the left are the layer indices
while the node index is written within the nodes. The red
line shows a specific point that is covered by the bright red
nodes.

The container structure allows for the use of different
density representation forms in the tree nodes, from
very simple forms, such as Dirac impulses or uniform
distributions, to very elaborate and complex ones, such
as Gaussian mixture densities [8] or Fourier densities [9],
even mixed in the same tree. This offers a compromise
between the number of tree nodes and the number of
parameters of individual node functions. For simple
functions, many nodes are required and for complex
functions, i.e., functions that require a large number of
parameters, only few nodes are necessary. In general,
the tree depth is not limited, which allows arbitrarily
precise approximations for any node function.

The tree does not have to be fully populated. An
adaptive density approximation algorithm chooses the
optimal resolution for different regions in state space,
depending on the shape of the true density function and
the node functions. This can be beneficial for handling
narrow densities, where wide parts of the state space
have zero, or almost zero, probability, or regions where
the node functions represent the true density very well.
This dramatically cuts the number of used nodes in the
tree and plays a major role in reducing time and space
complexity.

1.1 Related Work
Because many common procedures and approaches

are used in this work, a short discussion of related
approaches is given in order to state the originality and
novelty of this work.

Probability trees [10] are used to represent multi-
dimensional probability distributions. For those proba-
bility trees, every tree layer represents conditional dis-
tributions of a joint distribution. For example, a two-
dimensional discrete distribution can be modeled by
a hierarchical density tree with two layers. The first
layer describes the probability for the first variable, the
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Figure 2: Evaluation of a binary tree: �[0,10)
k (3.75) have

been marked in bright red. The gray node has been selected
but contains ε data. The evaluation points marked in red
on the node functions shown in blue are connected by ?.

second layer represents the conditional probabilities of
the second variable, depending on the outcome of the
first. This representation is clearly different from the
proposed approach, where the same domain is described
in every tree layer, but with different resolution and
approximation quality.

Adaptive grid methods [11] are able to approximate
densities by different partitioning approaches. Several
approaches exist, especially for kd-trees [12, 13, 14]
and bsp-trees [15]. In general, these approximation
algorithms generate trees with adaptive, not predefined
partitioning, which can be expensive to generate and to
handle. Another difference to the proposed method is
that the density information is stored in the leaf nodes
only, whereas the proposed approach allows inner nodes
to contain density information, too. On top of that,
the node functions used in adaptive grid methods are
usually very simple.

In the context of state estimation, wavelets [16] can be
used to approximate density functions. Generally, the
shape of wavelet functions is less limited and they have
more overlappings. But still they are usually less flexible
because the same basis function is used everywhere, i.e.,
in every node, whereas the density tree approach allows
for different functions in the nodes. Thus, the proposed
approach is slightly more general than wavelets.

The outline of this paper is as follows. In Section 2,
the density tree is formally introduced. The operations
required for estimation are described in Section 3. For
efficient processing and representation of the densities,
an approximation procedure is stated in Section 4. The
Bayesian estimator with filter and prediction step based
on the given operations is presented in Section 5. A com-
plexity analysis of the proposed estimation framework
with execution time evaluations is given in Section 6.

2 Description of Tree Structure
The goal of this chapter is to formalize the tree struc-

ture and give a basis for expressing arbitrary probability
densities. Any tree shall have a bounded d-dimensional
domain of definition D = [a, b)d, which is a hypercube
of half-open intervals for practical reasons. Furthermore,
a tree consists of two basic elements, nodes and layers,
which will be described first: The unique tree layers de-
noted by Tk are stacked upon one another as depicted in
Fig. 1. They are indexed from root to leafs starting with
k = 0 at the root. Each tree layer has the same domain
of definition. Thus, all layers in a tree perfectly overlap.
To allow for an evaluation, the layers are connected by

a surjective operator ? with

x ? y : (R ∪ {ε})× (R ∪ {ε})→ (R ∪ {ε}) ,

where ε is the neutral element regarding ? as seen in
Fig. 2. In order to ease notation, another operator

∧
is

introduced, which denotes the concatenation of multiple
? just like + and

∑
. By using the introduced symbols,

a tree is described as

T? =
∞∧
k=0

Tk ,

where T? is the symbol of a tree connected by ?. Now,
the part of the tree that contains the probability density
function will be introduced. Each tree layer Tk of a
d-dimensional tree consists of a set of 2k·d nodes. All
nodes on a tree layer are equally sized hypercubes and
are indexed per layer as displayed in Fig. 1. So on every
layer, there is a node with index zero.

Every node contains a function, which has a normal-
ized domain of definition [0, 1)d. Thus, a node can be
described as a function

η(x) : [0, 1)d → R ∪ {ε} ,

where ε is the neutral element regarding ?.
Now, as all elements the tree consists of are known,

the evaluation of the tree, respectively the probability
density function contained within, is described. Since all
layers (and thus, nodes of the different layers) overlap,
multiple nodes have to be combined for evaluation. For
the formal description, two helper functions are defined.
The first function selects the node index at tree level k

�D
k (x) :

{
D → Nd0
xj 7→

⌊
xj−minDj

|Dj | · 2k
⌋

, (1)

where minD is the vector of the smallest values in D
and |D| is the vector containig the width of D in each
dimension. The second function describes the coordinate
transformation to a specific node

�D
k (x) :=

{
D → [0, 1)d ,
xj 7→ 2k(xj−minDj)

|Dj | −�Dj

k (xj)
, (2)

which bears a close similarity to the carry-over of an
integer division. The nodes selected by (1) are evaluated
at the points given through (2). This is done per tree
layer in ascending order and merged by ? as depicted in
Fig. 2. In summary, the evaluation can be written as

T? (x) =
∞∧
j=0

Tj
(
�D
j (x) ,�D

j (x)
)

= T0

(
0,�D

0 (x)
)

? T1

(
�D

1 (x) ,�D
1 (x)

)
? . . . .

This tree is evaluated at x, so x has to be transformed
to the according node index on each layer Tk by using
�D
k (x) and to the coordinate within this node by using

�D
k (x).



3 Operations on Tree Structure
In order to build a state estimator, several opera-

tions on the tree need to be defined. Except for the
marginalization, all operations are independent of the
layer connection ?. For the marginalization, an additive
and an annihilating layer connection will be examined
in detail. The additive connection just adds up all layers
within the tree. The annihilating connection is defined
as

x ∼ y :=
{
x where y = ε
y otherwise . (3)

Evaluating a tree connected by this operator means
evaluating the deepest node that does not have the
value ε and overlaps the point of evaluation as seen in
Fig. 2.

Finally, through the definition of the operations, sev-
eral implications for the node functions arise that will
be discussed in the end.

3.1 Erection
The simplest operation is the erection. Its goal is to

extend a scalar function f(x) on a d-dimensional domain
by n dimensions to a scalar function h([xT , yT ]T ) on a
(d+ n)-dimensional domain denoted as

h
([
xT , yT

]T)
= f (x) ↑y with f (x) ↑y:= f (x) .

For trees, this operation is described as

H?
([

x
y

])
=
∞∧
j=0

Hj

(
�D
j

([
x
y

])
,�D

j

([
x
y

]))

=
∞∧
j=0

Fj
(
�D
j (x) ,�D

j (x)
)

= F? (x) .

For density functions, this operation might seem trivial,
but in the case of trees it does have the important
property that any node contained in a tree at layer k is
duplicated 2n·k times, when extended by n dimensions.

3.2 Product
The second operation required is the product. When

calculating the product of two trees, the trees are scaled
to have the same domain of definition. The multipli-
cation of the densities f and g with the domains of
definition Df and Dg results in

h(x) = f(x · |Df |+ minDf ) · g(x · |Dg|+ minDg) ,

where h has the domain of definition Dh = [0, 1)n. As
a consequence, all trees involved should have the same
domain of definition expect for some special cases, where
the rescaling might be of use. In addition, densities need
to have the same dimension so that the erection might
have to be applied before multiplication.

Thanks to the tree structure, only overlapping nodes
have to be multiplied, which drastically reduces the
overall amount of multiplications. In the following, hk

is the vector-valued index of a node in the product tree,
while ck and gl are the indices of the nodes in the two
factor trees at tree layer Fk and Gl. Moreover, l ≤ k

is assumed without loss of generality. Then, only node
combinations defined by

hk =
{

ck ∃n ∈ {0, . . . , k} : ck−n = gl

undefined otherwise (4)

are required to calculate the product. Property (4) has
consequences for the product of two tree layers Fk and
Gl and results in

Hmax{l,k} = Fk · Gl , (5)

which means that the product of two tree layers is
always described on the layer with the highest index.
Unfortunately, overlapping nodes do not necessarily have
the same scale, because they might be from different
tree layers. Thus, the nodes have to be scaled according
to their overlapping areas. Again, assuming l ≤ k, for
the product node function η and the two factor node
functions ς, whose node has the index ck, and γ, with
index gl, the product is defined as

η(x) = ς (x) · γ
(
x+ ck

2k−l

)
with x ∈ [0, 1)n .

To account for non-commutative operators, the ordering
needs to be correct according to ? and (5), so layer Hk
of the product tree is calculated by

Hk =

k−1∧
j=0

(Fk · Gj) ? (Fj · Gk)

 ? (Fk · Gk) . (6)

In summary, the product operation the product of two
trees H? = F? · G? is written as

F? · G? =
∞∧
j=0

(
j−1∧
k=0

(Fj · Gk) ? (Fk · Gj)

)
? (Fj · Gj)︸ ︷︷ ︸

Hj

= H? ,

where Hj is the j-th layer of the product tree H?.

3.3 Joint Tree of Two Trees
In this section, the orthogonal joining of two trees

will be described. For densities, the definition of the
joint h of two independent densities f and g is defined
by

h

([
x
y

])
= f (x) · g

(
y
)
. (7)

Since the densities f(x) and g(y) are orthogonal, their
tree representations F? and G? are orthogonal as well.
The joint of two trees is calculated by use of the erec-
tion as defined in (3.1) to generate a fitting domain of
definition for both trees and then generate the joint by
using the multiplication (3.2) as shown in Fig. 3. This
is formally written as

H?
([

x
y

])
= F? (x) ↑y ·G?

(
y
)
↑x . (8)
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Figure 3: Left and middle: Two densities with extended dimensions. Right: Their joint density.

3.4 Marginalization ...
The marginalization of dimension k of one density f

to another density g is defined as

g(x) =

∞∫
−∞

f(y) dyk x ∈ IR(N−1) , y ∈ IRN .

By Transferring this to their tree representation, one
obtains the integral

G? (x) =
∫
Dk

F?
(
y
)

dyk

=
∫
Dk

∞∧
j=0

Fj
(
�D
j

(
y
)
,�D

j

(
y
))

dyk .

(9)

The calculation of this integral is complicated by the
fact that its value depends on the layer connection ?.
Here, the integral will be calculated for the additive
connection and the annihilating connection. Therefore,
a helper

h(x, a, b) = [x0, . . . , xa−1, b, xa+1, . . . , xn]T

is defined. Its main purpose is to ease the notation for
the removal of a dimension.

... for the Additive Connection
When the layer connection is additive, the calculation of
(9) is quite easy. In this case, it is possible to exchange
integral and sum in order to obtain

G? (x) =
∞∑
j=0

∫
Dk

Fj
(
�D
j

(
y
)
,�D

j

(
y
))

dyk .

As the tree layers are only defined piecewise and the
nodes do not overlap within a single layer, the layers
may also be written as sums. As a result, the complete
marginalization of the k-th dimension is defined by

G? (x) =

∞∑
j=0

2j−1∑
i=0

∫
[0..1)

Fj
(
h
(
�D
j (x) , k, i

)
, h
(
�D
j (x) , k, a

))
da


︸ ︷︷ ︸

Gj

.

... for the Annihilating Connection
Unfortunately, the exchange of the layer connection and
integral is not possible for the annihilating connection.
This complicates things quite a bit and requires the
definition of another helper

qlj(i) =
i

2(l−j) −
⌊

i

2(l−j)

⌋
.

For the result of the marginalization, only the deepest
node that does not contain ε is of interest. Thus, the
expression

Gl (x) =

2l−1∑
i=0

l∧
j=0

qlj(i+1)∫
qlj(i)

Fj

(⌊
h
(
�D
j (x) ,k,i

)
2(l−j)

⌋
, h
(
�D
j (x) ,k,a

))
da

connects the integral of each node with the annihilat-
ing connection. While the direct marginalization of a
tree connected by the annihilating connection might
seem complicated, there is an easy interpretation: A
tree connected by the annihilating connection may be
transformed into a tree connected by the additive con-
nection by simply moving all data, respectively all node
functions that are not equal to ε, into its leaves. This
means that when evaluating the transformed tree at
a specific point, there exists at most one single node
overlapping this point that does not evaluate to ε. Given
this representation, the annihilating connection may be
exchanged for the additive connection.

3.5 Conclusions for the Node Function

There are some implications for the node functions
that result from the definition of the different operations
above. First, the addition of two d-dimensional node
functions γ1 and γ2 must be defined on axis-aligned areas
A1, A2 ∈ [0, 1)d. Furthermore, the multiplication of two
d-dimensional node functions γ1 and γ2 on axis-aligned
areas A1, A2 ∈ [0, 1)d must be defined. Additionally,
the integration of a d-dimensional node function γ on
axis-aligned areas A ∈ [0, 1)d must be defined for any
direction. Finally, for the annihilating connection ∼,
the image set must be R+

0 ∪ {ε} in order to guarantee
admissible densities.



4 Density Approximation
While all mechanisms required for building an estima-

tor have been described, there is still one task remaining.
In most applications, the involved densities, e.g., the
system noise, will not be available as a tree density.
Thus, in order to acquire a density in the tree repre-
sentation, an approximation of the desired density has
to be performed. There are two approximation cases
considered here:
• Approximation of arbitrary densities, e.g., Gaus-

sians.

• Reapproximation of densities already in a tree
representation, e.g., reduction, smoothing.

The reapproximation case can further be split up into
a lossy reduction, which basically reduces the resolu-
tion of a tree by setting its nodes to ε, and a lossless
reduction, also referred to as optimization. For each
tree, there usually is an infinite amount of equivalent
trees representing the same density. The goal of lossless
reduction is to find the tree representation that has the
least number of nodes with a value not equal to ε, which
is usually the tree consuming the least memory when
stored.

Getting a globally optimal solution for an approxi-
mation or reapproximation of a tree is an (NP)-hard
(without proof ) problem. While an optimal solution
would give the lowest possible memory consumption,
the following running time analysis in section VI will
show that all other operations have linear running time.
Thus, the reduction and approximation should have
linear running time to prevent slowdowns for the esti-
mation. For this reason, a quick and greedy algorithm
is proposed.Furthermore, the same algorithm is used for
both cases, approximation and lossy reapproximation.
The algorithm consists of two steps:

1. recurse: if node approximation sufficient
then return else descent to all children.

2. optimize the tree.
The optimization step is another greedy algorithm with
linear running time in the number of nodes.

To demonstrate the performance of the approximation,
a Gaussian density is approximated at different node
counts in Fig. 5. The distance measure minimized in
this case is max |N (x) − N?(x)| for each node, which
converges reasonably quick in the KolmogorovâSmirnov
distance and is easy to evaluate.

5 Bayesian State Estimator
In this section, the two basic elements of a Bayesian

state estimator, the filter step and the prediction step,
are introduced.

5.1 Filter Step
The goal of the filter step is the incorporation of the

Likelihood fL, which is the solution to the measurement
equation given a certain measurement, into a prior sys-
tem state fP resulting in the estimated state fe. The
Bayesian filter step is defined by

fe(x) =
fp(x) · fL(x)∫
fp(x) · fL(x)dx

.
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Figure 4: Execution times of the prediction for both, worst-
and normal case.

By using the operations multiplication and marginaliza-
tion introduced before, the tree representation can be
applied to the Bayesian filter step, resulting in

Fe?(x) =
Fp?(x) · FL?(x)∫
Fp?(x) · FL?(x)dx

,

where the denominator is just for normalization.

5.2 Prediction Step
The prediction step is used to propagate a given sys-

tem state fe in time according to the system function.
In the Bayesian estimator, the system function and the
corresponding system noise are represented by a con-
ditional density, which is called the transition density
fT . The formal description of the prediction step is the
famous Chapman-Kolmogorov equation

fp
(
xk+1

)
=
∫
fT
(
xk+1|xk

)
· fe (xk) dxk ,

which is a hard to solve parameter integral. To solve
this equation using the proposed tree representation, the
operations erection, product, and marginalization are
required. Given that all required operations are defined
for the node functions, the solution of the Chapman-
Kolmogorov equation

Fp?
(
xk+1

)
=
∫

FT
? (
xk+1, xk

)
· Fe? (xk) ↑xk+1

dxk.

for the proposed trees is straightforward.

6 Complexity ...
The detailed running time calculation is

implementation-dependent. This is because the
trees could be implemented as a tree structure, a
hash-map, or even an array that directly maps tree
nodes to memory addresses. In this section, the
worst-case bounds are given in the Landau notation
using the number of nodes not equal to epsilon as a
basis. In addition, execution time measurements are
taken from a slightly optimized C++ implementation.
The implementation uses an optimized tree structure.
This structure does not store all nodes, but the nodes
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Figure 5: Approximations of a Gaussian with variance 0.01 and mean 0.5, using uniform distributions as node functions.
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Figure 6: Execution time measurements for the product of
two uniform densities.

residing in memory are only those containing data or
more than one child.

The node function used in the implementation is
the most simple node function possible. In each node,
a uniform distribution is stored. Still, all theoretical
running time statements made here hold for any type
of node function with a limited or fixed amount of
parameters. For testing, a 2.4 GHz single core desktop
computer with 4 Gigabytes of RAM is used. The tree
layers are connected by the annihilating connection.

... of Multiplication and Filtering
The most expensive operation in the context of filtering
is the multiplication uld be implemented as a tree struc-
ture, a hash-map, or even an array that directly maps
tree nodes to memory addresses. In this section, the
worst-of two trees. This operation does have a running
time of O(n+m) for trees with n and m nodes. The ex-
ecution time is measured in two experiments. The first,
which resembles the worst-case for it has the most nodes
overlapping another, multiplies two sub-optimally ap-
proximated uniform distributions. Its result is depicted
in Fig. 6.

... of Prediction
In prediction, the number of nodes contained in the
transition density is the crucial factor. Given the fact
that the transition density contains n nodes and the
prior density m nodes, the worst-case running time
is O(n + m). The actual dimension of the densities
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Figure 7: Execution time measurements for marginalizing a
four-dimensional density to one, two, and three dimensions.

does not have a direct impact on the running time
of the algorithm. But still, given a high-dimensional
density, the nodes required for a decent approximation
might grow exponentially with the number of dimensions.
For the execution time measurements there are two
scenarios. First, the worst case is simulated. That is
a two-dimensional transition density of a system with
no system noise. The second simulation shows the
typical case, where the system is disturbed by Gaussian
noise. The execution times of both scenarios are shown
in Fig. 4. It should be noted that execution times
displayed may be further reduced by combining the
reduction and prediction step. This technique is applied
in the following localization simulations as it does also
have the effect of dramatically cutting memory usage
during the prediction process.

... of Marginalization and Integration
The marginalization of a density consisting of n nodes to
a a lower-dimensional density does have a running time
of O(n). The same holds for the complete integration of
a density, as required by the filtering step for normaliza-
tion. The execution time behavior of the marginalization
has been simulated by marginalizing a four-dimensional
density to one, two, and three dimensions with the
results shown in Fig. 7.

... of Other Operations
Finally, an overview of other operations on the tree
structure is given, starting with the evaluation of the
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Figure 8: Four different timesteps of the localization simulation. As the system state is three-dimensional, only its marginals
along the (x, y)-axis, that is

R
fe(x, y, α)dα, and the (x, α)-axis, that is

R
fe(x, y, α)dy, are shown. The gray areas in the

(x, y)-plots show the map. The small pin is the vehicle’s true attitude. The symmetry involved in the simulation results in
a bimodal density in the end.

represented density at a specific point. The worst case,
which is a special case of a tree consisting of only one
branch is O(n). As this case should rarely appear, espe-
cially for optimized structures, the usual evaluation lies
in O(log(n)). The true execution time heavily depended
on the depth of the tree and caching effects. On the
test system, a seek speed of 5 cot 107 to 6 ·108 nodes per
second is achieved. The proposed greedy approximation
works in O(n). The optimization of the tree structure
has a running time of O(k · n), where a k of 1 . . . 10
is usually sufficient. The reduction or optimization is
best applied regularly after filtering or prediction steps
in order to control the total node count of the state
densities.

7 Simulation
In order to give a proof of concept for the proposed

estimators, a simple simulation is performed for a local-
ization problem of an omnidirectional vehicle with very
limited sensory input. The vehicle’s system equation,
which describes its movement, is[

xk+1

yk+1
αk+1

]
=

 xk + vxk + s sin(αk + vαk )
yk + vyk + s cos(αk + vαk )
αk + vαk + α∆

k

 ,
(10)

where k denotes the timestep, x,y the position, α
the movement direction and α∆ its rate of change,
s the speed of movement, and finally v the system
noise, which is distributed according to N (0, 0.01) for
each component vx,vy, and vα without any correla-
tion. While the initial starting attitude of the vehicle
is x̂0 = 0.35, ŷ0 = 0, and α̂0 = −π the movement speed
and the angular change are fixed at s = 0.094 and

α∆
k = 0.05 · π so the vehicle’s movement describes a cir-

cle within 20 time steps. The goal of the simulation is to
obtain an estimation of the attitude of the vehicle that
is described by the random vector [xk,yk,αk]T . For
this purpose, the vehicle is equipped with an exact map
of its surroundings, an almost square room with a pillar
in the middle (to make things more interesting), and
a primitive sensor. The sensor is capable of measuring
the distance to the closest wall to the vehicle without
any angular information. A physical equivalent might
be an omnidirectional mono-microphone carried by the
vehicle measuring time delays of acoustic reflections of
the vehicle’s sounds from walls. This problem setup is
an instance of the common wake-up robot problem.

The distances returned by the sensor are heavily
disturbed by additive noise distributed according to
N (0, 0.05). Figure 8 shows the estimated state at differ-
ent time steps. For initialization of the estimator, the
first likelihood is chosen. The estimator automatically
keeps the number of nodes at a constant level of about
20, 000 nodes. Hence, the resolution of the density in-
creases when a lot of mass is concentrated in a small
area. The final result of the estimation is bimodal as the
map and the track of the vehicle share a symmetry.

8 Conclusions

In this paper, a special tree structure, which is a gen-
eralization of Octrees or Quadtrees, is used to represent
probability densities. The structure of the tree was care-
fully chosen to a predefined partitioning. This allows
for very efficient handling of the tree structure. The
data, respectively the densities, are stored by arbitrary
node functions. This paper does only make very few
restrictions on the node functions and thus, allows for



a great flexibility in their choice. After the tree struc-
ture is formally described, several operations required
for a Bayesian estimator are introduced. Finally, the
prediction step and filter step are defined. To demon-
strate the performance of the proposed estimators, the
running times are first stated in Landau notation and
backed by some execution time measurements on an
actual implementation.

As a tree structure is a hierarchical structure and
all algorithms presented here have linear running time,
they are very easy to parallelize enabling even better
performance.

The densities are transformed into the tree represen-
tation through an approximation. The approximation
error generated here can easily be calculated and up-
dated when the estimator runs. As a result, it is possible
to give an upper bound of the maximum error caused by
the approximation at any time and introduce corrections
if required. In the end, a density tree does not have to
be present in memory, since it can easily be calculated
online when accessing a certain node.

The proposed technique is especially useful when a
density consisting of many modes is updated/processed
in very small bits. This means that there are many
minor changes to small parts of the density. This does
for example include elimination scenarios, where the
information gained in a time step is only the exclusion
of some configurations in a large parameter space. It
does as well include some mapping scenarios, where the
sensors can only cover a very small area of a map. In the
end, the proposed method gets very efficient when most
of the probability mass is concentrated on a small area,
enabling efficient tracking as seen in the simulation.

For future work, the use of more complex node func-
tions has to be evaluated. Using polynomials or expo-
nential densities seems promising here. The main gain
would lie in a reduced node count. Reducing the node
count will still leave the prediction as a major caveat.
Due to the fact that the transition density’s dimension is
twice the dimension of the state to be predicted, it does
always contain very many nodes. Here, techniques like
the butterfly scheme for calculating fast convolutions,
which could give a great speedup, have to be evaluated.
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