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Abstract – In this paper, a novel nonlinear/non-
linear model decomposition for the Sliced Gaussian Mix-
ture Filter is presented. Based on the level of nonlin-
earity of the model, the overall estimation problem is
decomposed into a “severely” nonlinear and a “slightly”
nonlinear part, which are processed by different estima-
tion techniques. To further improve the efficiency of the
estimator, an adaptive state decomposition algorithm is
introduced that allows decomposition according to the
linearization error for nonlinear system and measure-
ment models. Simulations show that this approach has
orders of magnitude less complexity compared to other
state of the art estimators, while maintaining compara-
ble estimation errors.

Keywords: Nonlinear state estimation, state decom-
position, Rao-Blackwellization.

1 Introduction
Recursive Bayesian state estimation plays an impor-

tant role when dealing with measurements disturbed
by noise. Examples of their field of application include
robotics, localization, or tracking [1], among many oth-
ers. The well-known Kalman filter [2] gives optimal
results for these problems, when the models are lin-
ear. Unfortunately, often the considered problems can
only be described by means of nonlinear models, which
increases the need for appropriate nonlinear Bayesian
estimators that are both computationally feasible and
keep approximation errors low.

Different approaches to nonlinear Bayesian estima-
tion exist. Sample-based estimators, such as particle
filters [3], represent the estimated density by means of
a finite set of samples, which allows to represent den-
sities with arbitrary good precision. These filters can
cope with “severely” nonlinear systems and complex
multi-modal densities. Their drawback is that many
samples may be needed in order to get reliable results,
which is problematic especially for high-dimensional es-
timation problems [4].
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Figure 1: Modification of model decomposition. From
nonlinear/linear decomposition towards an adaptive de-
composition of overall nonlinear models.

For high-dimensional nonlinear estimation problems,
often nonlinear filters with a Gaussian density assump-
tion are utilized, such as the Extended Kalman filter [5],
the Unscented Kalman filter [6], the linear regression
Kalman filter [7], or the Gaussian Estimator [15]. This
Gaussian assumption allows efficient processing, which
is far less demanding than sample-based approaches,
but it also limits the application of this class of filters.
These filters are only capable of handling “slightly”
nonlinear models, which makes them unsuitable for ar-
bitrary estimation problems, where the estimated den-
sity can become multi-modal.

In order to reduce the computational complexity and
maintain superior estimation performance, state space
decomposition using Rao-Blackwellization [9] is a con-
ceivable solution. This approach has been successfully
pursued in special Rao-Blackwellized estimators, where
the estimation problem is decomposed into a nonlin-
ear and a conditionally linear part. There, the par-
ticular structure of the measurement and system mod-
els is employed in order to decompose the estimation
problem, which allows to solve the overall problem in a
(partially) decoupled way. For this, the marginal den-
sity of the nonlinear part is represented by means of
a sample-based density, which results into linear mod-
els for the conditional part. Examples of this approach



are the Rao-Blackwellized – or marginalized – parti-
cle filter [10] or the Sliced Gaussian Mixture Filter,
which has been presented in previous work [11, 12] by
the authors. When the nonlinear part of the model
is high-dimensional, these approaches suffer from the
same growth of complexity as common sample-based
methods. This only allows a limited dimensionality of
the nonlinear part.

Contribution of this Paper: In this paper, the
idea of using Rao-Blackwellization for nonlinear/linear
model decomposition is extended to a more flexible non-
linear/nonlinear model decomposition, in order to allow
a higher dimensionality of the nonlinear part. This is
visualized in Fig. 1. For this, two classes of nonlinear
models are defined, which depend on the level of nonlin-
earity of the model. For these model classes, different
estimation techniques are applied. An algorithm for
online state decomposition is introduced, which adap-
tively selects the suitable class of filters, while keeping
estimation errors low and simultaneously reducing the
computational complexity.

This approach is applied to the Sliced Gaussian Mix-
ture Filter in order to extend its range of application
and to increase its efficiency. When only a small sub-
state is affected by the “severely” nonlinear model, a
dramatic reduction in algorithm runtime can be ob-
served, while maintaining superior estimation perfor-
mance compared to other state of the art estimators.

2 Problem Formulation
The considered nonlinear measurement and system
models for an n-dimensional state are given in the form

ŷ
k

= hk(xk) + vk (1)

and
xk+1 = ak(xk) + wk , (2)

which depend on nonlinear functions hk and ak. The
additive measurement noise term vk, and the addi-
tive system noise term wk are zero-mean Gaussian dis-
tributed with covariance matrices Cv

k and Cw
k . The

received measurement vector at time step k is denoted
by ŷ

k
.

The goal is to find a decomposition of the state
xk ∈ Rn into two parts xk = [(xm

k )T, (xc
k)T]T, the

marginal substate xm
k ∈ Rd and the conditional sub-

state xc
k ∈ Rn−d, where the dependencies of the sub-

states and the models are given by the factorization
f(xk) = f(xm

k , x
c
k) = f(xm

k ) · f(xc
k|xm

k ), i.e., the condi-
tional part xc

k depends on xm
k .

For this state decomposition, Rao-Blackwellization
is applied. The “hard” marginal part f(xm

k ) is repre-
sented by means of a sample-based density, i.e., a Dirac
mixture density, for which the processing can be compu-
tationally demanding due to the large number of com-
ponents needed. The conditional density f(xc

k|xm
k ) is

processed by means of “simple” nonlinear estimators,
which assume a Gaussian density representation, but
limit the characteristic of the nonlinear model due to
implicit linearization.

In order to keep the computational complexity low
and to limit the number of samples, the dimensionality
d of xm

k should be as low as possible. For bounding
estimation errors due to linearization of the conditional
part, only certain parts of the overall nonlinear models
may be processed by means of these “simple” nonlin-
ear estimators. Thus, a tractable compromise between
estimation accuracy and complexity has to be chosen,
which makes the consideration of the induced lineariza-
tion error necessary.

3 State Decomposition based on
Linearization Error

3.1 Definition of Induced Linearization
Error

A nonlinear mapping g

z = g(x) ≈ Gx + b

can be approximated by means of a linear mapping G
with an offset b [7]. The error term

e = g(x)−Gx + b

describes the difference between the nonlinear mapping
g and its linearization. It has the covariance matrix

Ce = Cz −Czx (Cx)−1 Cxz ,

which quantifies the amount of induced linearization
error.

The induced linearization error does not only depend
on the nonlinear mapping g and its linearization, it also
depends on the distribution of the random vector x. For
example, the induced linearization error is zero, if x is
distributed according to a single Dirac function. Then,
the system state is exactly known and no linearization
is necessary.

It can be stated that if the covariance matrix Ce is
zero, then the error term e is distributed according to
a single Dirac function [13]. In this case, e is determin-
istic and the mapping g is an affine transformation.

When the approximation is determined by a statisti-
cal linearization, e.g., as performed approximatively in
the linear regression Kalman filter [7], the Unscented
Kalman filter [6], or the Gaussian Estimator [15], e has
zero mean and minimum covariance Ce [7].

3.2 Induced Linearization Error for a
given State Decomposition

For a particular xm
k , linearization is performed on the

conditional measurement model

ŷ
k

= hk(xm
k ,x

c
k) + vk (3)



and conditional system model

xk+1 = ak(xm
k ,x

c
k) + wk . (4)

The covariance of the induced linearization error can be
stated for both measurement and system models and is
denoted as Ce|xm

k .
In order to assess the induced linearization error for

the complete prior density, the average accumulated lin-
earization error is given as

E = trace
(∫

f(xm
k ) ·Ce|xm

k dxm
k

)
. (5)

The trace was chosen to accumulate the induced lin-
earization errors for every dimension when coping with
multi-dimensional models.

It is now shown that E is zero, if and only if the
conditional model is linear for every xm

k in the support
of f(xm

k ). Because of the linearity of the trace operator,
(5) is equal to

E =
∫
f(xm

k ) · trace
(
Ce|xm

k

)
dxm

k .

The trace of a covariance matrix is non-negative, i.e.,
trace(Ce|xm

k ) ≥ 0, and in the support of the density
f(xm

k ) > 0 holds. Furthermore, the trace of a covari-
ance matrix is zero, if and only if the matrix is a zero
matrix, i.e., trace(Ce|xm

k ) = 0 ⇔ Ce|xm
k = 0. Thus, E

is zero, if and only if the linearization error is zero for
every xm

k in the support of f(xm
k ).

3.3 State Decomposition Algorithm

With the definition of the average accumulated lin-
earization error for a given state decomposition, a suit-
able decomposition has to be found that keeps the lin-
earization error low and the dimensionality d of the
marginal part xm

k as low as possible.
A graph showing all possible state decompositions

into two parts is visualized in Fig. 2. The state de-
compositions are given by a set of indices into the state
vector xk = [x1, . . . , xn]T, which describes the compo-
nents of the marginal part xm

k in the vector xk. For
example, the set {2, 3} corresponds to the state decom-
position xm

k = [x2, x3]T, xc
k = [x1, x4, x5, . . . , xn]T. All

possible partitionings of the state vector xk into two
parts are shown in an increasing order of d.

The optimal solution for decomposition can be
found by gradually increasing the dimensionality of the
marginal part d, until the linearization error is within
acceptable bounds. This is performed online by a
breadth-first search on the graph beginning with the
highest node denoted by ∅ going downwards.

Note that for nonlinear/linear decomposition, the op-
timal solution has minimum dimensionality dlin and an
average accumulated linearization error of zero. Now,
in order to obtain a nonlinear/nonlinear decomposition,
the average accumulated linearization error E < τ , with

∅

{1} {2} {n}. . .

{1,2,3} {n-2,n-1,n}. . .

. .
 .
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{1,. . .,n-1} {2,. . .,n}. . . {1,. . .,i-1,i+1,. . .,n} . . .
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. .
 .

. .
 .
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Figure 2: Graph structure visualizing all possible state
space decompositions into two parts. The nodes are
labelled with the sets of dimensions of one part.

a given threshold τ , is allowed. From all decompositions
in Fig. 2, a decomposition with minimum dimensional-
ity dnonlin that satisfies E < τ is chosen.

The dimensionality dnonlin resulting from nonlin-
ear/nonlinear decomposition is not higher that the di-
mensionality dlin from nonlinear/linear decomposition.
By defining an threshold τ for the maximum accept-
able linearization error, the dimensionality dnonlin of the
substate xm

k can be reduced, while keeping linearization
errors small.

Simplification of the Algorithm: The breadth-
first search in the graph can be computationally de-
manding, because a layer d in the graph consists of

(
n
d

)
elements, which have to be evaluated. Furthermore,
for growing d, the complexity for the calculation of (5)
increases.

Two possible simplifications are introduced, which
allow to efficiently find a suitable state decomposition:

1. Instead of performing a full breadth-first search on
the graph, only a greedy graph search is performed.
For a specific node, the child with the lowest lin-
earization error is greedily selected until a solution
is found. This reduces the number of state decom-
positions, for which the linearization error has to
be evaluated, from

(
n
k

)
per layer to a maximum of

n.

2. The linearization error (5) can be approximated by
employing certain Dirac mixture approximations
of the marginal density f(xm

k ). Instead of repre-
senting f(xm

k ) by means of a high-quality Dirac
mixture approximation for subsequent processing,
only a crude approximation with few components
is employed, for which the linearization error is
evaluated. Examples are the unscented transfor-



mation [6] or the sample-based approximation in
the Gaussian Estimator [15]. This results in a very
fast approximation of the averaged, accumulative
linearization error.

When applying these simplifications, finding the opti-
mal solution is not guaranteed any longer. Another de-
composition with a higher linearization error or higher
dimensionality d could be the result of these simplifi-
cations. Although it is no longer guaranteed that the
optimal state decomposition is found, these simplifi-
cations usually lead to results that are close or equal
to the optimal solution. Furthermore, they still reduce
the complexity of the state decomposition substantially,
which is essential for efficient estimation.

4 SGMF for Nonlinear/Non-
linear Decomposition

In this section, the adaptive online state decomposition
from Section 3 is applied to the Sliced Gaussian Mixture
Filter, which is introduced in [11, 12].

4.1 Density Representation

Originating from a given Gaussian mixture density

f̃(xk) =
M∑

j=1

wj
k · N

(
xk − µj

k
,Cj

k

)
, (6)

with weights wj
k, means µj

k
and covariance matrices Cj

k,
the nonlinear measurement (1), and system model (2),
a suitable state decomposition under consideration of
the induced linearization error is determined according
to Section 3.

For this state decomposition, the Gaussian mix-
ture (6) can be approximated by means of a sliced
Gaussian mixture density that employs a Dirac mixture
representation of the marginal density f(xm

k ). The con-
ditional density f(xc

k|xm
k ) is given in Gaussian mixture

form, leading to the density representation

f(xm
k , x

c
k) = f(xm

k ) · f(xc
k|xm

k )

=
N∑

i=1

αi
k · δ

(
xm

k − ξi

k

)
(7)

·
 Ni∑

j=1

βij
k · N

(
xc

k − µcij
k
,Ccij

k

) ,

with Dirac positions ξi

k
, means µcij

k
, and covariance ma-

trices Ccij
k . A tractable solution for density approxima-

tion is discussed in [12], where a systematic Dirac mix-
ture approximation algorithm is applied to the marginal
f(xm

k ) and the approximation is extended over the com-
plete state space by evaluating the given density (6).

The filter and prediction step employ this special den-
sity representation, which makes the density approx-
imation step essential in the SGMF processing cycle,
which is visualized in Fig. 3.

4.2 Density Processing

The density processing now slightly differs from [12].
The conditional substate xc

k depends on nonlinear parts
of the models, which makes them intractable for the
Kalman filter. Instead, due to the “slightly” nonlinear
parts of the models, which have low linearization errors,
special nonlinear estimators with a Gaussian density as-
sumption can be employed for processing the Gaussian
components in the slices.

Filter Step: For the substate xc
k, any nonlinear

Bayesian estimator that fulfills certain requirements
can be applied to the measurement model. The estima-
tor has to provide the estimated density by means of a
Gaussian component with mean and covariance matrix
and it has to supply a weighting factor, i.e., the inte-
gral over the product of prior density and likelihood.
The last condition is usually met by assuming a jointly
Gaussian distribution about the prior density and the
predicted measurement.

For a single slice, the component xm
k of the system

state is given and the measurement model results in
(3). In order to keep the linearization error low, every
Gaussian component from a slice in (7) is processed sep-
arately. A nonlinear estimator with a jointly Gaussian
distribution between a Gaussian over the conditional
substate and the predicted measurement approximates

f ij(y
k
, xc

k|ξi

k
) (8)

= N
(
y

k
− hk(ξi

k
,xc

k),Cv
k

)
· N
(
xc

k − µcij
k
,Ccij

k

)
≈ N

([
y

k
xc

k

]
−
[
ỹij

k
µcij

k

]
,

[
Cyij

k Cycij
k

Ccyij
k Ccij

k

])
(9)

by means of a Gaussian density. The parameters ỹij
k

,
Cyij

k , and Cycij
k of the density (9) are usually calculated

by linearizing the measurement model (3) by means of
system linearization (EKF), stochastic linearization in
case of sample-based methods (UKF, Gaussian Esti-
mator), or with analytic moment calculation [16]. The
estimated mean and covariance of the slice component
are calculated by conditioning (8) to y

k
= ŷ

k
, which

can be approximated by

f ij(xc
k|ŷk

, ξi

k
) ≈ N

(
xc

k − λij
k ,D

ij
k

)
,

with parameters λij
k and Dij

k of the conditional Gaus-
sian from Equation (9), i.e.,

λij
k = µcij

k
+ Ccyij

k

(
Cyij

k

)−1 (
ŷ

k
− ỹij

k

)
,

Dij
k = Ccij

k −Ccyij
k

(
Cyij

k

)−1

Cycij
k .

When processing Gaussian mixtures, a weighting fac-
tor, i.e., the integral over the product of every Gaussian
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Figure 3: Essential steps in the SGMF processing se-
quence.

and the likelihood, has to be considered. In this case,
because the linearization error is assumed to be small,
it can be calculated according to

γij
k =

∫
f(ŷ

k
, xc

k|ξi

k
) dxc

k ≈ N
(
ŷ − ỹij

k
,Cyij

k

)
.

Thus, the estimated sliced Gaussian mixture density is
given as

fe(xm
k , x

c
k) = ck ·

N∑
i=1

αi
k · δ

(
xm

k − ξi

k

)

·
 Ni∑

j=1

βij
k · γij

k · N
(
xc

k − λij
k ,D

ij
k

) , (10)

with the normalizing factor

ck =

 N∑
i=1

Ni∑
j=1

αi
k ·βij

k · γij
k

−1

.

Prediction Step: For the prediction step, the only
requirement for the nonlinear estimator applied to the
slice components is that the predicted density is a Gaus-
sian density.

The conditional system model is given by equa-
tion (4). Again, it is assumed that the induced lin-
earization error is small in this case.

Just as in the filter step, every component of the slice
is processed separately. The joint density of the esti-
mated Gaussian component in (10) and its prediction
is given as

f ij(xk+1, x
c
k|ξi

k
) = (11)

N
(
xk+1 − ak(ξi

k
, xc

k),Cw
k

)
· N
(
xc

k − λij
k ,D

ij
k

)
,

which is Gaussian when the system model is linear. In
order to receive a desired predicted Gaussian density,
again different tasks can be performed, e.g., lineariza-
tion of the system model as in the EKF, or by calculat-
ing mean and covariance of (11), for example by sam-
pling f(xc

k), as pursued in the UKF and the Gaussian
Estimator. This can be described by an approximation
of the marginal over the predicted state of the joint
density (11) by a Gaussian

f ij(xk+1|ξi

k
) =

∫
f ij(xk+1, x

c
k|ξi

k
) dxc

k

≈ N
(
xk+1 − µij

k+1
,Cij

k+1

)
.

Finally, the predicted Gaussian mixture density is given
by

fp(xk+1) =
N∑

i=1

Ni∑
j=1

νij
k+1N

(
xk+1 − µij

k+1
,Cij

k+1

)
,

with the weighting factor

νij
k+1 = αi

k ·βij
k · γij

k · ck .

Gaussian Mixture Reduction: For computa-
tional feasibility, a Gaussian mixture component reduc-
tion is necessary, which prevents exponential growth in
the number of components, as discussed in [12]. Possi-
ble locations of the component reduction phase in the
SGMF processing cycle are visualized in Fig. 3.

5 Simulations
5.1 Adaptive State Space Decomposi-

tion

This simulation shows the adaptive bahaviour of the
online state decomposition algorithm. The nonlinear
system model for a ten-dimensional system is given by

xk+1 =



0.2x
(1)
k + 0.3x

(2)
k +

(
x

(5)
k

)2

0.2x
(2)
k x

(8)
k

x
(3)
k + cos

(
x

(4)
k

)
sin2

(
x

(4)
k

)
0.2
(
x

(5)
k + x

(6)
k + x

(7)
k

)√
|x(6)

k |+ x
(1)
k

x
(6)
k /x

(7)
k +

√
|x(9)

k |
x

(3)
k + x

(8)
k(

0.2x
(2)
k x

(9)
k

)
/
(
x

(6)
k + x

(7)
k

)
sin
(
x

(10)
k

)
+ x

(3)
k



+ wk ,

with zero mean Gaussian distributed system noise wk,
where x(i) denotes the i-th element of a vector xk. The
measurement model is also nonlinear and is given byŷ

(1)
k

ŷ
(2)
k

ŷ
(3)
k

=


x

(1)
k x

(4)
k x

(7)
k + x

(8)
k(

x
(5)
k + x

(10)
k

)
x

(2)
k + x

(4)
k + x

(5)
k + x

(6)
k

x
(3)
k x

(6)
k + sin

(
x

(4)
k

)
cos
(
x

(8)
k

)
+vk .

For adaptive state space decomposition, a threshold of
τ = 0.015 was chosen. The simulation was performed
for ten time steps, where three-dimensional measure-
ments are available at time steps 1,2,5,6,7,9, and 10.

For ten independent simulation runs, the average di-
mensionality d of xm

k is visualized in Fig. 4. For every
time step, the system model adds uncertainty to the
state estimate, and thus, a higher-dimensional substate
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Figure 4: Average dimensionality d of xm
k for different

time steps.

has to be processed by means of a Dirac mixture den-
sity due to the nonlinear system model. For the first
time steps, d = 0 holds, and thus, the complete nonlin-
ear model can be processed with a Gaussian assumed
density filter. At the time steps 3 and 4, when no mea-
surements are available, the uncertainty increases and
the induced linearization error exceeds the threshold
τ , which results in an increase of d. By incorporating
measurements into the state estimate, this effect can
be revoked and the dimensionality of d decreases. The
same effect occurs for the missing measurement at time
step 8.

For nonlinear/linear state space decomposition, d
would be 7. The 7-dimensional nonlinear part would
have to be processed by sample-based approaches and
would lead to a much higher computational demand.
Thus, in the proposed approach the dimensionality of
the nonlinear marginal part is substantially reduced,
which leads to a more efficient state estimate.

5.2 Decomposition for Reducing Com-
putational Complexity

The simulation example pursued here is bearings-only
tracking [1], or cooperative passive target tracking,
where the task is to track a moving target by means
of angular measurements from multiple sensors.

Simulation Setup: The simulation setup is adopted
from [12], where the target is moving in a two-
dimensional plane on an S-shaped curve passing two
sensors located at the positions [0 km, 0 km]T and
[10 km, 0 km]T, as visualized in Fig. 5. The five-
dimensional state space vector xk = [pk, qk, ṗk, q̇k, ωk]T

consists of the target’s position pk, qk, its velocity ṗk, q̇k,
and turn rate ωk. Nonlinear/linear decomposition re-
sults into xk = [(xn

k )T, (xl
k)T]T = [(xm

k )T, (xc
k)T]T,

with xn
k = [ωk, pk, qk]T, xl

k = [ṗk, q̇k]T, and a nonlin-
ear/nonlinear decomposition is given by xm

k = ωk, and
xc

k = [pk, qk, ṗk, q̇k]T.
The measurement equation relates the target posi-

tion to the two measured angles originating from both
sensors according to[

ϕ̂
(1)
k

ϕ̂
(2)
k

]
=

atan2
(
qk−q(1)S ,pk−p(1)

S

)
atan2

(
qk−q(2)S ,pk−p(2)

S

)+ vk ,

−4 0 4 8 12

−4

0

4

p/km

q/
k
m

[p, q]

trajectory

target

sensor sensor

ϕ(1)
ϕ(2)

k=0

k=20

k=39

Figure 5: Visualization of cooperative passive target
tracking with angular measurements.

where vk is zero-mean Gaussian distributed mea-
surement noise with covariance matrix Cv

k =
diag

(
(1.5◦)2, (1.5◦)2

)
. The motion of the target is mod-

eled by
pk+1

qk+1

ṗk+1

q̇k+1

ωk+1

=


T si(ωkT ) −T co(ωkT )
T co(ωkT ) T si(ωkT )
cos(ωkT ) − sin(ωkT )
sin(ωkT ) cos(ωkT )

0 0

·
[
ṗk

q̇k

]
+


pk

qk

0
0

ωk

+wk.

Note that the functions si and co are defined as

si(x) =
{

sin x
x , x 6= 0

1, x = 0 , co(x) =
{

1−cos x
x , x 6= 0

0, x = 0 .

The covariance Cw
k of the system noise term is given as

Cw
k =

[
ρ2

kQ0 0
0T T 2a2

ωk

]
,Q0 =

[
T 3/3 · I2 T 2/2 · I2

T 2/2 · I2 T · I2

]
,

with the identity matrix I2 ∈ R2×2 and the parameters
T = 2 s, ρ2

k = 9.6236 m2 s−3, and a2
ωk = 0.07 s−4.

Simulation Results: In these simulations, the novel
nonlinear/nonlinear state decomposition for the Sliced
Gaussian Mixture Filter (N-SGMF) is compared to the
nonlinear/linear state composition of the SGMF and
the marginalized particle filter (MPF).

The numbers of samples and Gaussian components
are chosen to yield about the same estimation perfor-
mance for these three filters. The MPF uses 16384
particles with attached Gaussian components and for
the SGMF 1024 slices were used, which were reduced
to two components each, resulting in 2048 Gaussian
components for the sliced Gaussian mixture density.
The new N-SGMF approach takes 32 slices, where the
conditional density for every slice was reduced to a
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Figure 6: Comparison of the proposed algorithm (N-SGMF), the Sliced Gaussian Mixture Filter (SGMF), the
marginalized particle filter (MPF), and the Gaussian Estimator (GE): The root-mean-square errors of the posi-
tion, velocity, and turn rate averaged over 100 simulation runs for time steps 1 to 39.

single Gaussian, which was estimated with the Gaus-
sian Estimator employing 17 sample points for 4 di-
mensions. Note that the conditional substate for non-
linear/linear state decomposition is three-dimensoinal,
whereas for nonlinear/nonlinear decomposition it is
only one-dimensional. Hence, fewer components are
necessary for the N-SGMF. As reference, the Gaus-
sian Estimator (GE) without any state decomposition
is used with 21 sample points.

100 independent simulation runs were performed
with 39 time steps for the S-shaped trajectory. Fig. 6
shows the root-mean-square error for the position, ve-
locity, and turn rate over time for the compared al-
gorithms. The figure shows similar estimation perfor-
mance for the MPF, SGMF, and N-SGMF. The GE
is not able to track the target satisfactorily over the
complete time horizon.

Even though the estimation performance of the MPF,
SGMF, and N-SGMF are similar, the number of used
Gaussian components and the computational effort dif-
fer substantially. Table 1 lists the number of opera-
tions required. Here, only the numbers for one estima-
tion cycle, i.e., approximation, filter step, and predic-
tion step, were shown. The numbers only consider the
processing of the conditional parts of the sliced Gaus-
sian mixture density or the Gaussians associated to the
particles in the MPF. Only matrix and vector oper-
ations were counted, omitting single scalar operations,
the point-wise evaluation of a Gaussian mixture density,
operations for random sampling, and Dirac mixture ap-
proximations. Furthermore, the costs of the Gaussian
mixture reduction algorithm for the SGMF was left out,
which contributes in a significant way to the SGMF run
time. The table shows that the number of operations
used in the proposed algorithm are about 50 to 100
times lower compared to the previous SGMF approach
and still about 20 times lower than the MPF for most
of the compared operation types.

This simulation shows the advantage of the proposed
algorithm against state of the art estimators, such as

the previous SGMF approach and the MPF by apply-
ing the novel state decomposition. The number of op-
erations and Gaussian components is dramatically re-
duced, while maintaining superior estimation quality.
The new approach is able to handle complex nonlinear
problems where simple estimators do not yield satisfac-
tory results.

6 Conclusions
In this paper, a novel nonlinear/nonlinear state de-

composition method for the SGMF is proposed. The
state space is decomposed into two parts, where dif-
ferent estimation techniques are applied, depending on
the level of nonlinearity of the model. The idea is to
use nonlinear estimation techniques that make use of a
Gaussian assumption for subspaces where the induced
linearization error is low. By this means, the dimen-
sionality of the remaining (highly) nonlinear subspace
is decreased, where an expensive Dirac mixture approx-
imation and processing has to be performed.

In order to obtain a suitable state decomposition of
this type, linearization errors have to be considered.
The average accumulated linearization error describes
the error that occurs by nonlinear/nonlinear state de-
composition and application of the estimators employ-
ing the Gaussian assumption. Because it depends on
the prior density given, the state decomposition has to
be performed online before density processing.

This state decomposition leads to more efficient pro-
cessing of nonlinear models and reduces the number
of slices and Gaussian components consumed in the
SGMF dramatically. In comparison to other nonlin-
ear state of the art estimators, the proposed approach
is able to cope with complex nonlinear models, while
consuming orders of magnitude less vector and matrix
operations. Nevertheless, some challenges remain for
the SGMF:
• Optimal density approximation: A sliced Gaussian

mixture density approximation that minimizes ap-
proximation errors is desirable.



Table 1: Comparison of the number of vector and ma-
trix operations for processing all conditional densities
in the N-SGMF, SGMF, and MPF.

Number of operations N-SGMF SGMF MPF

Eigen decomposition 64 0 0
Matrix inversion 1088 2.63 · 105 16384
Matrix multiplication 5088 2.71 · 105 147456
Matrix vector mult. 3104 2.66 · 105 65536
Matrix addition 2112 2.64 · 105 32768
Vector addition 4320 2.64 · 105 16384

• Complete prevention of degeneration: Degenera-
tion can occur in the filter step when the weights of
the slices are updated according to the likelihood.
This could be avoided by considering the likelihood
directly in the density approximation process.

• Omitting the need for Gaussian mixture compo-
nent reduction: Due to the increasing number
of Gaussian mixture compoents during process-
ing [12], a component reduction is needed. Other
ways for approximation or processing the densities,
which eliminate the need for a component reduc-
tion step, should be found.

• Consideration of linear sub-structures in the mod-
els: A hierarchical decomposition into three parts
is possible. The conditional substate xc

k can fur-
ther be split by a nonlinear/linear decomposition.
This is not in the scope of this paper, but it can
easily be incorporated into this framework, e.g., by
employing [8].
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