
Support-Vector Conditional Density

Estimation for Nonlinear Filtering

Peter Krauthausen1, Marco F. Huber2, and Uwe D. Hanebeck1

1Intelligent Sensor-Actuator-Systems Laboratory (ISAS), Institute for Anthropomatics,
Karlsruhe Institute of Technology, Germany.

2Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, Germany.
Peter.Krauthausen@kit.edu, Marco.Huber@ieee.org, Uwe.Hanebeck@ieee.org

Abstract – A non-parametric conditional density
estimation algorithm for nonlinear stochastic dynamic
systems is proposed. The contributions are a novel sup-
port vector regression for estimating conditional den-
sities, modeled by Gaussian mixture densities, and an
algorithm based on cross-validation for automatically
determining hyper-parameters for the regression. The
conditional densities are employed with a modified axis-
aligned Gaussian mixture filter. The experimental va-
lidation shows the high quality of the conditional densi-
ties and good accuracy of the proposed filter.

Keywords: Nonlinear estimation and filtering, condi-
tional density estimation, support vector regression.

1 Introduction
Estimating the hidden state of a nonlinear stochas-

tic dynamic system lies at the heart of many applica-
tions in signal processing, computer vision, robotics,
and machine learning. This problem is hard, as ana-
lytic, closed-form Bayesian solutions with low, constant
complexity cannot be found in general.

There exists a wealth of approximative approaches
to nonlinear estimation problems. Regarding the ap-
proaches working with certain parameters of the system
and measurement functions, the main distinction can
be drawn between function approximation approaches,
e.g., the Extended Kalman Filter (EKF) [1], and density
approximation approaches, e.g., the Unscented Kalman
Filter (UKF) [2]. The former can be understood as
linearizing the system and measurement functions. In
contrast, the UKF deterministically samples the arising
densities and processes these samples using the original
nonlinear system and measurement functions.

All of the above approaches use a generative model
consisting of nonlinear functions with a fixed noise
level. With the advent of Gaussian Processes (GP)
[3], sample-based probabilistic models are employed.
Thus, for each input one obtains a Gaussian distribu-
tion over the output, so as if calculating a set of func-
tions that were Gaussian distributed. Lately, the EKF

and UKF approaches were extended to incorporate GP
system and measurement relations, yielding the GP-
EKF and the GP-UKF [4, 5]. Most interestingly, the
explicit function and density approximation performed
by the EKF and UKF may be avoided, if one assumes
a Gaussian posterior distribution leading to an analytic
moment-based GP filter (GP-ADF) [6]. Thus, the GP-
ADF allows not only for a processing of samples of a
density, but an entire density.

The proposed approach is based on estimating the
probabilistic models characterized by nonlinear system
and measurement functions, i.e., the conditional densi-
ties, by a support vector regression (SVR) [7, 8] from
samples only. The resulting probabilistic models in
form of mixtures of axis-aligned Gaussians are used
with a modified nonlinear Gaussian mixture filter. The
obtained posterior distributions are non-Gaussian, al-
lowing for multimodal posterior densities. Note that
multimodal densities cannot be supported in any of the
above approaches. In addition, this specific type of mix-
tures allows for closed-form computation of the predic-
tion and filtering step and restricts the complexity to
a constant number of components, if the two steps are
alternated [9, 10]. Besides the representational bene-
fits, experimental results show that the application of
the sample-based conditional density functions delivers
good performance at less computational cost: In gen-
eral, each GP processing step involves iterating over all
training samples. For an SVR filter step, one iterates
only over all components in the density, which may be
significantly less.

The rest of this paper is structured as follows: In
Sec. 2, the problem formulation is given. Sec. 3 intro-
duces a novel support vector regression method for es-
timating the probabilistic models from samples and an
algorithm for determining the hyper-parameters. In
Sec. 4, a modified axis-aligned Gaussian mixture filter is
derived. In Sec. 5, the proposed approach is compared
to benchmark density estimators and nonlinear filters.



2 Problem Formulation
In this paper, time-invariant discrete-time stochastic

dynamic systems described by a system equation

xk = a(xk−1) + wk−1 (1)

are considered. Here, a(.) denotes a nonlinear map-
ping of the system state xk, wk−1 ∼ N (0, σw) additive,
white Gaussian system noise and k the discrete time in-
dex. The relation between xk and an observation yk is
given by the measurement equation

yk = h(xk) + vk . (2)

Analogously, h(.) denotes a time-invariant nonlinear
function and vk ∼ N (0, σv) additive, white Gaussian
measurement noise. Given the models (1) and (2), a
prior distribution x0, and specific measurements ŷ1:k,
the probability density of the hidden state xk is esti-
mated by recursive filtering—consisting of alternating
prediction and filter steps described below.

Prediction Step The density f(xk|ŷ1:k−1) is calcu-
lated based on the transition density f(xk|xk−1) gov-
erned by (1) and the estimate of the hidden state xk−1

f(xk|ŷ1:k−1) =∫
f(xk|xk−1) f(xk−1|ŷ1:k−1) dxk−1 . (3)

Filter Step The fusion of the estimate f(xk|ŷk−1)
with the latest measurement ŷk is performed in the filter
step, i.e., the information of all measurements up to
time step k is combined in this estimate. Using (3) as
a prior, the likelihood function f(yk|xk) defined by (2)
and Bayes’ rule, one obtains

f(xk|ŷ1:k) =
f(ŷk|xk) f(xk|ŷ1:k−1)

f(ŷk|ŷ1:k−1)
. (4)

In general, (3) and (4) cannot be solved analyti-
cally and may be calculated approximately only. The
defining elements are the conditional density functions
f(yk|xk) and f(xk|xk−1). These conditional densities
are determined by (1) and (2) and typically prohibit the
closed-form analytic solution to (3) and (4). In some
special cases, e.g., conditional densities in the form of
Gaussian mixtures, closed-form analytic solutions exist.

In the rest of this paper, the problem of estimating
conditional densities in the form of Gaussian mixtures
with diagonal covariance matrices, based on i.i.d. data

D = (x1, y1), . . . , (xl, yl) ∈ R× R

is addressed. Thus, it is not required to have the genera-
tive models (1) and (2) available in explicit form. Since
for many applications, the functions a(.) and h(.) are
unknown, estimating the conditional densities based on
data only is an essential feature.

3 Conditional Density
Estimation

In this section, an algorithm for estimating condi-
tional densities in the form of mixture densities

f(y|x) =
l∑
i=1

αiKσx(x, µxi )Kσy (y, µyi ) , (5)

with kernel Kσx(x, µ) := exp
{
− 1

2
(x−µ)2

σ2
x

}
and weights

α = [α1, . . . , αl]T is proposed. In (5), the kernels
are independent for x and y for each mixture compo-
nent. The mixture consists of one kernel for each data
point with the kernels’ means being identical to the
data points. The estimation consists of the solution
of a quadratic optimization problem for determining α
given fixed hyper-parameters, e.g., kernel widths σ or
complexity penalties, embedded in an hyper-parameter
optimization.

3.1 Ingredients

For fixed parameters, the estimation algorithm com-
prises three parts: a term penalizing the density’s com-
plexity, an error term, and the constraints necessary to
obtain valid conditional density functions. The com-
plexity term

Ω(α) =
l∑

i,j=1

αi αj Kσx(xi, xj)Kσy (yi, yj) (6)

is a norm in the reproducing kernel hilbert space and
has an intuitive interpretation. Imagine the density is
estimated by minimizing (6) only. Additionally, assume
equidistant samples to be given. Then, (6) will penal-
ize the variance in the weights of the samples. If the
samples are not equidistant, the penalty will depend
on the similarity of the samples. In order to avoid ex-
treme outliers, the weights are bounded from above by
a user-defined or automatically determined value ν.

The error term consists of slack variables measuring
the error between the empirical cumulative distribu-
tion F̃ (x, y) and the respective cumulative distribution
F (x, y) of the joint density f(x, y) over x and y based
on the conditional density estimate, i.e.,

F (x, y) =
l∑
i=1

1
l

l∑
j=1

Kσx(xi, xj) s(x− xj)

·
∫ y

−∞
Kσy (yi, y′) dy′ ,

with s(x) = 1 if x ≥ 0 and s(x) = 0 otherwise. Note,
that the error is compared at the sample points D only.
It is assumed that f(x) =

∑l
i=1 wi δ(x − xi) is well-

defined in the sense, that the data is spread evenly over
the considered interval of x. Here, δ(.) denotes the
Dirac distribution. To allow for small levels of noise, the



error terms ξ(∗)i := {ξi , ξ∗i } measure the error exceeding
an ε-insensitive loss zone only.

For estimating a function f based on D that is a valid
conditional density function, the following constraints
need to be asserted∫ ∞

−∞
f(y|x̂) dy = 1 , f(y|x̂) ≥ 0 , (7)

for all fixed x̂. For a mixture density of this kind, meet-
ing the second constraint in (7) is simple, if the mix-
ture components are Gaussian densities, by asserting
all weights to be non-negative, i.e., αi ≥ 0. Complying
with the first constraint in (7) is hard, if not impossi-
ble, and will in general require an ex-post normalization
step. In [7], the constraint

l∑
i=1

1
l

l∑
j=1

Kσx(xj , xi) = 1

is devised to approximate this constraint in (7). The
rationale behind this approximation is to normalize the
conditional density by normalizing the joint density of
f(x, y). As the only available information about the
true density f(x) is the empirical cumulative distri-
bution F̃ (x), the constraint simplifies to a normaliza-
tion for each conditional density f(y|xi) conditioned
on each element of the training set, i := 1, . . . , l. An
alternative approximation can be sought if the sam-
ples are restricted to an interval xi ∈ [xmin, xmax] with
I := xmax−xmin. In this case, the normalization can be
performed without the approximation by the empirical
distribution F̃ (x), but one can apply the constraint∫ xmax

xmin

∫ ∞
−∞

f(y|x) dy dx = I .

Empirically, it was observed that the following con-
straints lead to slightly better results

l∑
i=1

αi = I′ , 0 ≤ αi ≤ min
(

I′,max( ν, I′/l )
)︸ ︷︷ ︸

=:ν′

. (8)

with i = 1, . . . , l and I′ := I
2π σx σy

.

3.2 Optimization Problem

In order to arrive at a readily solvable optimization
problem, the complexity penalty term, the error term,
and the constraints (8) are combined. The trade-off
between the error terms ξ(∗)i and the complexity penalty
Ω(α) is adjusted by a scalar parameter λ. This value
is set before the optimization starts and reflects the
user’s confidence in how well the data represent the
true underlying conditional density.

Estimating f(y|x) corresponds to solving the follow-
ing quadratic optimization problem given in the stan-
dard formulation

min
α1:l, ξ1:l, ξ∗1:l

Ω(α) + λ · 1
l

l∑
i=1

(ξi + ξ∗i ) (9)

s.t. F̃ (xi, yi)− F (xi, yi) ≤ ε+ ξi ,

F (xi, yi)− F̃ (xi, yi) ≤ ε+ ξ∗i ,

l∑
i=1

αi = I′ , 0 ≤ αi ≤ ν′ .

The problem (9) may be solved using a standard
quadratic program solver. The solution is a mixture
of products of kernels centered at salient (xi, yi) ∈ D—
the support vectors (SVs). This optimization approach
is a novel blend of Vapnik’s approach to conditional
density estimation [7] and a Support Vector Regression
[8] with ε-insensitive loss function.

Note, that the algorithm above is restricted to scalar
in- and output dimensions only. Extending the condi-
tional density estimation to the multi-dimensional case
is trivial, if the kernels for each dimension are separable.
If this is not the case, artifacts arising from the ambi-
guity of the multi-variate empirical cumulative distri-
bution function may make an application of a localized
cumulative distribution [11] necessary. This will lead
to major changes in the formulation of (9).

3.3 Hyper-Parameter Determination

Solving the above quadratic program requires setting
the hyper-parameters

θ := {σx, σy, ν, λ, ε} .
To this end, an optimization scheme based on cross-
validation is proposed. For each partitioning D = T ∪
V of the data set, T ∩ V = ∅ is assumed. Given an
initial parameter estimate θ0, the optimization problem
(9) is solved for the training data T . The resulting
conditional density f(.|.) is tested on the hold-out set V.
As a validation function G(.), a weighted sum of the
negative log-likelihood NLx and a weight penalty

G(V) = ‖ α ‖22 +C ·
∑
v∈V

log f(v|θl) (10)

is employed. For k-fold cross-validation, the results are
averaged to assess the quality. The hyper-parameters
may then be found by minimizing the average G(D) by
standard methods, e.g., a (Quasi-)Newton approach.
Note (10) is subject to constraints, e.g., σ > 0 and
valid ν. Domain knowledge may be introduced by con-
straining the parameters and determining the trade-off
C between data fit and variance in the weights, which
resembles Ω(α) but is cheaper to compute. For exam-
ple, in the experiments in Sec. 5, tight bounds on ε
and λ were user-defined or obtained from a line-search.
Alg. 1 summarizes the results of this section.



Algorithm 1 Conditional Density Estimation
Input: D, θ0
θl := θ0
while Gradient > Threshold do

for all Partitions i do
Solve optimization problem (9) for Ti, θl → f
Validate f using Vi, θl → Gi

end for
Average all Gi → G
Update θl: minimize

θl
G → θl+1

end while

4 Support-Vector
Density Filter (SVDF)

In this section, it will be shown how the derived SV
conditional densities can be used with the prediction
and filter step of Sec. 2. The actual steps resemble the
processing for mixtures of axis-aligned normal densities
[9, 10], but require additional normalization. The re-
sulting filter is a good compromise with regard to the
general issues of nonlinear filtering addressed in Sec. 2.

4.1 Prediction Step

A prior distribution is assumed to be given by

f(xk−1|ŷ1:k−1) =
∑
e∈E

αeKσe(xk−1, x
e
k−1) . (11)

For the sake of brevity, the indexing of weights, kernels,
and parameters is summarized by index e, which corre-
sponds to a specific mixture component. Furthermore,
let the result of estimating f(xk|xk−1) on the basis of
a data set D, by solving (9), be given in the form of

f(xk|xk−1) =∑
a∈A

αaKσ(1)
a

(xk−1, x
a
k−1)K

σ
(2)
a

(xk, xak) . (12)

In the above equation, the means xak−1 and xak corre-
spond to support vectors from the training set D. After
inserting f(xk−1|ŷ1:k−1) in the form of (11) and (12),
one may simplify (3) after some rearrangements to

f(xk|ŷ1:k−1) =
∑
a∈A

αaKσ(2)
a

(xk, xak)

·
∑
e∈E

αe

∫
K
σ

(1)
a

(xk−1, x
a
k−1)Kσe(xk−1, x

e
k−1) dxk−1︸ ︷︷ ︸

=: cap Kσap (xak−1,x
e
k−1)

.

Defining σap :=
√(

σ
(1)
a

)2 + σ2
e , xpk := xak, P := A,

σp := σ
(2)
a and setting the new weights to

αp := αa c
ap
∑
e∈E

αeKσap(xak−1, x
e
k−1) ,

gives the distribution of the predicted state xk. The
resulting density

f(xk|ŷ1:k−1) =
∑
p∈P

αpKσp(xk, x
p
k) (13)

can be understood as the result of weighting the mix-
ture density about xk with the product of the prior
density and the xk−1-dimension of the transition den-
sity. It is noteworthy that |P| in (13) is constant and
depends on the number of support vectors only. Thus,
every prediction step will return a mixture with a fixed
number of components. The calculations necessary to
obtain (13) can be performed analytically and exactly.

4.2 Filter Step

In order to solve (4), we assume f(xk|ŷ1:k−1) to be
given in the form of (13) and the likelihood function
f(yk|xk) to be given in form of a solution to (9), i.e.,

f(yk|xk) =
∑
h∈H

αhKσ(1)
h

(xk, xhk)K
σ

(2)
h

(yk, yhk ) . (14)

In the above equation the means yhk and xhk correspond
to support vectors from the training set D. Inserting
(13), (14) and a measurement value ŷk into (4) yields

f(xk|ŷ1:k) = c ·
[∑
h∈H

αhKσ(1)
h

(xk, xhk)K
σ

(2)
h

(ŷk, yhk )

]

·
∑
p∈P

αpKσp(xk, x
p
k)

 . (15)

Combining the sums in (15) and rearranging gives

f(xk|ŷ1:k) = c
∑
e∈E

αeKσe(xk, xek) . (16)

For e := (h, p), i.e., E = P×H with σe :=

√ (
σ

(1)
h

)2
σ2
p(

σ
(1)
h

)2
+σ2

p

,

one obtains

αe := αh αpKσ(2)
h

(ŷk, yhk ) Kσe(xpk, xhk) ,

xek :=
xpk
(
σ

(1)
h

)2 + xhkσ
2
p(

σ
(1)
h

)2 + σ2
p

.

The normalization constant is c := f(ŷk|ŷ1:k−1) =
1P

e∈E αe
. The expression in (16) can be calculated ana-

lytically and exactly. Since |E| = |P| · |H|, repeated
filter steps will cause an exponential increase in the
number of components. Yet, if f(xk|ŷ1:k) is processed
in the prediction step, the number of components |E|
will remain constant. The proposed SVDF allows for
exact analytic computation of the prediction and filter
step. One obtains posterior distributions in the form
of mixtures of axis-aligned Gaussian kernels allowing



for multimodal state distributions. An extension to the
multi-dimensional case is trivial, if the in- and output
dimensions are assumed to be separable. In case of
repeated filtering without intermediate prediction, i.e.,
fusing several measurements that are mutually condi-
tionally independent given the state xk, an exponential
growth in the number of components will occur. If the
computational burden is too high, standard fast Gaus-
sian mixture reduction algorithms, e.g., [12, 13, 14],
may be employed.

5 Experiments
In order to assess the quality of the proposed ap-

proach as a stand-alone conditional density estimation
procedure, likelihood scores were compared with results
of Expectation Maximization [15] for Gaussian mix-
ture densities, kernel density estimation (KDE), and
Gaussian Process Regression (GPR) [3]. EM and KDE
can be understood as the default density estimators,
whereas GPR has been shown to produce good proba-
bilistic models for filtering applications with underlying
functional dependency.

In order to evaluate the performance on a problem
with nonlinear system and measurement models, the
SVDF is compared with EKF, UKF, GP-UKF, and
GP-ADF on the growth process example from [6]. The
above filters assume the density to be well-represented
by a Gaussian. In contrast, the SVDF is capable
of maintaining multimodal posteriors, which will be
shown by the application to the cubic system func-
tion problem, as introduced in Sec. 5.1. Additionally,
results for the case of a linear system and a nonlin-
ear measurement model are presented, which typically
produces singularities in GP-based Filters such as the
GP-ADF. For the experiments, the MatlabTM imple-
mentation of EM, the kernel density estimation (KDE)
toolbox [16] and the EKF, UKF, GP-UKF, as well as
GP-ADF implementations from [6] were used.

5.1 Comparison of Likelihood Scores

For comparing the quality of the conditional density
estimation produced by the proposed approach, condi-
tional densities were generated based on samples drawn
from a cubic function disturbed by additive noise

xk+1 = 2 xk − 0.5 x3
k + wk , wk ∼ N (0, 0.175) . (17)

For training, 100 points were randomly distributed in
[−3, 3] and another 100 points were generated as a hold-
out set. The quality is measured by the likelihood of
this hold-out set, where a uniform prior is assumed.
Tab. 1 lists the negative log-likelihood NLx of the test
data. Lower values indicate higher estimation quality.
Two configurations of EM were used. As we assume
additive noise, EM only trains mixture models of Gaus-
sians with covariance matrices that are non-zero only on
the main diagonal. In the first configuration, EM was

EM1 EM2 KDE RSDE GPR SVR

NLx 1.90 2.79 0.87 1.03 0.14 0.55
Comp 87.2 14.6 100 11.1 100 88.2

Table 1: Negative log-likelihood of the test data and
number of the components for the conditional den-
sity estimates returned by EM, GPR and the proposed
quadratic programming approach. The results are av-
erages over ten experiments.

restricted to estimating homoscedastic Gaussian mix-
ture densities, i.e., a mixture with identical variances σx
and σy, only. The number of Gaussians to be fit was set
to the number of Gaussians minus one1 obtained by the
SVR. In the last EM-experiment, again homoscedastic
Gaussian mixture densities (EM2) were estimated, but
the number of Gaussians was obtained trying all num-
bers smaller than the number of samples and choosing
the model with the best Akaike information criterion
score. Regarding non-parametric approaches, results
for a kernel density estimator (KDE) with bandwiths
chosen according to rule-of-thumb [17], a reduced ker-
nel density estimate (RSDE) [18], and GPR are re-
ported. The conditional densities for EM, KDE, and
RSDE are obtained on the basis of the obtained joint
density estimates.

The results in Tab. 1 show that EM produces the
worst conditional densities. The reason for this is shown
in Fig. 1. The conditional densities returned by EM suf-
fer from overfitting in the extreme points of (17) around
(±√2,±√2). All non-parametric approaches produce
conditional densities that appear to have an underly-
ing continuous function, whereas GPR and SVR clearly
outperform KDE and RSDE. Note that the GPR results
are misleadingly good as the system chosen is especially
favorable for this technique. The GPR’s problems with
other system types and the advantages of the SVR’s
mixture density representation for filtering applications
are discussed in the following experiments.

5.2 Growth Process

Given the scalar nonlinear system and measurement
equations

xk+1 = 0.5 xk + 25 xk
1+x2

k
+ wk , wk ∼ N (wk, 0.2) ,

yk+1 = 5 sin(2 xk+1) + vk+1 , vk+1 ∼ N (vk+1, 0.01) ,

the hidden state shall be estimated. As a kernel,
N (x − x̂, σ) := 1√

2πσ
· Kσ(x, x̂) is used. The prob-

lem resembles a growth model [19] and is taken from
[6]. For training, 100 points were randomly distributed
in [−10, 10]. The prior density is given as a normal
density with µ0 ∈ [−10, 10] and σ0 = 0.5. For 200 inde-
pendent states x(i)

0 , the observations y(i)
1 of the succes-

sive states were calculated, where i = 1, . . . , 100. The
1This is due to numerical issues with the EM implementation.
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Figure 1: From left to right: EM results with different number of components and dense as well as sparse kernel
density estimates. The last two results are obtained from GPR and SVR. Note that the densities were normalized
except for the GPR results, which are automatically normalized.

performance is assessed by comparing the Mahalanobis
distanceM(x) of the filtered mean to the ground truth
and negative log-likelihood NLx of the hidden state in
ten experiments. For the Gaussian mixture densities
(SVDF, SVDF*) M(x) and NLx were calculated for a
moment-matched Gaussian density. Even though lower
values ofM(x) and NLx indicate better accuracy, only
NLx penalizes uncertainty. To exemplify the differ-
ences, Fig. 2 gives the results for the above generative
models for one run, when setting the seed for the ran-
dom samples identical to [6]. The averaged results over
ten experiments are given in Fig. 3(a) and show that the
estimation performance of the SVDF compares well to
the GP-ADF’s performance.

Note that both probabilistic models used with the
SVDF were determined by hyper-parameter optimiza-
tion. The results for SVDF* are obtained by manu-
ally tuning the hyper-parameters. For the example in
Fig. 2, the number of SVs returned by the SVR for au-
tomatically and manually obtained hyper-parameters
are given in the following table. Apparently, the condi-
tional density for the system model is harder to estimate
than for the measurement model.

% SVs (100) Automatic Manual

f(xk+1|xk) 100 100
f(yk|xk) 31 56

5.3 Cubic System Function

In order to assess the filter’s capability of maintain-
ing multimodal posterior densities, the results of suc-
cessive predictions using the cubic system function (17)
are reported. The prior density is given by f(x0) =
N (x0 − 0.4, 0.8). Fig. 4 shows the true posterior den-
sity as well as the GP-ADF and SVDF estimated pos-
terior densities after 1, 2, 3, and 4 prediction steps us-
ing (17) and the above prior. Furthermore, a moment-
matched Gaussian approximation to the SVDF poste-
rior is depicted. The true posterior was obtained from
high resolution numerical integration. These results
explicate the SVDF’s possibility of estimating multi-
modal posterior densities. The EKF, UKF, GP-UKF,
and GP-ADF only support Gaussian posterior densi-
ties and thus, are not suitable for this type of problem.
Even the moment-matched Gaussian approximation to
the SVDF’s posterior density yields better results.

5.4 Recursive Filtering

Recursive filtering of a time series governed by

xk+1 = 1.1 xk + w , wk ∼ N (wk, 0.25) ,

yk+1 =
(xk+1

10

)3 + v , vk+1 ∼ N (vk+1, 0.25) .

is considered. This corresponds to a linear system and
a nonlinear measurement model. The prior density is
f(x0) = N (x0 − 1, 2). Fig. 3(b) gives the true and es-
timated state trajectory for GP-ADF and SVDF. The
GP-based filter encounters a singularity, which is not
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(f) SVDF*

Figure 2: True hidden states (black) as well as mean and 2σ bounds (red) for the EKF, UKF, GP-ADF, GP-UKF,
the automatically and a manually tuned SVDF. The results f(x1|y1, µ0, σ

2
0) are given for varying mean values

µ0 of f(x0). Note that for the above results the identical seed for the random samples as in [6] was used.

NL0.25
x NL0.50

x NL0.75
x M(x)

EKF 888.53 29472.41 276614.34 2073897.77 ± 2964656.78
UKF 61.35 605.7606 2383.86 1042.39 ± 4588.72
GP-UKF 62.68 424.5677 1692.86 1790.40 ± 16548.19
GP-ADF 59.31 276.8323 1050.36 21.19 ± 32.42
SVDF 59.96 174.7015 379.27 1.30 ± 1.00
SVDF* 64.27 366.0246 1064.31 20.31 ± 21.20

(a) Average negative log-likelihood NLx of the hidden state and Mahalanobis distance
M(x) of the filtered mean compared to the ground truth for the EKF, UKF, GP-ADF,
GP-UKF, and SVDF with automatically and manually obtained hyper-parameters.
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(b) Estimated means for GP-ADF
and SVDF as well as the true state
for 30 time steps, cf. Sec. 5.4.

Figure 3: Results for the experiments in Sec. 5.2 and Sec. 5.4, respectively.

seldom when linear system models are used. As can
be seen, the SVDF tracks the true system correctly
and additionally does not suffer from singularities. The
SVDF’s system model contains 56 of 100 samples and
the measurement model contains 31 of 100 samples.

6 Conclusion
In this paper, a conditional density estimation al-

gorithm for nonlinear stochastic dynamic systems was
proposed. A novel support vector regression was intro-
duced by which conditional densities representing sys-
tem and measurement function can be obtained based
on samples only. The regression was stated in form
of a novel quadratic program based on an ε-insensitive
loss function, practical normalization constraints, and
anisotropic variances. For automatically determining

the hyper-parameters, an algorithm based on cross-
validation was devised. Employing the sample-based
densities, an existing axis-aligned Gaussian mixture fil-
ter was modified and analytic expressions for the pre-
diction and filtering step were derived. Benchmark ex-
periments show the filter to provide good accuracy. The
filter supports multimodal densities and does not suf-
fer from singularities in case of linear system models as
recent Gaussian Process-based filter algorithms do.

So far, the proposed approach is restricted to scalar
in- and output dimensions. It remains future work to
extend the presented work to the vector-valued case.
Furthermore, it is imaginable that even sparser con-
ditional densities can be obtained for improving the
filter’s runtime performance even more. The hyper-
parameter determination algorithm might be improved
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Figure 4: Left to right: True (red, solid) posterior densities, the GP-ADF estimated posterior densities (blue,
dash-dotted), the SVDF estimated posterior densities (black, dash), and moment-matched Gaussian approxima-
tion of the SVDF estimate (black, dotted) after 1,2,3, and 4 prediction steps.

w.r.t. efficiency and effectiveness. Regarding online
adaptation the use of incremental Expectation Maxi-
mization or SVR with uncertain data, i.e., no certain
label, should be investigated. Additionally, resolving
the restriction to kernels centered about the support
vectors seems promising.
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