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Abstract—Since the advent of Monte-Carlo particle filtering,
particle representations of densities have become increasingly
popular due to their flexibility and implicit adaptive resolution.

In this paper, an algorithm for the multiplication of a system-
atic Dirac mixture (DM) approximation with a continuous likeli-
hood function is presented, which applies a progressive correction
scheme, in order to avoid the particle degeneration problem. The
preservation of sample regularity and therefore, representation
quality of the underlying smooth density, is ensured by including
a new measure of smoothness for Dirac mixtures, the DM energy,
into the distance measure. A comparison to common correction
schemes in Monte-Carlo methods reveals large improvements
especially in cases of small overlap between the likelihood and
prior density, as well as for multi-modal likelihoods.
Keywords: state estimation, nonlinear filtering.

I. INTRODUCTION

State estimation as the inference of a hidden system state
based on noisy observations is a fundamental problem in
engineering. Due to the uncertainty inherent in the problem,
Bayesian estimation methods are commonly employed. The
solution to the state estimation problem is then obtained
by recursive prediction and correction steps. Even though
analytic solutions exist for some special type of systems, e.g.,
linear systems [1], in general no analytic solutions to the
prediction and correction equation are obtainable. Therefore,
suitable approximations of the systems and/or the densities
are required. The rest of this paper is concerned with de-
riving an approximation of the correction step as needed in
a Bayesian state estimator for the case of systematic Dirac
mixture approximations of the underlying densities.

For nonlinear systems, the existing approaches may be
categorized according to the employed density approximation
schemes, as the specific type of approximation governs the
treatment of the correction step. For example, the extended
Kalman filter (EKF) [2] uses a Gaussian density approximation
and linearization of the likelihood around the current state
estimate. Gaussian mixture filters [3] offer a more flexible
density representation, but in general suffer from an expo-
nential increase in components. The conceptually simplest
density representation is an approximation by a Dirac mixture
(DM) of equally weighted particles, as used in canonical
particle filters. The particle representation is not only very

advantageous for simulations, but also offers an implicit adap-
tive resolution of the density approximation. As pure Monte-
Carlo particle representations suffer from slow convergence
rates to the true density in the number of particles used,
different approximation schemes were developed, such as
quasi-Monte-Carlo approximations [4]. However, as particle
representations do not capture the smoothness of the original
density, naı̈ve algorithms for the correction step in a state
estimator lead to the typical particle degeneration problem,
where eventually only a few different particles contribute to
the posterior distribution.

This paper introduces a regularized progressive correction
step in the case that a certain distance measure to the under-
lying density shall be minimized by deterministically placing
particles. In contrast to a progressive correction for Monte-
Carlo methods, this problem is especially challenging as the
benefit of deterministic approximation schemes, i.e., a repre-
sentation with fewer particles, is even more likely to degrade
in the correction step. Many different schemes have been
proposed to handle the correction step for Monte-Carlo particle
filters, cf. [5] for an overview. The approach resembling the
present work most is [6], which is a progressive correction
step for Monte Carlo methods. We extend this scheme to
deterministic Dirac mixture approximations, splitting the like-
lihood adaptively into several factors, each of which is easier
to process. In the course of the progression, each factor of
the likelihood is multiplied with the current deterministic DM
approximation and subsequently reapproximated with equally
weighted Diracs. As will be shown, this effectively relocates
the Dirac components to regions with higher posterior density
and thereby avoids the typical degeneration of the representa-
tion. In order to ensure that the DM representation maintains
the smoothness/regularity properties of the underlying density
throughout the progression, a novel energy term is added
to the distance measure used for the reapproximation. This
regularization of the DM representation results in a reduced
approximation error as a comparison to Monte-Carlo filters
reveals for a likelihood and prior density with small “overlap”
as well as for multimodal likelihoods.

The rest of this paper is structured as follows: After giving
the mathematical problem formulation in Sec. II, the required
distance measure for Dirac mixtures is introduced in Sec. III
and the progressive correction algorithm is stated in Sec. IV.



The benefits of the proposed approach are discussed in an
experimental validation in Sec. V.

II. PROBLEM FORMULATION

The Bayesian estimation framework consists of two recur-
sively alternating steps: a prediction and a correction step.
The prediction step corresponds to calculating the next state
estimate xk+1 based on the current estimate xk and the system
dynamics ak(.). The correction step integrates a measurement
ŷ according to the measurement function hk(.) into the current
state estimate and thereby corrects the predicted state.

This paper is concerned with the correction step only, i.e.,
p(xk+1|y1:k+1

) ∝ p(xk+1|y1:k) p(y
k+1
|xk+1) ,

where y
1:k

denotes the set of measurements from timestep 1 to
k and focuses on a prior density approximated by a DM with
n ∈ N equally weighted components minimizing the distance
measure described in the Sec. III,

p(xk+1|y1:k) ≈ 1

n

n∑
i=1

δ(x− xi) , (1)

where δ(x − xi) denotes the Dirac measure at position xi ∈
RN . The goal is to find the optimal DM resulting from the
multiplication of the prior density with a continuous likelihood
function l(.)

l(xk+1) ≡ p(ŷ
k+1
|xk+1) , (2)

where ŷ
k+1

denotes the current observation and renormaliza-
tion was omitted. As we focus on a single correction step, we
will omit the time index k from now on. The correction step
(2) may be trivially “solved” by directly multiplying the (1)
with the likelihood and subsequent renormalization of the new
weights

wi =
l(xi)∑n
j=1 l(xj)

. (3)

However, this approach will lead to weight decay over time
and thus, reduces the effective resolution per Dirac component.
Eventually, all but very few components will have nearly
zero weights and could be neglected. In order to avoid this
degeneracy problem, the basic SIR algorithm [7] draws new
samples from the reweighted Diracs in each correction step.
This is problematic for systems with low noise, where the
propagated components will mainly concentrate around the
old particle positions. A possible remedy that is used in
“post regularized particle filters”, e.g., [8], is to regularize
the posterior measure by convolving the particle distribution
- after sampling from the reweighted DM - with a Gaussian
kernel. Sampling from this regularized density then effectively
broadens the distribution, but erodes representation details
especially for multimodal densities.

The origin of these problems is illustrated in Fig. 1: Let
Rn(f̃) denote the optimal representation in the set of DM
with n components and equal weights for a given density
f̃ . The goal is to find the optimal approximation of the
underlying true density f̃ multiplied with the likelihood l as
a DM, Rn(f̃ · l), given the optimal approximation of the true
density f = Rn(f̃). This problem is obviously ill-posed, as

f̃ f̃ · l

f = Rn(f̃) Ml(f) Rn(f̃ · l)

·l

Rn

Ml

Rn

Figure 1. Diagram of the problem to be solved, see text for explanation.

the reduction Rn (drawing samples for Monte-Carlo-based
methods or minimization of a certain distance measure here) is
not invertible. In order to solve this problem, additional prior
information about the smoothness properties of l and f̃ has to
be employed. Roughly speaking, what one assumes is that the
true density has its probability mass “smeared out” uniformly
between Dirac components. The goal is then to use an initial
DM approximation and the smoothness assumptions in order
to construct an algorithm Ml producing results as close to the
optimal solution Rn(f̃ · l) as possible.

There are two challenges when trying to incorporate the
smoothness assumption of the underlying densities. First, the
likelihood evaluation at the original Dirac positions will yield
only a high resolution in regions where the prior density is
high. What is sought, however, is a resolution that is adapted
to the posterior density instead. Fig. 2 illustrates this problem.

Based on the insight that this problem is less problematic
for likelihoods with low variation, the idea of the proposed
approach is to split the likelihood into factors with lower
variation and perform the multiplication progressively. The
proposed approach resembles [6] and can be understood as an
extension of this approach to systematic DM approximations.
The factors of the likelihood function are each multiplied
pointwise with the current intermediate density and subse-
quently reapproximated with an equally weighted DM. This
effectively moves the Dirac components to regions with higher
posterior probability, thereby sampling the likelihood with a
higher resolution in these regions.
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Figure 2. Illustration of the resolution problem: The blue Dirac components
approximate the prior Gaussian well, but offer low resolution in regions with
high posterior density. The optimal evaluation points for the likelihood would
correspond to the points that optimally approximate the posterior density
(dashed Dirac components).



A second challenge is to guarantee consistency with the
original continuous density, in the sense that the processed
samples should still represent a smooth function and there-
fore, must not form local clusters throughout the progression.
Instead of only working with a general purpose distance
measures on the lower path of Fig. 1, one has to incorporate
another term that connects to the underlying true density f̃ by
enforcing inter-Dirac distance preservation in the reapproxi-
mation step, which will be described in Sec. IV-B. First, in
Sec. III, the employed distance measure is introduced and in
Sec. IV, the progressive correction step is explained.

III. LOCALIZED CUMULATIVE DISTRIBUTION AND
MODIFIED CRAMÉR-VON-MISES DISTANCE

In order to compare two given Dirac mixture distributions,
a suitable distance measure has to be defined. As pointwise
evaluation and integral distance measures are not defined for
Dirac distributions, this distance measure has to be based
on probability mass differences under a subset of possible
kernel functions, which motivates the following concepts, as
originally defined in [9].

Definition 1 (Localized Cumulative Distribution, [9])
Let f : RN → R+ be a probability density function. The
corresponding Localized Cumulative Distribution (LCD) is
defined as

Ff (m, b) ≡
∫
RN

f(x)K(x−m, b) dx = (f ?K(−., b))(m) ,

where ? denotes the convolution product, b ∈ RN+ is a width
parameter, and K : RN × RN → [0, 1] a kernel function.

In this paper, only Gaussian kernels of the form

Kb(x) ≡ K(x, b) = exp

(
−‖x‖

2

2b2

)
,

with a single width parameter b ∈ R and the Euclidean
distance ‖.‖ are used. In analogy to the Cramér-von Mises
distance, a distance between two generic probability distribu-
tions is defined in [9] via the squared integral distance of their
corresponding LCDs.

Definition 2 (Modified Cramér-von Mises distance, [9])
Let f : RN → R+ and g : RN → R+ be two probability
distributions and Ff / Fg their corresponding LCDs. The
modified Cramér-von Mises distance (mCvMD) is defined as

D(f, g) ≡
∫
R
w(b)

∫
RN

(Ff (m, b)− Fg(m, b))2 dm db

=

∫
R
w(b) ‖Kb ? f −Kb ? g‖2L2 db ,

with a suitable weighting function w : R+ → R+.

As defined above, the mCvMD compares two densities by
their differences in probability mass under smooth localized
kernels. As a weighted mean over all possible kernel positions
and kernel widths is performed, the resulting measure is
translation-invariant and does not favor the equivalence of the
given densities at a particular scale.

The use of isotropic Gaussian kernels and the squared
integral distance measure allows for an analytic solution of
all integrals in the mCvMD of the LCDs of two DMs.

Theorem 1 (mCvMD for Dirac Mixture Densities)
Let f(x) =

∑n
i=1 wi δ(x−xi) and g(x) =

∑m
i=1 w̃i δ(x− x̃i)

denote two N -dimensional Dirac mixture densities. If f and
g possess equal means, the mCvMD can be expressed as

D(f, g) =
πN/2

8

(
wTΓxxw − 2wTΓxx̃w̃ + w̃TΓx̃x̃w̃

)
,

where (w)i ≡ wi denote the weight vectors and the matrices
Γxy are defined via

Γxy
i,j ≡ γ(‖xi − yj‖

2)

with the function γ(s) ≡ s ln s.

A proof of this theorem is given in [10].

IV. PROGRESSIVE CORRECTION

In this section, the progressive correction step is derived.
The likelihood decomposition and the regularization term are
introduced, as well as the overall algorithm is stated.

A. Likelihood Decomposition

As motivated, the likelihood decomposition addresses the
problem of misaligned likelihood evaluation points by the
introduction of sub-steps. To this end, the likelihood function
l is dynamically decomposed into a product of the form

l(x) =
∏
i

l(x)λi , (4)

with the constraints
λi > 0 ,

∑
i=1

λi = 1 . (5)

At a given intermediate progression step k, the DM from
the previous progression step

fk−1(x) ≡ 1

n

n∑
i=1

δ(xi − x) (6)

approximates the prior density multiplied with the pseudo-
likelihoods from all preceding steps, i.e.,

fk−1 ≈ f̃ · lλ1 · . . . · lλk−1 .

Note, that the DM in (6) has equal weights.
The next exponent λk is determined in the following way:

In order to control the local error in this progression step due
to misaligned likelihood evaluation points, we demand that
the maximum and minimum Dirac weights after pointwise
multiplication with the current pseudo-likelihood lλk must not
differ by a factor greater than α. The maximum exponent λk
meeting this requirement may be calculated by

lmax
λk

lmin
λk

= α ⇐⇒ λk =
lnα

ln lmax − ln lmin
, (7)

where lmax ≡ maxi∈{1,..,n} l(xi) and lmin ≡ mini∈{1,..,n} l(xi)
denote the maximum and minimum likelihood coefficients.
The subproblem in this progression step is then to find a good
DM representation of fk−1 · lλk given a DM representation
of fk−1. As the weights of fk−1 multiplied with lλk differ
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Figure 3. Progressive correction with α = 2 applied to the example in Fig. 2, leading to 11 correction steps. The plots show the current Dirac components
before the respective progression step in red, which are reweighted with the current pseudo-likelihood (dash-dotted curve), a broader version of the original
likelihood. The resulting Diracs after reapproximation are shown in black. As the progression continues, the Dirac positions move into regions with higher
posterior density.

only by a factor of α, the intermediate product fk−1 · lλk is
close to fk−1 and, hence, the likelihood evaluation points are
close to optimal, cf. Fig. 2. The resulting reweighted DM is
then reapproximated by an equally weighted Dirac mixture fk.
As a result, the DM components move into areas with higher
posterior probability and consequently increase the likelihood
sampling resolution in those areas during the next progression
step. This procedure is repeated until the whole likelihood is
processed. Fig. 3 shows an illustration of different stages in
the progression.

B. Regularization

As motivated before, processing the DM progressively
solely with a generic distance measure may produce solutions
that are close to the original Dirac mixture multiplied with the
likelihood f · l but not necessarily close to the real product
f̃ · l that one wants to approximate, cf. Fig. 1. In order to in-
corporate the smoothness assumption of the underlying density
during the progression’s reapproximation step, a measure for
the regularity and smoothness of the underlying density has
to be defined. The energy of a DM provides such a measure.

Definition 3 (Energy of a Dirac Mixture)
Let f ≡

∑n
i=1 wiδ(xi− .) denote a DM density. The mixture’s

energy is defined as

E ≡
n∑
i=1

n∑
j=1
j 6=i

wi wj
‖xi − xj‖

. (8)

The definition of the energy in (8) is an analogy from physics,
resembling the energy of an electric field of charged particles
at positions xi carrying the charge wi. This new measure of
regularity or smoothness of the underlying density is then
employed in the reapproximation step as an additional penalty
term: In addition to a low mCvMD to the reweighted DM,
the reapproximating DM should also have similar smoothness
properties and hence similar energy values. The proportion β
between approximation quality and smoothness preservation

quantifies the importance of the representation quality for the
problem at hand and may be determined by generic model
selection algorithms [11].

C. Algorithm

In each progression step, the algorithm is composed of
two main parts: the likelihood factorization with the weight
computation based on the multiplication of the preceding DM
with the pseudo-likelihood and the penalized reapproximation
of the obtained DM.

First, the new weights are calculated based on the current
likelihood exponent as described in Sec. IV-A. As the con-
straints (5) have to be met, some additional bookkeeping needs
to be performed in order to obtain a valid decomposition.

Second, the subprogram REAPPROX in Alg. 1, reapproxi-
mates the reweighted Dirac mixture f =

∑n
i=1 wj δ(x̃i − .)

with an equally weighted DM g[X] = 1
n

∑n
i=1 δ(xi − .),

where Xi,j = x
(j)
i denotes the matrix of all Dirac positions,

by minimizing the distance measure presented in Sec. III
penalized by the energy difference as defined in Sec. IV-B.
In summary, the following optimization problem is solved

X = argmin D(f, g[X]) + β (E(f)− E(g[X]))
2

s.t. 1TX/n = wT X̃ .
(9)

This problem may be solved with standard solvers, e.g.,
with a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithm [12]. The required gradient of the objective
function is provided in the appendix. The algorithm summa-
rizing both main parts is given in Alg. 1.

V. EXPERIMENTS

In this section, we perform an experimental comparison of
the proposed algorithm with standard methods in Monte-Carlo
particle filtering. To this end, we set up two experiments,
which allow for an analytic solution in order to compute differ-
ent performance metrics on the results. First, the experimental
setup of both experiments is explained. Then, the different



Algorithm 1 Progressive Correction
t← 0
while t < 1 do

li ← l(xi) ∀i . Calc. next exponent
λ← lnα/(ln lmax − ln lmin)
if λ+ t > 1 then

λ← 1− t
end if
wi ← li

λ/(
∑n
j=1 lj

λ) ∀i . Calc. new weights
x← REAPPROX(x,w) . Reapproximation
t← t+ λ

end while

performance metrics are explained. Finally, the results are
shown and discussed.

A. Experimental Setup

Experiment 1 (Unimodal likelihood): The first experiment
considers a Gaussian prior distribution f = N

(
µ; Σ

)
with

zero mean µ = [0, 0]T and covariance matrix

Σ =

[
1 0
0 2

]
,

which is to be multiplied by a single Gaussian likelihood l =

N
(
µ
l
; Σl

)
with mean µ

l
= [3, 0]T and covariance matrix

Σl =

[
0.4 0.3
0.3 0.4

]
.

The difficulties for particle algorithms in this experiment lie
in the relatively small overlap between prior density and
likelihood and, as the likelihood covariance is not axis-aligned,
to capture the rotation of the posterior distribution’s covariance
ellipse in the right way.

Experiment 2 (Bimodal likelihood): The second experiment
consists of a zero-mean Gaussian prior distribution with unit
covariance, which is to be multiplied with a bimodal likelihood
of the form

l ≡ N
(
[−3, 0]T ; Σl

)
+N

(
[3, 0]T ; Σl

)
,

with

Σl =

[
0.2 0
0 103

]
,

i.e., a Gaussian mixture with two components that form two
narrow strips in y-direction at x = ±3. The challenges for
particle algorithms in this experiment stem from the bimodal
likelihood that also yields a bimodal posterior distribution.
Hence, the Gaussian assumption usually made in additional
Monte-Carlo regularization steps is inappropriate.

B. Initial Approximation and Performance Metrics

First, the Gaussian prior density has to be approximated by
a DM with equal weights. For the proposed deterministic algo-
rithm this is performed by minimizing the mCvMD [13]. For
the Monte-Carlo algorithms, the initial density is approximated
by random sampling.

In order to compare the results of the different algorithms
quantitatively, suitable performance metrics have to be defined.

As the processed particle density is still a DM, integral dis-
tance measures cannot be employed, so we limit ourselves to
compare the first and second moment of the resulting densities
as well as the mean modified Cramér-von Mises distance
(MMCvMD). In the case of Monte-Carlo methods, an average
over nrun = 100 runs is performed, whereas the proposed
deterministic algorithms are run only once. If we define the
residual probability in the kth run as rk ≡ l · f̃ −Ml(f)k, the
employed error metrics are defined via

RMSEm ≡

(
1

nrun

nrun∑
k=1

N∑
i=1

E[rk]i
2

)1/2

,

RMSEC ≡

 1

nrun

nrun∑
k=1

N∑
i,j=1

C[rk]i,j
2

1/2

,

MMCvMD ≡ 1

nrun

nrun∑
k=1

D(l · f̃ ,Ml(f)k) ,

with E / C denoting the mean / covariance and N the
dimension of the system.

C. Results and Discussion

Figure 4 shows a comparison of exemplary runs of the two
experiments with 256 particles. In the following, the results
of the different algorithms will be discussed.
• COND: As expected, due to the only weakly “overlap-

ping” likelihood and prior density, the naı̈ve condensation
algorithm selects only a few different particles which
then have higher weight, thereby reducing the effective
number of particles.

• PR: The problem of degenerating particle approximations
is often addressed by adding a post-regularization step,
i.e., convolving the given particle density with a Gaussian
kernel with a scaled version of the DM’s covariance. The
optimal scaling parameter

hopt = (4/(N + 2))
1

N+4 n−
1

N+4

with n the number of particles can be derived in a
density estimation context [14], but is only optimal for
Gaussian densities. This explains the bad performance of
post-regularization in the second example: As the true
density is bimodal, with larger extent in x-direction, the
smoothing kernels’ variance in this direction is too large,
which results in a large particle variation in this direction.

• PPR: The same problem arises in progressive post-
regularization [6], which uses hopt/2 as scaling parame-
ter but yields comparable covariances to PR, as the error
of multiple post-regularization steps accumulate.

• SRA: The naı̈ve approach for a systematic multiplication
in the mCvMD-minimization context would be to multi-
ply the given prior DM pointwise with the likelihood and
then reapproximate the resulting DM by equally weighted
Diracs minimizing the mCvMD. This systematic reap-
proximation does not produce a high representation qual-
ity as not enough information of the likelihood is taken
into account.



• PSRA w/o energy: Applying the naı̈ve systematic reap-
proximation procedure progressively without the addi-
tional energy distance term surprisingly does not improve
the situation much. As the progression continues, par-
ticles tend to form local clusters. The problem here is
that the reduction steps minimizing the mCvMD alone
introduce small errors that accumulate. Minimization of
the mCvMD as a general concept is not specifically
tailored to preserve the smoothness properties of a DM,
i.e., to assure that the approximated DM is still the
reduction of an underlying smooth function.

• PSRA: In order to incorporate the assumption that the
underlying densities possess strong smoothness proper-
ties, another distance term based on the DM energy has
to be introduced. The proposed progressive systematic
reapproximation then produces high-quality results as
the resulting particles cover the posterior density more
uniformly.

Fig. 5 shows a quantitative evaluation of the different algo-
rithms as a function of the number of particles. One can clearly
see that the proposed algorithm outperforms standard Monte-
Carlo techniques and the naı̈ve systematic approximation in
almost all cases. However, the main advantage of the proposed
algorithm is the regular coverage of the posterior distribution
with particles, which increases the sampling resolution for
further processing and cannot be really quantified by the
employed error metrics.

VI. CONCLUSION

In this paper, we have proposed a progressive filter step
for deterministic Dirac mixture approximations, which avoids
particle degeneration by preserving an additional energy term
throughout the progression. The experimental comparison with
current (progressive) Monte-Carlo methods for the correction
step, such as the method proposed by [6], reveals a much
higher representation quality per particle, as the particles are
placed deterministically to cover the posterior density homo-
geneously. In contrast, Monte-Carlo methods treat each sample
individually, which on the one hand reduces the computational
complexity to grow only linearly with the number of particles.
On the other hand, this independence of particles leads to
wasted samples in terms of the posterior sampling resolution
and therefore to a worse representation quality per sample.

The higher computational costs involved with the non-
linear optimization in this approach can become negligible if
complex system and measurement models are employed. In
such cases, the number of samples and thereby evaluations
of the system model, needed for Monte-Carlo methods to
reach the same representation quality as the proposed method,
becomes computationally unfeasible.

VII. APPENDIX

Theorem 2 (Gradient of Modified Distance Measure)
Let f =

∑n
i=1 w̃j δ(x̃i−.) and g[x] =

∑n
i=1 wiδ(xi−.) denote

two Dirac mixture densities. The gradient of the modified

distance measure in (9) with respect to the kth component of
the lth Dirac position is then given as

∂x
(k)
l

(
D(f, g[x]) + β (E(f)− E(g[x]))

2
)

=

∂x
(k)
l D(f, g[x]) + 2β (E(f)− E(g[x])) ∂x

(k)
l E(g[x]) ,

with
∂x

(k)
l D(f, g[x]) = wT

(
∂x

(k)
l Γxx

)
w − 2wT

(
∂x

(k)
l Γxx̃

)
w̃

= 4wl

n∑
j=1

(wj γ̇(‖xl − xj‖2)(x
(k)
l − x

(k)
j )

−w̃j γ̇(‖xl − x̃j‖2)(x
(k)
l − x̃

(k)
j )) ,

where γ̇(s) = ln s+ 1 and

∂x
(k)
l E(g[x]) = wl

n∑
j=1
j 6=l

wj
x
(k)
j − x

(k)
l

‖xl − xj‖3
.
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Figure 4. Exemplary runs of typical particle filter methods and the proposed deterministic algorithm for 256 particles. (COND) denotes the simple condensation
algorithm, (PR) adds a post-regularization step, (PPR) is the progressive post-regularization method as in Oudjane et al. [6] with α = 64, (SRA) is the naive
systematic reapproximation, (PSRA w.o. energy) the proposed algorithm with α = 64 but β = 0, and (PSRA) the proposed algorithm with α = 64 and
β = 100, cf. Sec. V-C for further details.
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Figure 5. Performance of the proposed method with α = 64 and β = 100 (PRSA) versus the naı̈ve systematic reapproximation (SRA), condensation and
post-regularization (PR) and progressive post-regularization [6] with α = 64 (PPR) in different error metrics: RMSE of the mean and covariance matrix, as
well as the (shifted) mean mCvMD. More explanation can be found in the text.


