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Abstract—Extended target tracking deals with simultaneously
tracking the shape and the kinematic parameters of a target. In
this work, we formulate the extended target tracking problem
as a state estimation problem with both multiplicative and
additive measurement noise. In case of extended targets with
known orientation, we show that the best linear estimator is
not consistent and, hence, is unsuitable for this problem. In
order to overcome this issue, we propose a quadratic estimator
for a recursive closed-form measurement update. Simulations
demonstrate the performance of the estimator.

I. INTRODUCTION

Target tracking treats the problem of recursively estimating
the kinematic state, e.g., position and velocity, of a target
object based on noisy measurements [1]. Usually, the target is
modeled as a mathematical point without any extent. However,
in many applications, this assumption is not justified and a
target may cause a varying number of measurements from
different spatially distributed measurement sources. Example
scenarios can be found in surveillance and robotics when the
resolution capability of the sensor is higher than the spatial
extent of the target.

In this paper, the basic idea is to estimate a shape approxi-
mation of the extended target in addition to its kinematic state
[2]-[4]. In this manner, it is not necessary to explicitly estimate
the locations of measurement sources.

A main challenge is that the measurements are corrupted
by two different sources of uncertainty, i.e., the uncertainty
about the measurement source and the measurement noise.
Additionally, the shape parameters of the target are unknown
and part of the state to be estimated. As a consequence, a
hierarchical model is obtained, for which Bayesian inference
is generally very tedious.

A. Contributions

The main contribution of this work is the formulation of a
subclass of spatial distribution models [4], [S] as an explicit
measurement equation corrupted with multiplicative noise. By
this means, standard nonlinear filtering techniques can be
applied for tracking the extent of a target. In particular, we
derive a quadratic estimator, which allows for a closed-form
recursive measurement update. By this means, no significant
approximations have to be performed and the use of particle
filtering techniques is avoided at all. The approach can be used
for tracking circular shapes, elliptic shapes, and stick targets.
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Fig. 1: Extended target and its approximation with an ellipse.
The target state including shape parameters is given by x;.
The i-th measurement source at time step k is 2z, ;, and the
corresponding measurement is denoted with y hi’ l

B. Related Work

Spatial distributions [4], [5] assume that each measure-
ment source is an independent random draw from an object-
dependent probability distribution. Spatial distributions are a
very general concept, which has been used, e.g., for tracking
stick targets, Gaussian mixtures, and circles [4]-[7]. In [8], [9],
spatial distributions have been embedded into Probability Hy-
pothesis Density (PHD) filters for tracking multiple extended
objects. As spatial distribution yield a high-dimensional non-
linear hierarchical estimation problem, particle filter methods
[10] are mainly used for an approximate Bayesian measure-
ment update.

In [3], [11], an elliptic target extent is modeled with
Gaussian spatial distribution and the uncertainty about the
elliptic extent is expressed by means of a random symmetric
positive definite matrix. Random matrices have been used for
tracking multiple extended objects within the Probabilistic
Multiple-Hypothesis Tracker (PMHT) framework [12] in [13]
and a hybridization solution was proposed in [14]. In [15],
the random matrix approach has been adopted for direct
measurements of the principal components.

An alternative approach called Random Hypersurface Model
(RHM) has been introduced in [16]. An RHM assumes that
each measurement source lies on a scaled version of the
shape boundary. RHMs provide a systematic way to model
different target shapes from ellipses [17] to arbitrary star-
convex shapes [18].
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Fig. 2: Graphical model for spatial distributions.

C. Overview

The remainder of this paper is structured as follows. In
Section II, a detailed problem formulation and description
of spatial distribution models is given. Then, we show how
particular spatial distribution models can be formulated as a
measurement equation with multiplicative measurement noise
(Section IIT). Based on this measurement equation, we intro-
duce a quadratic estimator in Section IV for simultaneously
tracking and estimating the shape of the target. This estimator
is evaluated in Section V. The conclusions are given in
Section VI.

II. PROBLEM FORMULATION

We consider the tracking of a single extended object. The
state parameters of the extended object are modeled as a
random vector x, with time index k. Note that the state
vector x, consists of variables for the position, velocity, or
acceleration and also of parameters for the target shape.

An illustration of the involved random variables is given in
Figure 1 and a graphical model is depicted in Figure 2.

Remark 1. In this work, we focus on estimating the parameters
of a single extended target. Several extensions of spatial
distribution models to clutter and multiple targets have been
proposed in literature [4], [5], [8], [9]. Of course, the estimator
for a single extended target, which is proposed in this work,
can be embedded into these approaches.

A. Measurement Model

At each time step k, a set of n; measurements

yk? = {gk,l’ e 7gk,nk}

from the extended target becomes a available. The measure-
ment generation process for a measurement Yps consists
of two parts: The target extent model describes where a
measurement sources z ; lies on the target. It is specified
by a spatial distribution [4], [5] p(2y, ;|z)), which depends on
the target parameters, e.g., position, length, and orientation of
the target. The sensor model specifies the measurement Y.
arising from the measurement source and it is characterized
by the conditional density p(gk,i|§k).
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Fig. 3: Modeling the target extent with multiplicative noise:
Stick target with center cj and length 2l in one-dimensional
space. A measurement source is given by zy ; = hy ;- Uy +ci,
where hy, ; is a multiplicative noise term that scales the length
li, in order reach each point on the stick.

In this work, we focus on Cartesian position measurements
of the measurement source, i.e., p(g’C Z|§k) results from the
following measurement equation

Yei = Zki TV s (1

which maps the measurement source z; ; and an additive
noise term v, ; to the measurement y, .. Note that almost
all relevant sensors can be formalized in this manner, e.g.,
angle-distance measurements can be transformed to Cartesian
measurements.

B. Dynamic Model

The temporal evolution of the state is modeled as a
Markov model characterized by a conditional density function
p(xy,41]2y). For example, p(z;,|x;) may be specified by a
linear system equation

L1 = Akgk + wy , )

where Ay, is the system matrix and w; is an additive noise
term.

III. MODELING EXTENDED TARGETS AS MULTIPLICATIVE
MEASUREMENT NOISE

In this section, we show that the target extent model, i.e.,
a spatial distribution, can be represented as a measurement
equation corrupted by multiplicative noise.

A. Basic Idea

In order to illustrate the basic idea, we restrict ourselves
to a one-dimensional extended target, whose length l; and
center ¢, are to be estimated, i.e., the state is given by x;, =
[ck, lk]T. We aim at a measurement source equation, which
maps the state vector x; to a measurement source 2y, ; on the
target.

The key observation (see Figure 3) is that each point on the
target can be reached by scaling the length l; and adding the
center cy, i.e.,

zpi=hi; . +cp 3)

where hj; is a multiplicative noise term. The noise hy ;
specifies the measurement source on the target. It should be an
element of the interval [—1,1] and its probability distribution
can be independent of the state.

The probability density of hj; can be interpreted as a
reference spatial distribution

p(his) == p(zri|ll =1,¢, =0)



which specifies the spatial distribution of a measurement
source z; for length [, = 1 and center ¢;; = 0. For given
l;; and cg, the measurement source equation (3) specifies the
spatial distribution

1 Zk,i — Ck
- L on(229)

where py,(-) is a shorthand for p(hy ;). This is a scaled and
translated version of the reference spatial distribution p(hy, ;).

With the help of the sensor model (1), we obtain the final
measurement equation

Yk = hps -l + e+ 4

. T
which relates the state @, = [cg,l;]  to the observed

measurement yy, ;.

Example 1. A simple example for a reference distribution is
the standard normal distribution

p(hii) = N(hi,i —

In this case, the spatial distribution is a normal distribution
with mean ¢; and standard deviation [, i.e.,

0,1) .

p(2hillks k) = N(zxi — cxy 3)

Example 2. When the reference distribution is a uniform
distribution on the interval [—1,1] given by

p(hi,i) = U(hg; —0,1)

the spatial distribution is a uniform distribution with center a
¢, and length 2 [,

P(2k,illi, k) = Ulzg,i — ey li) -
B. Axis-Aligned Extended Targets

A multivariate extension of the multiplicative measurement
equation (4) can be obtained for axis-aligned extended objects
by using (4) for each dimension. In this case, the state for an
n-dimensional extended target consists of the center ¢;, € R
and a vector [, € RY for the length in each dimension

z =[] 1f]" eR¥N .
The multivariate final measurement equation then turns out
to be
Yo = Hri bt o+ o, (5)
where Hy, ; = diag(hfcl)

R

nY)) € RNV is a multiplica-
tive noise matrix consisting of the random variables h;j Z Note

that h,(j z do not have to be independent.

Example 3. If the components of Hy,; are standard normal
distributed, ie., p(h{)) = N(h{) — 0,1), then p(hy,,;) =

?
N(hy; —0,1,) is the multivariate standard normal distribu-
tion, where I,, is the n-dimensional identity matrix. Hence,
(21 ik, ¢i) is a multivariate axis-aligned normal distribution
with covariance matrix diag(l,)? and center c,. This can also

be interpreted as an elliptic target shape, whose principal

components are given by [,. This is essentially the same
spatial distribution as in [3], however, the parameterization
is different.

Example 4. When p(h,(jz) = U(h,(jz —0,1), the vector [,
specifies an axis-aligned rectangular uniform distribution.

C. Incorporating the Orientation

Usually, the orientation of the target is unknown and
shall be estimated, too. In this work, we assume that the
target is aligned along its velocity vector, which is a re-
alistic assumption in many applications. For this purpose,
the state vector also consists of the velocity vector ¢, i.e.,
x, = [, 1], (g}g)T}T. In this case, we obtain the following
measurement equation

ykﬂ; = R(QZ) ) Hk,i : Lk +c, + Vi » (6)

where R(c}) denotes the rotation matrix corresponding to the
velocity vector ¢j.

Example S. In two-dimensional space

cv,l cv,2
V) __ 1 k %k
R(c;) = el Lv,l V2 ] )
k k
v o v,1 0,277
where ¢} = [¢}", ¢°] .

The term R(g%) -Hj, ; can be interpreted as state-dependent
multiplicative noise. Because R(c}) is a nonlinear term, the
following approximation may be suitable.

Approximation 1. R(c}) is substituted with R(¢}), where ¢;,
is the latest estimate.

AU

Due to Approximation (1), R(¢,)Hjy; is again state inde-
pendent multiplicative noise.

Remark 2. Note that it would be possible to estimate an
orientation that is not aligned with the velocity direction.

IV. RECURSIVE TRACKING ALGORITHM

A recursive tracking algorithm consists of a measurement
update and a time update step. In order to perform the
measurement update, we first note that both measurement
equations (5) and (6) can be written in the following form

y,m =Fp; -z, + Vi > (N

where F, ; is a multiplicative noise term, i.e., a random matrix,

and v;, , Gaussian additive noise.
For éxample, for axis-aligned extended targets (5), Fy ; :=
[H;“- In] , where 1,, is the identity matrix with dimension 7.
The current state estimate given the measurements
Vi,...,Vr_1 and Ypr Y is denoted with @k,ifl and
the corresponding covariance matrix is Cg ;1. The measure-
ment update step takes the measurement y y and determines
the updated estimate ’
Zp; ,and Cp,; .

N2

The time update predicts the last estimate of time step k,
ie., &y ,, and Cy ;, to the next time step with the help of the



dynamic model. The predicted estimate is denoted with Z;, ; o
and Cy1,0. In case of a linear model such as (2), the time
update can be performed with the standard Kalman filtering
formulas [19]. In the following, we focus on the measurement
update.

A. Linear Minimum Mean Squared (LMMSE) Estimator

The Linear Minimum Mean Squared Error (LMMSE) es-
timator for systems with (state-independent) multiplicative
measurement noise such as (7) is known for a long time [20],
[21]. However, the LMMSE estimator for estimating the target
extent is not consistent, i.e., for static systems, the estimate
does not converge to the true value with an increasing number
of measurements. In fact, this becomes already apparent for
the one-dimensional case, when looking at equation (3) and
noticing that ¥, ; is uncorrelated with [, if the mean of the
multiplicative noise hy, ; is zero.

In order to show the inconsistency of the LMMSE estimator
in general, we rewrite (7) to

Y, =Friz +Frizy +uy, ®)

where Fy, ; := E{F},;} is defined as the mean matrix of Fy ;
and Fk,i = Fk,i — Fk,i-

As proven in [20], the term vj; , is uncorrelated to ;. in case
of state-independent f‘k,i. For this reason, the Kalman filter
equations yield the LMMSE estimator for the system (8).

In order to show that the LMMSE estimator is inconsistent,
we consider an axis-aligned extended target according to
measurement equation (5), ie., Fy; = [H 1], where H
is a diagonal matrix.

Furthermore, we restrict ourselves to a static extended
object, i.e., for system matrix Ay = I, and the state to be es-
timated consists of the center and length, i.e., z; = [gg, Lg]T.
In this case, the rank of the observability matrix for linear
systems [19] is

Fia

)

rank =N <dim(z;,)=2N .

Fk,nk
Hence, it is not possible to estimate both the center and length
of an extended object with a linear estimator. Nevertheless, if
the length is known, the linear estimator is feasible.

Note that this is an important insight as it contains many
relevant special cases. For example, it says that it is not
possible to estimate both the mean and standard deviation
of a normal distribution with an LMMSE estimator (see also
Example 1).

B. Quadratic Estimator

Because linear estimators are unsuitable for extended targets
modeled as multiplicative noise, we suggest to use a quadratic
estimator as described in [22], [23]. According to [22], [23]
the best quadratic estimator can be obtained by considering
the extended system

Y, = [yf“z’f] )
Yii

where F, ; is multiplicative noise, i.e., a random matrix and

vy; is additive Gaussian noise. The operator () in (9) is

defined recursively for all vectors a with a9 = g and ol =

a1 ® a, where ® denotes the Kronecker product.

_ Fk,i - Xy + Vi
(Fk,i - xy + Qk,,‘)m ’

Definition 1 (Kronecker Product). The Kronecker product of

two matrices M € RP*? and N € R**! is defined as

mmN mLSN
M®N := € Rt
mp 1N myp N

The best quadratic estimator is obtained by a linear projec-
tion [22], [23] of x, onto the extended measurements Y,
which is given by the Kalman filter formulas

-1,
Ty i1 JFCZ,’Z'I (CZZY) (Xm *E{Xk,i})

-1
Y.,z Y)Y Y.,z
Ck,ifl - Ck,i (Ck,i ) Ck,i )

L i

Cri =
where sz denotes the cross-covariance matrix of the state
Ty and the extended measurement vector Y, ;. The term
C), is the covariance of the extended measurement vector
and E{Y ,} is the predicted extended measurement.

Because (9) is a quadratic equation, the moments E{X,”}
sz and CkYz in (10) can be calculated efficiently in closed
form according to the procedure described in [2]. In order to
calculate the moments, Approximation 1 has to be used if the
orientation should be incorporated (see Section III-C). Further-
more, an approximate update based on (9) can be performed
with any Gaussian state estimator such as the Unscented
Kalman Filter (UKF) [24]. In this case, Approximation 1 is
not required.

C. Comparison

In the following, we briefly discuss the differences of the
above estimator to related approaches.

Random Matrix Approach: The random matrix approach
[3] is based on a neat representation of an uncertain ellipse
with an (Inverse-) Wishart density for symmetric semi-positive
definite (SPD) matrices. An Inverse-Wishart density can be
characterized by means of SPD Matrix plus a one-dimensional
parameter « specifying its uncertainty. The approach presented
in this work can also be used for ellipses as described in
Example 3. In this sense, the mean and covariance of the
principal components represent the uncertainty of the ellipse.
Hence, the uncertainty of an n-dimensional ellipse is specified
with the mean and covariance matrix of an n 4 1 dimensional
random vector.

Random Hypersurface Model: A Random Hypersurface
Model (RHM) is based on the assumption that a measurement
source lies on a scaled version of the shape contour. The ap-
proach presented here uses a scaling factor for each dimension
in order to get a spatial distribution.



V. EVALUATION

In this section, we present an evaluation of the proposed
quadratic estimator for extended targets modeled as multiplica-
tive noise.

A. Stationary Target in 1D

First, we consider the estimation of the center and length
of a one-dimensional stationary target, i.e., the target does
not move. The target extent is modeled with a normal spatial
distribution as in Example 3.

Remark 3. The normal distribution can be used as an ap-
proximation of a uniform distribution by means of moment
matching. Hence, this problem can be interpreted as the
estimation of the endpoints of a uniform distribution, while the
measurements are noise corrupted. In case of no measurement
noise, this is a well-known problem in the statistics literature
as it is a counterexample to maximum likelihood estimation
[25]. Besides, this problem also has a variety of applications,
e.g., in computer vision.

The target is located at ¢ = 1 and its length is [ = 3.!
Hence, the spatial distribution is a normal distribution with
mean 1 and standard deviation 3. The additive measurement
noise (see Equation (1)) is zero-mean Gaussian with variance
3. The goal is to estimate the parameters z := [c, Z]T based
on sequentially arriving measurements Yo i.e., in this case
ne = 1.

In the first scenario, an a priori probability density for z
is given by a Gaussian distribution with covariance matrix
diag([1.8,0.6]), i.e., the length and center are uncorrelated.

In the second scenario, the length and center are a priori

correlated, i.e., x is given by a Gaussian distribution with
0.9 0.6

0.6 0.5/
For both scenarios, we compare the following four estima-

tors:

covariance matrix

e A grid filter, i.e., the probability density for x, is dis-
cretized. By this means, it is possible to approximate the
exact Bayes filter arbitrarily well. Hence, the resulting
estimation error can be seen as a lower bound.

e The LMMSE estimator as described in [20] and discussed
in Section IV-A.

o The random matrix approach for one-dimensional states
as described in [3]. In this case, the inverse-Wishart
density becomes an inverse Gamma distribution. Moment
matching is used to calculate the parameters of the prior
inverse-Gamma density based on the Gaussian prior.

e The quadratic estimator introduced in Section IV.

Figure 4 shows the root mean squared error (RMSE) of

the position and length for scenario 1. It can be seen that
the random matrix approach and the quadratic estimator yield
comparable results, which are close to the grid filter. The
LMMSE estimator is not able to estimate the length, because
the measurements are uncorrelated with the length. It is inter-
esting to note that all estimators provide the same estimation

TAs the target is static, i.e., does not move, we can omit the time index k.
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Fig. 6: Trajectory of the stick target.

error for the position. Even the LMMSE estimator, which
estimates a totally wrong length gives the same estimation
precision for the position.

In Figure 5, the RMSE is depicted for the position and
length of the target in scenario 2. The quadratic estimator
still yields results very close to the grid filter. The random
matrix approach is now not as good as the quadratic estimator,
because it does not incorporate the correlation in the prior. The
random matrix approach and the LMMSE estimator yield the
same RMSE for the center.

All told, the quadratic estimator yields very precise estima-
tion results close to the optimal Bayes estimator.

B. Tracking a Stick Target

In the following, we show that the quadratic estimator is
suitable for tracking a stick target [4]-[6]. In contrast to [4]-
[6], where particle filters are used, the quadratic estimator
yields a closed-form measurement update. In fact, a stick target
can be treated a special case of (6), i.e., the extent in one
dimension is known to be zero. The temporal evolution of
the target is modeled as a constant velocity model [1]. The
trajectory of the stick target is depicted in Figure 6. The stick is
aligned with its velocity vector. Figure 7a and Figure 7d show
two particular snippets, where the stick target is plotted for
several time steps. At each time step, exactly one measurement
is received from the stick target. The covariance matrix of the
measurement noise is diag([0.22,0.22]), i.e., rather large in
comparison to the length of the stick. These measurements are
shown in Figure 7b and Figure 7e. The estimation results of
the quadratic estimator are depicted in Figure 7c and Figure 7f.
It can be seen that the quadratic estimator yields very precise
results. Even though only one measurement per time step is
received, the length and orientation of the target is estimated
very well.

VI. CONCLUSIONS AND FUTURE WORK

The simultaneous tracking and shape estimation of a target
is a high-dimensional nonlinear estimation problem. In this
work, we have shown how the problem can be formulated
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Fig. 5: Estimation results for scenario 2.

as a measurement equation with multiplicative noise. Based
on this equation, we have developed a quadratic estimator for
the extent and center of a target. This approach can directly
be used for tracking, e.g., elliptic shapes, circular shapes,
and stick targets. Due to the Gaussian representation of the
uncertainties, this approach lends itself to be embedded into
multi-target tracking algorithms such as [8], [9], [26], [27].

Future work will be focused on extending the approach
for estimating that parameters of more complex target shapes.
This can be achieved by using polynomial measurement noise
instead of multiplicative noise.
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