Recursive Bayesian Calibration of Depth Sensors
with Non-Overlapping Views

Florian Faion, Patrick Ruoff, Antonio Zea, and Uwe D. Hanebeck
Intelligent Sensor-Actuator-Systems Laboratory (ISAS),
Institute for Anthropomatics,
Karlsruhe Institute of Technology (KIT), Germany.
florian.faion @kit.edu, patrick.ruoff @kit.edu, antonio.zea@student.kit.edu, uwe.hanebeck @ieee.org

Abstract—In this paper, we present a recursive Bayesian
method to calibrate rigidly linked depth sensors with non-
overlapping fields of view. The extrinsic parameters of this setup
are obtained by rotating and translating both cameras, estimating
the local transformations using point feature correspondences,
and finally using these values to recursively find a solution to
the matrix equation AxX = XBy. The algorithm is based on a
Bayesian estimator, which allows the consideration of camera-
specific measurement noise and permits the system to adapt
naturally to changes in the extrinsic parameters. Special care
was taken to keep the system free from singularities. This paper
also includes a thorough evaluation based on synthetic and real
data to show the effectiveness of the algorithm.

I. INTRODUCTION

Setting up a network of multiple depth sensors introduces
several issues that need to be addressed. For example, the
popular Microsoft Kinect™ device acquires depth informa-
tion using an active measurement system which projects an
infrared pattern. This has important consequences in setups
with overlapping fields of view, where the interference caused
by overlaying patterns becomes an important factor for mea-
surement quality. One solution for this problem is a time-
multiplexing approach where measurements are taken only
by a single sensor at any given time. However, this approach
becomes ineffective for applications such as tracking, where
it may be necessary to switch between sensors very quickly,
requiring the projectors to be rapidly powered on and off. This
can lead to a different set of problems, especially for Kinect
devices, since existing drivers were not designed for this task.

To avoid these issues it becomes necessary to explore setups
with non-overlapping fields of view. In this case, however, the
sensors cannot be calibrated using standard methods where
shared features are required to be visible in both cameras. This
is the same challenge faced in other classes of setups, e.g., the
extrinsic hand to eye calibration for robots, which has been
extensively researched. The most common approach, used also
in this paper, is to reduce the problem to solving the equation
AX = XB, where A, B, and X are rigid transformation
matrices.

A. Contribution

The main contribution of this paper is the development
of a recursive Bayesian state estimator to obtain the relative

extrinsic calibration between two depth sensors with non-
overlapping fields of view, based on local point features
(Figure 1). This includes a sound stochastic modeling, as well
as an experimental evaluation based on synthetic and real data.

Fig. 1: Calibration setup with two rigidly linked depth sensors.

B. Related Work

In this section, we briefly refer to related methods for
solving AX = XB. In the context of robotic hand-to-eye
calibration, several non-recursive methods based on homoge-
nous matrices [1], quaternions [2], and Lie theory [3] have
been developed. Calibration of non-overlapping standard RGB
camera setups has been considered [4], [5] using non-recursive
approaches, which estimate rotation and translation indepen-
dent of each other. A more general solution for arbitrarily
complex matrices [6] has also been explored. This paper uses
a method to determine a rigid transformation from n > 3
corresponding 3D points [7]. Rotation vectors were found to be
suitable for recursive pose estimation [8]. Similar to this work,
an Extended Kalman Filter was applied for stereo matching
[91, [10].

C. Overview

The remainder of this paper is structured as follows.

In Section II, the calibration problem is described in more
detail. The motivation behind the stochastic approach is ex-
plained in Section III, together with the theoretical principles.
Section IV presents a description of the recursive algorithm.
The derived method is extensively evaluated in Section V
using synthetic and real data experiments. Finally, Section VI



concludes this paper with a summary of the authors’ insights
and an outlook on future research.

II. PROBLEM FORMULATION

We consider the problem of recursively estimating the
transformation X between two rigidly linked depth sensors,
in the following denoted as Cam 4 and Campg, mounted on a
mobile base. In each time step k, these cameras are rotated
and translated while remaining rigidly connected. The exact
transformation can be arbitrary, and the algorithm does not
require this transformation to be known in advance.

For each time step k, both cameras produce a noisy depth
image, from which a set of distinct point features is extracted.
These features can be matched between successive time steps
k and k + 1, yielding a set of noisy point correspondences.
For Camy, the measured feature 7 at time k is denoted by
&i, ,, and the corresponding feature at the following time step
k+1by Pa,, .. Measurements for Camp are denoted in
a similar way as &i, . and &i! v For clarity, the feature
correspondences between time steps k and k+1 are aggregated
in the matrices Pa and Pg.

Applying a transformation H to the linked cameras affects
the local reference frames of Cam 4 and Camp. Let A and B
denote these local reference changes. Note that time indices
are dropped for clarity. Then, assuming that the point features
are corrupted with additive Gaussian measurement noise, the
relationship between the measurements can be described as

PAi,k—H — Vi1 = A (&m - Qi,k)’
and

PBi,k-H T Wi k1 = B- (&i,k - Qi,k)’

where v; 1, W; 1, V; p11, W; 4 are assumed to be zero-mean
Gaussian noise terms.
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Fig. 2: Problem formulation as a commutative diagram.

Figure 2 describes the camera setup and its transformation.
Let H4 and Hp be the original extrinsic parameters of Cam 4
and Camp respectively. After moving the cameras, their new
extrinsic parameters will be A - H4 and B - Hp. Since all

involved matrices are non-singular, the extrinsic conversion
between Hp and A - H4 must be unique. This leads to

AX =XB. )]

The affine transformation matrix X can be decomposed into
a rotation matrix Rx and a translation vector ¢, represented

by
_ (Rx ix
X = ( b ) |
A and B can also be decomposed in a similar way

_ Ry ta . Rp tp
A‘(OT 1)’ B‘(OT 1)'

Plugging A, B, and X into Equation (1) results in

RA ZA RX zx _ RX IX RB iB
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This leads to
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Based on Equation (2), we obtain two equations, one charac-
terizing the rotation (3 x 3)

RsRx =RxRp, 3)
and one for translation (3 x 1)
RAIX +ZA = RXIB +ZX . (4)

For any given pair of affine matrices A, B, Equation (3)
and (4) are underdetermined. Therefore, a solution requires
a minimum of two transformation steps {A;,B; | i > 2}.

III. THEORETICAL BACKGROUND

The main idea is to model the desired transformation X
as a random variable and apply a recursive Bayesian state
estimator to solve Equation (1). While moving the cameras,
pairs of transformations Aj and By, also modeled as random
variables, can be extracted in each time step and then be
given to the estimator as measurements. The following section
describes the stochastic motivation.

It should be noted that the Bayesian estimator framework
allows for dynamically updating the transformation, i.e., a
model of X, where the sensors are movable in relation to each
other in time. For simplicity, this paper will focus exclusively
on rigidly linked cameras (constant X).

A. Stochastic Modeling

In order to systematically consider uncertainties in the corre-
spondence observations and the transformations derived from
these, we model all occurring variables as random variables,
assuming the conditional independence structure depicted in
the following Bayesian network (Figure 3).

In this diagram, P and Py denote the local point corre-
spondences between given time steps k and k+ 1. The extrin-
sic transformation matrix X is assumed to be conditionally



Fig. 3: Bayesian network, representing the assumed condi-
tional independence structure of the occurring random vari-
ables.

independent from the point correspondences that determine
the local transformations. Furthermore, the value of B can be
calculated given the values of X and A, since

B=X1AX.

This conditional independence structure then translates to
the following factorization of the joint probability distribution

p(X, A7 Ba PA7 PB) =

p(Pa|A) p(Ps[B) p(B|A,X) p(A)p(X) . (5)
According to the problem formulation, we are given the point
correspondences Pa and Pg, from which we derive the
conditional probability densities p(A|PA) = pa(A) and
p(B|PB) = ps(B). This is performed by calculating a
Monte-Carlo estimate of the densities’ mean and covariance,
implicitly assuming that all occurring densities are Gaussian
(see Section III-B for the motivation behind this assumption).
Given a prior estimate of X in the form of a probability density
p(X), the posterior density can then theoretically be calculated
via
p(X|Pa,Pg)

= //p(X,A,B|PA,PB)dAdB

/ p(X,A,B,P4,Pg)

// p(P \APA’P;DB)|B)
(5) A B
e,

p(Pa,Pp)
:/ pAPA) PBIPB) s x-1Ax) 4B dA p(X)

dBdA

p(BJA, X) p(A) p(X) dB dA

(B|A, X) p(X) dB dA

p(B)
©)
x / pa(A) ps(X~TAX) dA p(X) )
— [ pa(XA) pa(AX) dA p(X) . ®)

We have used the conditional independence structure of A, B
and PA,Pg in (6) and assumed a uniform / uninformative
prior over B in (7). In (8), we shifted the integrand by X,
in order to bring the resulting likelihood to a symmetric

form. Note that this implies that we assume the underlying
integration measure to be shift-invariant, which is the case
for the product of the rotation group’s Haar-measure with the
translation group’s Lebesgue-measure.

Unfortunately, the derived likelihood

I(X) = / pa(XA) pp(AX) dA

is analytically intractable. Because of this, an Unscented
Kalman Filter [11] is used to recursively estimate the calibra-
tion, which implicitly assumes that the probability distribution
of X, A, B, and in consequence the measurement vector
AX — XB, is Gaussian. The following section elaborates
further upon this assumption.

B. Representation of Rigid Transformations

Section III-A explained the difficulty of an analytical treat-
ment of the likelihood, and the motivation for using an Un-
scented Kalman Filter to estimate the posterior density of X.
As mentioned above, this assumes that the distribution of the
transformations is Gaussian. Since the Gaussian distribution is
defined in coordinate space, the resulting distribution depends
on the chosen parametrization of the Euclidean group SE(3),
in particular the rotation part. This raises the question of which
transformation representation is the most appropriate.

We tested three popular representations, i.e., rotation vectors
(equivalent to axis-angle representation) , quaternions, and
euler angles, with Royston’s H-Test [12] to rate the quality of
the Gauss assumption for individual transformation represen-
tations. To this end, 1000 rigid transformations were randomly
generated. For each transformation, 100 x 100 = 10000
noisy point correspondences were sampled. From these, 100
least square estimates [7] were calculated, each based on
100 correspondences. These estimates were interpreted as
i.i.d. samples of the posterior transformation’s distribution and
tested for Gaussianity with Royston’s H-Test.

Evaluation of the Representations: Table 1 shows the em-
pirical rejection rate over 1000 trials for a significance level
of 5% depending on the chosen rotation representation and
the standard deviation of the point features. As one can see,
for low standard deviations the empirical rejection rate is
only slightly increased compared to the p-value, which is
consistent with the hypothesis that the posterior distribution
is nearly Gaussian. For higher standard deviations, the null-
hypothesis of a Gaussian distribution in coordinate space gets
rejected more often, as the true geometry of SO(3) can no
longer be neglected. Furthermore, we can see that the rotation
vector representation has the lowest rejection rate. This can
be explained by noting that quaternions are not a minimal
representation of rotations, i.e., not a chart on SO(3). Instead,
all valid quaternions lie on the unit-sphere, which naturally
makes a Gaussian assumption problematic. The Euler angle
representation, on the other hand, possesses singularities like
Gimbal locks, around which the natural metric is heavily
distorted.

Because of this analysis, in the following all transformations
will described using the rotation vector form.



Variance 1073 | 1072 10—t
Rotation Vector | 6.7% | 6.3% 7.1%
Quaternion 77% | 7.5% 8.8%
Euler Angles 8.5% | 88% | 13.6%

TABLE I: Rejection rate of Royston’s H-Test with p = 0.05
for different representations of transformation.
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Fig. 4: Recursive calibration step.

IV. RECURSIVE ALGORITHM

This section explains in detail the recursive algorithm to
solve Equation (1).

A. Bayesian Estimator

A Bayesian state estimator can be used to recursively
estimate the state parameters ;' modeled as random vectors.
Bayesian state estimation by design includes a time update,
which predicts the estimated state to a future time step k + 1,
and a measurement update, which corrects a predicted state
using a sensor measurement y, e

B. State Representation

The desired rigid transformation from Cam,4 to Camp can

be defined as
_ [ux
= (4],

where uy is a rotation vector and ty is a translation vector.
As mentioned above, x can be modeled as a random vector
with zf ~ N (Zy, Cze ). In Section II, point correspondences
were defined as assoc1ated local point features from one time
step k to the following time step & + 1. This assumes an
underlying tracking mechanism which provides local point
correspondences P o, and Py for each time step.

Given a state estimate xj and point correspondences P 4,
Pg, the algorithm from Figure 4 can be applied for determin-

ing xy ;.
C. Time Update
First (Line 1), the estimated state j, is predicted to the time

step k£ + 1, assuming it evolves according to a certain system

'In this paper we denote the predicted states by gz and the estimated states
(after measurement updates) by 7.

model. As we focus on rigidly mounted cameras, we consider
a random walk behavior with

T =T T U,
where v ~ N (0, C,) represents the montage uncertainty.

D. Measurement Update

From the point correspondences P, Pp between time
step k and k£ + 1, n least square estimates of the local

transformations {yz =1 .,n} with

i

gAk-f-l
t'l

yl = 7Ak+1
Ip+1 i

* @Bk+1
7

“Bkt1

are calculated [7]. These transformations are assumed to be
drawn from an underlying random vector

yAk+1
y _ tAk+1
ZEk+1 EBkJA
tBk+1
Fleﬁned by Y1 ™ /\/(ka, Cgk+1)' As an approximation, it
is assumed that
By B [{ghy =10}

and
CEH ~ Cov ({ka | n})

Measurement Equation: The measurement equation can be
obtained from Equation (1). Time indices are omitted in the
derivation for clarity. At first, rearranging Equation (3), and
(4) results in

0=R,Rx - RxRgp, &)

and respectively

Q = RAﬁx +L4 - RXIB - iX (10)

These equations need to be adapted to work with rotation
vectors. This can be performed through the exp and log
mapping, where exp denotes the conversion from rotation
vector to rotation matrix, and log denotes the conversion from
rotation matrix to rotation vector. These mappings are given by
Rodrigues formula (see Appendix A, B) and allow Equation
(9) and (10) to be rearranged into

0 = log(exp(u ) exp(uy)) — log(exp(uy) exp(ug)) ,

and
0 =exp(uy)ty +t4 —explux)ip —tx.
Since both equations are 3 x 1, composing results in

0= <10g(exp(uA) exp(uy)) — log(exp(ux) eXP(Ug)))
- exp(ug)ty +1ta —explux)tp —tx '



Thus, the implicit measurement equation h(z, y) is given by

Wz, y) = (log(exp(uA)exp(ux)) - log(exp(ux)exp(uB))) ’

exp(ug)ty +14 —explux)ip — tx
which generates pseudo-measurements in the form of
h(z,y) =0.
V. EVALUATION

This section describes the evaluation of the recursive al-
gorithm using a depth sensor calibration scenario. Two ap-
proaches are used. First, a synthetic scenario is considered,
comparing the algorithm results while using different noise
intensities. Second, the calibration of two Kinect sensors using
real measurements is evaluated.

A. Synthetic Data

The ground truth was specified to be the rigid transformation
z = [0, %,0,2,0,O]T from Cam4 to Camp. The setup is vi-
sualized in Figure 5. The fields of view, colored in transparent
gray, are non-overlapping. The Bayesian state estimator was
initialized with z, ~ N (&, Co), where &, = [0,0,0,0,0,0]T
and Cy = diag(2-107%,2-107%,2-107%,1,1,1). In each
time step k, one randomly generated rigid transformation Hy
was applied to both Camy and Camp. 100 corresponding
point features were generated and distorted by a zero mean
Gaussian noise with covariance matrices o2-I for both sensors.
We constrained the rigid transformations Hy, to the x-y-plane,
simulating a common indoor vehicle. In Figure 6 the root mean
square error (RMSE) is depicted, averaged over 20 runs.

zin m

yinm 0

T in m

Fig. 5: Synthetic calibration setup with two rigidly linked
depth sensors Cam,4 and Camgp.

B. Real Data

The real camera experiment consisted of calibrating two
rigidly linked Kinect RGBD cameras (Figure 1). A chessboard
with 10 x 7 inner corners was used to obtain features. For
each time step k, the algorithm detected corners in the RGB
image, then used the depth information to project the features
in 3D space. Since an RGBD sensor provides the full 3D
information about a point, it was not necessary to know the
distances between the corners beforehand, or even for the
chessboard to be flat. These &k points were then compared the
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Fig. 6: RMSE of calibration steps for different o2, averaged
over 20 runs.

points found at k41 and the transformation between them was
found by minimizing the square distances. The resulting matrix
was then converted to rotation vector form. The uncertainty
of the transformation was calculated by using a Monte-Carlo
transform with 5 - 10* samples.

The Bayesian state estimator was also initialized with z, ~
N (&4, Cp), where &, = [0,0,0,0,0,0]T and Cy = diag(2 -
1074,2-1074,2-1074,1,1, 1). Figure 8 shows the root mean
square error (RMSE) for this experiment.
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Fig. 8: RMSE of calibration steps for experiment using real
data (Figure 1).

VI. CONCLUSION

In this work, a recursive algorithm for solving the calibra-
tion problem of non-overlapping depth sensors was presented.
The approach is based on a Bayesian state estimator. The
rigid transformation between two sensors was modeled as
a random vector and recursively updated with local point
correspondences of both sensors.

This novel approach considers sensor-specific uncertainties
and simultaneously calibrates both the rotation and translation.
Due to the recursive design, also time-dependent changes of
the calibration can be modeled.

The evaluation has shown a very good convergence of the
algorithm and robustness against singular movements of the
base. These results were confirmed by real data experiments.
It should be mentioned that the developed algorithm performs
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(a) Calibration after 1 time step.

Fig. 7:

at real time on standard hardware so that calibration can be
run online.

A. Future Work

The extension of the algorithm to work with n sensors
is straightforward by adapting the state and the measure-
ment equation. A direct usage of the point correspondences
as measurements also would be a desirable improvement.
Given a stochastic sensor model, the uncertainty of the local
transformations could be calculated analytically. Furthermore,
additional sensors such as inertial measurement units (IMU)
could be integrated in the calibration. Finally, combining the
presented calibration approach with a scene reconstruction
method like KinectFusion [13] would allow for simultaneous
reconstruction with more than one Kinect.

APPENDIX
A. Mapping exp from rotation vector u to rotation matrix R

The exponential map exp : so(3) — SO(3) maps a tangent
vector at the identity element, in our case represented by a
rotation vector u, to the corresponding rotation group element,
which is represented by a rotation matrix R, by

exp(u) = elulx
I+sinfk]x + (1 — cos@)(@T -1,

where e denotes the matrix exponential and

0 —Uus U9
[ulx = | u3 0 —u |,
—Uu2 U1 0

as well as

0= () -

The second identity is known as Rodrigues’ rotation formula.

B. Mapping log from rotation matrix R to rotation vector u

The logarithmic map log : SO(3) — so(3) is defined as
the inverse of the exponential map. Given a rotation matrix
R, the rotation angle can be calculated by

6(R) = arccos <trace(§l)—l>

(b) Calibration after 4 time steps.

zinm

0 Y inm 0

zinm

zinm

(c) Calibration after 8 time steps.

Scheme of a synthetic data experiment. Light gray denotes the groundtruth, the estimation of Camp is colored in red.

and the corresponding normalized rotation axis by

R(3,2) - R(2,3)
R(1,3) — R(3,1)
R(2,1) - R(1,2)

E(R) = Tsin(0)

The rotation vector is then given by

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

log(R) = 0(R) E(R) .
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