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Abstract—In this paper, we propose a progressive Gaussian
filter, where the measurement information is continuously in-
cluded into the given prior estimate (although we perform
observations at discrete time steps). The key idea is to derive a
system of ordinary first-order differential equations (ODE) that is
used for continuously tracking the true non-Gaussian posterior
by its best matching Gaussian approximation. Calculating the
required moments of the true posterior is performed based on
corresponding Dirac Mixture approximations. The performance
of the new filter is evaluated in comparison with state-of-the-
art filters by means of a canonical benchmark example, the
discrete-time cubic sensor problem.

I. INTRODUCTION

We consider state estimation in discrete-time stochastic
nonlinear dynamic systems. Thanks to their simplicity, Gaussian
filters, i.e., filters representing all state densities by Gaussians,
are an attractive tool for solving this type of estimation problem.
However, in general, their full estimation performance is not
exploited due to additional assumptions and simplifications.

In this paper, we focus on Gaussian filters that operate by
finding the best-matching Gaussian to the true posterior by
means of an explicit shape optimization after every processing
step. A filter of this type is called Gaussian-assumed density
filter (GADF). During the filter step, GADFs automatically
consider the actual measurement during the approximation.

Another commonly used type of Gaussian filter is the so
called Linear Regression Kalman Filter (LRKF) [1]. LRKFs
approximate the (non-Gaussian) joint density of state and
measurement corresponding to the prior density, the noise
density, and the given nonlinear measurement equation by a
jointly Gaussian density, which does not consider the actual
measurement and typically is only a very rough approximation
of the true joint density. The actual measurement is then used
for slicing the approximate joint density in order to obtain the
posterior density. Due to this additional Gaussian assumption,
performance is typically worse compared to GADFs not making
this assumption.

Examples of LRKFs [2] are the Unscented Kalman Filter
(UKF) [3] and its scaled version [4], its higher-order gen-
eralization [5], a generalization to an arbitrary number of
deterministic samples placed along the coordinate axes [6],
filters performing an analytic or semi-analytic calculation of
the required moments [7], [8] based on a decomposition into
parts that can be calculated in closed form or via a sample
approximation [9], and filters based on numerical integration
for calculating the required nonlinear moments of the prior
Gaussian density [10].

Of course, GADFs are more complicated to implement in
comparison to the LRKFs and there are various options for
minimizing the shape deviation between the true posterior and
its Gaussian approximation. One option is to employ moment
matching, i.e., using the mean and covariance matrix of the
true posterior as parameters for the desired Gaussian, as this is
known to minimize the Kullback-Leibler distance between
the two densities. Unfortunately, in the case of nonlinear
measurement equations and the corresponding complicated
Likelihood function, it is in general not a simple task to
calculate mean and covariance matrix of the true posterior,
as analytic solutions are a rare exception. In most cases,
numerical integration over the true posterior, i.e., the product
of the (Gaussian) prior density and the Likelihood function, is
required, such as Monte-Carlo integration [11].

In this paper, we propose a progressive Bayesian procedure
for Gaussian-assumed density filtering, where the measurement
information is continuously included into the given prior
estimate (although we perform observations at discrete time
steps). The first progressive filtering procedure of this type
has been developed in 2003 [12] for state estimation with a
Gaussian Mixture representation in the scalar case, where a
homotopy continuation approach was proposed for tracking
the true posterior with its approximation minimizing a squared-
integral distance measure. The multi-dimensional case was
treated in [13]. A generalization of this method to various
other distance measures is proposed in [14]. Besides state
estimation, the progressive processing idea has been applied to



moment calculation [15] and Gaussian Mixture reduction [16].
A homotopy-based filtering method operating on a particle
representation is given in [17].

This paper is based on the method in [13] that was developed
for state estimation with a Gaussian Mixture representation. The
key idea is to derive a system of ordinary first-order differential
equations (ODEs) for continuously tracking the true non-
Gaussian posterior by its best matching Gaussian approximation.
In contrast to [13], where a squared-integral distance measure
between the true and the approximate posterior was minimized,
here we derive ODEs for directly tracking the mean and
covariance of the true posterior density by its Gaussian
approximation.

The new progressive estimation method allows for arbitrary
noise structures, even for noise structures that cannot easily
be treated by LRKFs such as multiplicative noise1. The
required integrals are solved by employing a Dirac Mixture
approximation [18] of the Gaussian posterior. Dirac Mixture
approximations for nonlinear estimation and filtering have been
proposed for the case of scalar continuous densities in [19],
[20]. An algorithm for sequentially increasing the number of
components is given in [21] and applied to recursive nonlinear
prediction in [22]. Multi-dimensional Gaussian densities are
treated in [18]. Of course, more complicated continuous
densities can be handled with this approach such as Gaussian
Mixture densities, which is outside the scope of this paper.

Progressive processing automatically places Dirac compo-
nents solely in the interesting regions of the state space,
i.e., the support of the true posterior. As a result, the new
filtering method is fast, efficient, and robust. Its performance is
evaluated in comparison with state-of-the-art filters by means
of a canonical benchmark example, the discrete-time cubic
sensor problem.

II. PROBLEM FORMULATION

We consider the general problem of estimating the hidden
state of a discrete-time stochastic nonlinear dynamic system
based on noisy measurements, which consists of a prediction
step (or time update) employing a system model for propagating
the estimated state from time step to time step and a filter step
(or measurement update) for including observations taken at
a given time step into the state estimate. Here, the focus is
on the filter step that is typically considered harder compared
to the prediction step. The insights obtained for the filter step
can, however, be used for the prediction step as well.

A generative measurement equation

ŷ = h(x, v) (1)

is investigated, with state x, a specific measurement ŷ, and
measurement noise v with corresponding noise density fv(v).

1Of course, the corresponding Likelihoood function has to be derived before
applying the filter.

The special case of additive noise

ŷ = h(x) + v (2)

is also of interest, as it usually simplifies matters.
We assume that the generative model can somehow be

converted to a probabilistic model represented by the con-
ditional density f(y|x). For a given specific measurement ŷ,
this conditional density is the so called Likelihood function2

abbreviated as
fL(x) = f(ŷ|x) .

For the case of additive noise, the Likelihood function is given
by

fL(x) = fv(ŷ − h(x)) .

Other noise structures result in different Likelihood functions.

Gaussian Filters

For a Gaussian-assumed density filter, we have a Gaussian
prior density fp(x) that undergoes a Bayesian filter step
according to the following multiplication with the Likelihood
function

f̃e(x) = fp(x) · fL(x) ,

where the resulting true posterior density is denoted by f̃e(x).
Please note that no normalization has been performed so that
the posterior density does not necessarily integrate to one. The
tilde is used to underline that this is the true density resulting
from performing a single filter step.

Obviously, the true posterior density f̃e(x) in general is
not Gaussian anymore. In order to enable recursive processing
without increase in computational complexity, the true posterior
has to be approximated by a Gaussian density for the next
processing step. In this paper, this will be performed by moment
matching, i.e., by calculating the Gaussian density with the
same mean and covariance matrix as f̃e(x).

The key idea for calculating mean and covariance matrix of
f̃e(x) is given in the next section.

III. KEY IDEA

Our goal is to calculate mean and covariance matrix of
f̃e(x), which typically cannot be performed analytically. One
option is to use numerical integration methods based on a
discrete approximation of the prior density fp(x). This includes
Monte-Carlo integration based on independent random samples
drawn from fp(x) or replacing fp(x) by its deterministic
Dirac Mixture approximation. However, the problem is that
for narrow Likelihood functions, only a few discrete samples
actually contribute to the integral and the remaining samples
are wasted.

2The Likelihood function is not necessarily a valid density function. Although
it is always non-negative, it does not necessarily integrate to one, i.e., it usually
is not normalized or even cannot be normalized.



In this paper, the key idea is to gradually include the mea-
surement information, so that intermediate Gaussian posteriors
become available. These intermediate posteriors can then be
discretized and used for numerical integration. As a result,
samples can always be maintained in regions of high likelihood.

Gradual inclusion of the measurement information could be
performed by decomposing the original Likelihood function
into a finite product of (typically wider) Likelihood functions
[23], [24]. This, of course, leads to the problem of determining
the number of sub-Likelihoods used.

Here, we propose to employ a continuous inclusion of the
measurement information, which is a specific form of homotopy
continuation and gives two advantages. First, we can derive an
elegant solution for tracking the parameters of the desired
intermediate Gaussian posteriors in the form of a system
of ordinary first-order differential equations. When solving
this system on a digital computer, the optimal step sizes are
automatically determined by the solver. Second, a continuous
inclusion leads to a continuous change of the intermediate
posteriors, which allows to use density discretization methods
such as those in [20] that make use of homotopy continuation
methods anyway.

We employ a Gaussian representation of the intermediate
posteriors called fec (as it is a continuous representation) with
parameter vector η

c
. A discrete representation called fed is

maintained simultaneously. The two representations are tied in
such a way that changing the shape of fec directly influences
the parameters of its discrete approximation fed .

In the general multivariate case, the Dirac Mixture approxi-
mation of the Gaussian is calculated as described in [18]. For
the scalar Gaussian densities used in the evaluation (Section VI),
the explicit formulas from [19] are used for calculating Dirac
Mixture approximations with equal weights.

IV. PROGRESSIVE FILTER STEP

We will now derive the progressive filter step. The first
step is to redefine the Likelihood function in such a way that
a continuous execution of the filter step is achieved. This
progressive Likelihood function is defined by

fL(x, γ) ,

where γ is an artificial time with γ ∈ [0, 1]. It is desired that

fL(x, γ) =

{
1 γ = 0

fL(x) γ = 1

holds.
Several options for defining progressive Likelihood functions

exist. This includes progressively modifying the given nonlinear
mapping h(x) of the underlying generative model (1) or varying
the noise variance as in [13]. Here, we use the exponentiation

of the Likelihood function as used in [14], [17]. The modified
Likelihood function is then given by

fL(x, γ) = [fL(x)]
γ
. (3)

Remark IV.1 (Additive Noise) For the special case of genera-
tive systems suffering from additive noise in (2), we now obtain
the expression3

fL(x, γ) = exp

{
−1

2
γ
(
y − h(x)

)T
C−1
v

(
y − h(x)

)}
,

where scaling factors have been omitted to achieve fL(x, γ =

0) = 1.

In the following, the derivative of the Likelihood function
with respect to γ is required. For the specific progression from
(3), we obtain

ḟL(x, γ) =
∂fL(x, γ)

∂ γ

=
∂fγL(x)

∂ γ

= fγL(x) · log (fL(x))
= fL(x, γ) · log (fL(x)) .

Remark IV.2 (Additive Noise) A further simplification is
achieved by focusing on the case of additive noise. Taking
the derivative of the Likelihood function now gives

ḟL(x, γ) = −
1

2
fL(x, γ)

(
y − h(x)

)T
C−1
v

(
y − h(x)

)
.

The second step is the continuous execution of the filter
step, now written with prior density fp(x) and an intermediate
posterior density f̃e(x, γ) depending on the artificial time γ
introduced above

f̃e(x, γ) = fp(x) · fL(x, γ)

for γ ∈ [0, 1]. For the final time4 γ = 1, the progressive
Likelihood reaches the original Likelihood and as a result, the
original posterior is attained by the intermediate posterior, i.e.,
f̃e(x, γ = 1) = f̃e(x). On the other extreme, for the start time
γ = 0, the intermediate posterior is desired to be identical to
the prior density, i.e., we have f̃e(x, γ = 0) = fp(x).

Plugging in a continuous approximation fec (x, ηc(γ)) of the
true intermediate posterior f̃e(x, γ) gives

fec (x, ηc(γ)) ≈ f̃
e(x, γ) = fp(x) · fL(x, γ) (4)

3For the additive noise case, exponentiation is equivalent to progressive
modification of the noise covariance matrix as proposed in [13] since we have

γ
(
y − h(x)

)T
C−1

v

(
y − h(x)

)
=

(
y − h(x)

)T
(
1

γ
Cv

)−1 (
y − h(x)

)
.

4Of course, time here denotes the artificial time γ introduced above.



for γ ∈ [0, 1], where left-hand-side and right-hand-side now
become equal only for γ = 0, but only approximately5 equal
for γ > 0.

V. SCALAR GAUSSIAN-ASSUMED DENSITY FILTER

This section is devoted to deriving specific formulas for a
scalar Gaussian density for representing fec given by

fec (x, ηc(γ)) = w(γ)
1√

2π σ(γ)
exp

(
−1

2

(x−m(γ))2

(σ(γ))
2

)
,

with

η
c
(γ) = [w(γ), m(γ), σ(γ)]

T
.

An additional weighting factor w(γ) has been introduced that
allows tracking unnormalized true posteriors.

In order to find the best matching Gaussian approximation
fec (x, ηc(γ)) in (4), we desire the first moments to be equal as∫

IR

mfec (x, ηc(γ)) dx =

∫
IR

mfp(x) · fL(x, γ) dx ,

with m = [1, x, x2]T . Taking the derivative with respect to γ
on both sides gives∫

IR

m
∂fec (x, ηc(γ))

∂γ
dx =

∫
IR

mfp(x) · ∂fL(x, γ)
∂γ︸ ︷︷ ︸

ḟL(x,γ)

dx ,

with

∂fec (x, ηc(γ))

∂γ
=
∂fec (x, ηc(γ))

∂ ηT
c
(γ)︸ ︷︷ ︸

pT (x,γ)

·
∂ η

c
(γ)

∂γ︸ ︷︷ ︸
η̇
c
(γ)

.

We obtain∫
IR

mpT (x, γ) dx︸ ︷︷ ︸
P(γ)

η̇
c
(γ) =

∫
IR

mfp(x) · ḟL(x, γ) dx︸ ︷︷ ︸
b(γ)

,

which can be written as

P(γ) η̇
c
(γ) = b(γ) . (5)

5As long as working with the infinite-dimensional functional representation
f̃e of the true density, the two sides in (4) are equal as f̃e(x, γ) is capable of
following changes in the right-hand-side exactly. On the other hand, for a finite-
dimensional representation fec (x, ηc(γ)), i.e., a density function depending
on a finite-dimensional parameter vector η

c
(γ), the left-hand-side cannot

necessarily exactly follow the changes of the right-hand-side as the product
on the right-hand-side typically is not of the same density type.

Closed-form Expressions for Matrix P(γ): The required
derivatives of the continuous posterior fec with respect to the
density parameters are collected in the vector p(x, γ) given by

p(x, γ) =
∂fec (x, ηc(γ))

∂ η
c
(γ)

=


∂fe

c (x,ηc
(γ))

∂ w(γ)

∂fe
c (x,ηc

(γ))

∂ m(γ)

∂fe
c (x,ηc

(γ))

∂ σ(γ)


with

p(x, γ) =


1

w(γ)

x−m(γ)

(σ(γ))2

(x−m(γ))2−(σ(γ))2

(σ(γ))3

 fec (x, ηc(γ)) . (6)

As a result, for this specific choice of continuous represen-
tation fec , a closed-form expression for the matrix P(γ) can
be obtained that is given by

P(γ) =


1 0 0

m(γ) w(γ) 0

m2(γ) + σ2(γ) 2w(γ)m(γ) 2w(γ)σ(γ)

 .

Solving for η̇
c
(γ) in (5) could be performed based on the

matrix P(γ) directly. However, it is possible to calculate its
inverse in closed form, which will be denoted by

Q(γ) = P(γ)−1 ,

with

Q(γ) =


1 0 0

−m(γ)
w(γ)

1
w(γ) 0

m2(γ)−σ2(γ)
2w(γ)σ(γ) − m(γ)

w(γ)σ(γ)
1

2w(γ)σ(γ)

 .

Hence, we obtain

η̇
c
(γ) = Q(γ) b(γ) , (7)

with
η̇
c
(γ) = [ẇ(γ), ṁ(γ), σ̇(γ)]

T
.

The right-hand-side of (7) that we will denote by r(γ) can
now be written as

r(γ) = Q(γ) b(γ)

= Q(γ)

∫
IR

m · f̃e(x, γ) · log (fL(x)) dx

=

∫
IR

q(x, γ) · f̃e(x, γ) · log (fL(x)) dx

(8)

with

q(x, γ) =


1

x−m(γ)
w(γ)

(x−m(γ))2−(σ(γ))2

2w(γ)σ(γ)

 .



Approximate Expressions for Vector r(γ): Calculating r(γ)
in (8) amounts to calculating certain moments of the true
posterior density f̃e(x, γ). As closed-form solutions are a rare
occasion, we have to be content with approximate integration,
which is pursued further here.

One viable option would be to replace the prior density
fp(x) by its Dirac Mixture approximation and thus, turn the
integration into summation. However, this is only efficient for
small values of γ as long as the progressive Likelihood function
is wide and does not modify the prior density too much. For
larger γ, the Likelihood function typically becomes narrower
and narrower and would force many Dirac components to zero,
which is similar to the degeneration problem in particle filtering.
By doing so, only very few Dirac components would really
contribute to the integration, especially for larger γ, which is
not desired.

Thanks to progressive processing, we have an approximate
(Gaussian) posterior fec (x, ηc(γ)) available for every γ. This
approximate posterior now allows to integrate only over those
portions of the state space that contain the true posterior. For
doing so, we rewrite (8) as

r(γ) =

∫
IR

q(x, γ) ·
fec (x, ηc(γ))

fec (x, ηc(γ))︸ ︷︷ ︸
1

·f̃e(x, γ) · log (fL(x)) dx

and replace the first occurrence of the continuous posterior
fec (x, ηc(γ)) by its Dirac Mixture approximation fed given by

fed (x, ηc(γ)) =

Ld∑
i=1

wi(ηc(γ)) δ(x− x̂i(ηc(γ))) ,

with Ld the number of Dirac components. As a result, we
obtain

r(γ) ≈
∫
IR

q(x, γ) ·
fed (x, ηc(γ))

fec (x, ηc(γ))
· f̃e(x, γ) · log (fL(x)) dx

=

Ld∑
i=1

wi · q(x̂i, γ)
f̃e(x̂i, γ)

fec (x̂i, ηc(γ))
· log (fL(x̂i)) ,

(9)

where the explicit dependency of the parameters of the discrete
density representation upon the parameters of the continuous
part has been omitted.

It is important to note that the intermediate Gaussian
posteriors fec (x, ηc(γ)) are used as proposal densities that
should cover the support of the function to be integrated. By
employing Dirac components solely in the important regions of
the state space, all the components contribute to the integration.
As a result, by far fewer components are required to achieve a
good accuracy.

For the special case of a scalar measurement equation with
additive Gaussian noise leading to a scalar Likelihood function

fL(x) = exp

(
−1

2

(y − h(x))2
σ2
v

)
,

we obtain

log (fL(x̂i)) = −
1

2

(y − h(x̂i))2
σ2
v

.

for i = 1, . . . Ld.

VI. EVALUATION

For demonstrating the significant increase in performance
achieved by the new filter, it is evaluated in comparison with the
state-of-the-art filters. As a benchmark example, we consider
the discrete-time cubic sensor problem

y = x3 + v ,

where v is zero-mean Gaussian measurement noise. This is
a canonical example, simple to understand, and, compared to
some contrived artificial example, allows a good assessment
of filter performance.

For comparison purposes, the proposed new filter is com-
pared to

• the class of Linear Regression Kalman Filters (LRKF),
specifically to

– the Unscented Kalman Filter (UKF),
– the Gaussian Filter (GF),
– the Analytic LRKF,

• and an assumed-Gaussian density filter using moment
matching for fitting a Gaussian to the true posterior
employing Monte-Carlo integration for approximating the
desired moments called Gaussian Particle Filter (GPF)
[11].

For a measurement ŷ = 3, a prior Gaussian density with
mean −1 and variance 1, and a cubic measurement equation
corrupted by zero-mean Gaussian noise with variance 1.2, the
results of one filter step for the different filters are shown
in Figure 1. The true posterior of the Bayesian filter step is
calculated on a fine grid with 30, 000 grid points. The ground
truth for comparison purposes is the Gaussian density with
mean and variance identical to the true posterior. A standard
Unscented Kalman Filter (UKF) is employed. The Gaussian
Filter (GF) is employed based on an optimal Dirac Mixture
approximation of the prior Gaussian density according to [6],
where the filter step is performed by assuming that measurement
and state are jointly Gaussian. The Analytic LRKF computes
the moments in closed form and additionally assumes that
measurement and state are jointly Gaussian. The Gaussian
Particle Filter (GPF) computes posterior mean and variance by
means of 106 random samples drawn from the prior Gaussian
density that are used for evaluating the product of Likelihood
and prior density. Subsequently, the resulting weighted samples
are used for moment matching. The new progressive Gaussian
filter is applied with a density approximation using 30 Dirac
components. To properly cover the support of the function to
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Figure 1. Comparison of the results for one filter step for the ground truth, i.e., the best Gaussian approximation computed numerically (always dashed lines),
compared with the true posterior (solid black line), the Gaussian Filter (GF), the Unscented Kalman Filter (UKF), the Analytic LRKF, the Gaussian Particle
Filter (GPF), and the new progressive Gaussian filter (all filters shown with solid gray lines).

be integrated in (8), the sample positions are scaled by a factor
of 4.

Figure 1 clearly shows that the LRKFs have difficulties
approximating the true posterior. In contrast, the GPF for 106

samples and the new progressive Gaussian filter produce results
almost identical to the ground truth.

To illustrate the savings in the number of samples used by
the new progressive Gaussian filter, its estimation quality is
compared to the Gaussian Particle Filter (GPF) in Figure 2 for
the same experimental parameters as above. It is obvious that
very good estimation results are already obtained for very few
(deterministic) samples of the Dirac Mixture approximation.
In contrast, the results of the Gaussian particle filter are non-
deterministic and the average convergence is much slower.

The results of recursive filtering over 50 times steps are
shown in Figure 3. The recursion is started with a prior
Gaussian density with mean −1 and variance 30. Noise mean
is 0, the noise variance is 1.2. From time step 1 to 19, the true
state is 1. At time step 20, the true state is changed to 0 and
Gaussian noise with variance of 9 is added to all estimates.

The top plot in Figure 3 shows the estimated means of
the true posterior, its best Gaussian approximation6, the new
progressive Gaussian filter, and the Analytic LRKF. The other

6The best Gaussian approximation used as the ground truth at every time
step is also recursively calculated on the grid based on the previous best
Gaussian approximation. The accumulating error between the true posterior
and the ground truth is unavoidable due to the Gaussian assumption.

variants of LRKF have been omitted as the Analytic LRKF
yields the highest estimation quality.

The middle plot in Figure 3 shows the absolute mean error
of the best Gaussian approximation, the new progressive filter,
and the Analytic LRKF with respect to the mean of the true
posterior.

The two top plots in Figure 3 show that the proposed
progressive Gaussian filter provides results very close to the
best Gaussian approximation, which itself is rather close to the
mean of the true posterior. The LRKFs represented by their
highest-quality variant, the Analytic LRKF, show a much larger
deviation.

For solving the system of ordinary first-order differential
equations, a standard solver (ODE15 in MATLAB) is employed.
The number of steps taken for the inclusion of every measure-
ment is shown in the bottom plot in Figure 3. Typically, only
a few steps7 are required. The number of steps is larger, when
the state uncertainty is large, i.e., in the beginning and for the
state change at time step 20, and so reflects the complexity of
the estimation problem. It is important to note that the total
number of function evaluations is given by the number of
solver steps times the number of Dirac Mixture components in
the discrete approximation of the intermediate posteriors. As
the average number of solver steps is 43.4, the average number
of function evaluations (43.4 · 30 = 1302) is still very low.

7The median of the number of steps is 31.5.
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Figure 2. Comparison of the estimation quality as a function of the number of samples used between the Gaussian particle filter (GPF) and the proposed
progressive Gaussian filter. As the GPF provides non-deterministic results, 100 Monte-Carlo runs have been performed to produce the RMSE and the min-max
error bars.

VII. CONCLUSIONS

A progressive Gaussian filtering method has been introduced
that calculates intermediate Gaussian posteriors and correspond-
ing Dirac Mixture approximations. For the moment calculation,
the Dirac Mixture approximations are employed to evaluate
the true posterior density at discrete points only. In contrast
to Monte-Carlo methods available for that purpose, the Dirac
components all contribute to the integration as progressive
processing is exploited to solely place components in the
important regions of the state space. As a result, the new
filter requires significantly less samples, is fast, efficient, and
robust, and achieves a high estimation quality compared to
state-of-the-art Gaussian filters.

For performing the filter step, the proposed method requires
the Likelihood function and its logarithm. This is a disadvan-
tage, as the Likelihood function is not always available. Current
research work is investigating more advanced progressive
processing schemes that do not explicitly require the Likelihood
function.
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