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Abstract—Indoor localization is a field in research with many
competing technologies using different kinds of media. A common
challenge faced by most systems is dealing with Non-Line-of-Sight
(NLOS) conditions. We are addressing this issue with focus on
sound in the frequency range above 20 kHz, as we encountered
severe occurrence of outliers due to multipath propagation, by
reflections, and from occlusion. The proper discrimination of
erroneous signals is of special concern during initialization time
of the tracking system. During run time, the computationally
demanding process can be spared, if motion is modelled and
stochastic filtering techniques are applied. This paper depicts
solutions for both cases, and demonstrates that a combined use
of static and dynamic localization methods delivers increased
robustness at an affordable computational cost.

I. INTRODUCTION

Indoor localization has become an emerging field in re-
search since location-based services have aimed to hit the
mass market. There is a demand for mobile, handheld devices
to offer absolute geolocation in buildings similar to GPS.
Also the gaming industry pushes on multimodal input, like
the user’s position and viewing direction, to spice up their
products, like Microsoft’s KinectTM. But also services for the
elderly, impaired, and blind people are on the list. Firefighter
training and education, like evacuation scenarios, can be
performed using a realistic, immersive telepresence system,
which requires accurate and fluent positioning.

Unlike outdoor environments, where localization and track-
ing are covered by combinations of GPS and INS to a
satisfactory extent, indoor positioning is still a demanding task,
as it faces several additional challenges. Due to the smaller
scale, as a matter of fact, accuracy in buildings needs to
be better by at least two orders of magnitude compared to
common navigation systems.

Optical systems as well as systems based on (ultra-) sound
require line-of-sight (LOS) conditions. Although some ap-
proaches with low frequency sound have proven robustness
against occlusions (thanks to diffraction), they still suffer from
multipath propagation due to reflections from even surfaces
such as walls or windows [1]. Radio and other (electro-)
magnetic systems are strongly influenced by metal, which is
prevailing in most modern buildings.

Despite the known issues concerning acoustic wave propa-
gation, we chose to tackle the presence of Non-Line-of-Sight
(NLOS) conditions, where common designs fail. This comes,
of course, at the expense of redundancy in measurements,
along with an increase in computation complexity.

Distance measurements are carried out by using Time-of-
Flight (TOF) of characteristic, distinguishable sound packets

Fig. 1. User wearing the integrated tracking and visualization system. Vision
is provided by an HMD, position and viewing direction are resolved according
to the user’s actual pose.

that are emitted concurrently by room-fixed beacons. Operat-
ing frequencies lie in a broad band above 20 kHz for reasons
of ergonomics. However, propagation of high frequency sound
bears a few disadvantages, such as higher directivity and
attenuation through air, as well as increased sensitivity to
reflections.

As an application of a hybrid acousto-inertial tracking sys-
tem, our laboratory developed a telepresence unit that allows
a human user to explore virtual or remote environments by
freely moving in his or her local surroundings, e.g., the living
room. Video is brought to the user via a head-mounted display
(HMD), position and viewing direction are determined aboard
the mobile, user-worn tracking unit. Local motion is then
transformed into remote movements according to a motion
compression algorithm [2] that allows telepresent walking in
literally unlimited spaces.

The mobile unit is integrated into a backpack containing the
necessary electronics, such as a tiny computer for generating
graphics as well as an embedded DSP-based board handling



signal processing for the localization task [3]. Fig. 1 shows a
user walking in the telepresence environment.

For reasons of ergonomics, the entire system runs wirelessly.
It is battery-operated, and communicating over WLAN and
ZigBEE. The latter is required for synchronizing the mobile
unit to the infrastructure, i.e., the signal generator and the
beacons, to allow for performing TOF distance measurements.

A. Contribution
It is understood that NLOS distance measurements between

beacons and receivers introduce a significant amount of error
into pose estimation.

If not appropriately handled, they can impair the system’s
performance and accuracy up to total failure. Therefore, a
major concern of this paper is dealing with the cause and the
proper reduction or elimination of erroneous measurements.
A recursive algorithm is introduced to distinguish and filter
out the presumably false measurements, according to a certain
quality criterion. This can be a simple χ2 test in the determin-
istic case, or the mahalanobis distance, when using stochastic
filtering.

Measurements are obtained concurrently between all emit-
ters (loudspeakers) and receivers (microphones), the embedded
system at the moment supports configurations of up to 8 emit-
ters and 8 receivers. However, due to complexity issues, exper-
iments will show setups with 4/4 and 6/4 emitters/receivers
to better keep up with real time processing constraints.

B. Related Work
A similar approach for detecting outliers due to NLOS

measurements that exploits deviations in χ2-distribution can
be found in [4]. The key idea is to determine a point position
from redundant distance measurements to a higher number of
beacons. After initially considering all available measurements
for estimating position, in the following process the position is
estimated using only subsets of the full measurement vector,
in a ”leave-one-out“ manner. This way, when mapping back
from estimated position to distances, the NLOS measurements
can be discriminated according to the quadratic differences of
measured and estimated distance. This approach is effective,
yet computationally demanding, as it comes with O(n!) com-
plexity.

Another effective method for indoor localization under
NLOS conditions that has been tested using Bluetooth and
ultrasound (BLUPS) is demonstrated in [5]. It mitigates the
effects introduced by NLOS measurements using a least me-
dian of squares approach.

Other approaches addressing the NLOS problem include the
use of HMMs and particle filtering to keep track of the state of
mobile nodes [6]. Unlike our target, they are concerned with
tracking vehicles as point objects, rather than determining their
pose.

C. Overview
The paper is organized as follows. The upcoming Sec-

tion II formulates the problem and introduces the system
modelling. Section III describes the algorithm for the NLOS
discrimination. Section IV shows the hardware and the overall
system design. Evaluation and sensitivity analysis can be
found in Section V using synthetic data, followed by results
of experiments on real data, captured by the embedded target

hardware. Section VI summarizes the results in a conclusion
and motivates topics for further research.

II. PROBLEM FORMULATION

The general setup of our problem consists of a rigid
body that we want to track, and a number of beacons L
(loudspeakers) that are fixed at known positions within the
world coordinate system. The rigid body comprises of several
receivers M (microphones) that are fixed to it at known
positions with respect to its local body coordinate system.
Now, using the techniques presented in [7], a full number of
n · m distances between all beacons Li, i = 1..n and all
receivers Mj , j = 1..m can be obtained in every update step
of the measurement system. We capture these measurements
in a vector called d ∈ Rn·m

d = [d11, d12, ..., d1m, d21, d22, ..., d2m, ..., dnm]T

of length n ·m. The pose of the rigid body is represented by
a 12-dimensional vector, comprising of position, orientation,
translational and angular velocity (each 3D). However, for the
presented algorithm about static measurements, we only need
the first 6 variables, i.e.

x =

[
p
r

]
,

with p = (px, py, pz)
T being the components of a 3D-position

and r = (roll, pitch, yaw)T a representation of orientation in
euler angles. Its position and orientation marks the origin and
the axes of the local body coordinate system.

Furthermore there is a nonlinear measurement equation that
maps pose x to estimated distances d̂ (forward mapping),

d̂ = ‖Li,w −Mj,w‖ = ‖Li,w − (R ·Mj,b + p)‖

where R is a rotation matrix generated from r. For the
reverse mapping (from measured distances to estimated pose)
a closed-form solution is applied, as described in [8], to serve
as an initial pose estimate.

This estimate can be used for optimization by iterative
methods (e.g., Newton’s method) to minimize the overall
error, i.e., to find a pose that minimizes the sum of squared
differences between the Euklidean distance ‖[Mi,w − Lj,w]‖
and the measurements dij for all i, j ∈ i = 1..n, j = 1..m.
Thus, the microphone positions Mi,w with respect to the world
coordinate system need to be calculated by the relationship
Mi,w = R ·Mi,b + t, where R is a rotation matrix, and t is a
translation vector. After a number of iterations the improved
estimated pose can be drawn from R and t.

The weighting for every single distance measurement dij is
a component of the vector

w = [w11, w12, ..., w1m, w21, w22, ..., w2m, ..., wnm]T

with wij ∈ [0, 1]n·m. This enables us to gate individual
measurements in or out.

Suppose now that we can solve for pose given the distance
measurements. As we carry out a forward mapping, we will
encounter a difference in measured distances d and those ones
calculated by the mapping function, d̂. We now introduce a
quality criterion D that reflects the deviation, by mapping the



measurement vector and the weighting vector to a scalar value
z ∈ R+.

D : d,w → z

For a start, we decided to take the mean squared error over
all measurements involved. It is obvious that estimating the
quality of the input measurements is independent of the
actual pose. It merely depends on the measurements and the
weighting components.

The principal challenge is now to find a configuration of
w that minimizes the MSE between calculated and actual
measurement, i.e., to eliminate exactly those measurements
that account for an error.

wopt = argmin
w
{D(w, d)}

An algorithm for recursive testing of various different config-
urations to approach wopt is shown in Section III.

III. ALGORITHM

As stated in the previous section, the algorithm shall
quantify the error introduced by certain erroneous distance
measurements, and thus detect and eliminate those outliers.
Prior to the recursion, an initial pose is estimated, taking the
full set of measurements as an input. A weighting vector w =
(1n·m)T qualifies for this process. This way, we receive an
initial estimate consisting of pose, calculated measurements,
and the mean squared error between calculated and actual
measurements. Then, we descend into the recursion, operating
on subsets of the given measurements, in a ”leave-one-out”-
manner.

The process repeats for (n · m) − 1 times, storing the
index ij of the best w-value. Now, the next step leads
deeper into recursion, as again the newly calculated subsets
of measurements are processed. Recursion stops once one of
the following conditions is satisfied:

• The z value of calculated and actual measurements is less
than a certain threshold value (required precision, one of
the parameters to the algorithm)

• The least number of measurements kmin for full defini-
tion of 3D pose is reached (there have to be 3 residual
measurements to each microphone for the pose estimation
to work properly)

• The maximum recursion depth rmax is reached (this value
is also a parameter, to keep the algorithm from locking
up)

Either way, once we step out of the recursion, we get
not only the estimated best pose (with hopefully all outliers
removed), but also a set of useful data for further analysis,
like the number of distance measurements used, and a list of
all outliers, sorted by severity.

However, in severe NLOS conditions, the system can still
fail to filter out all the outliers, due to the constrained
minimum number of measurements needed by the closed-
form solution [8] for full 3D pose estimation. The number of
residual measurements k must satisfy the following inequality:

k ≥ n · dim,
with dim being the dimension, in our case three. 1

1This restriction only holds for the particularly used solution where each
microphone has to measure distances to at least 3 loudspeakers. In general a
lesser number of measurements is sufficient for complete 3D pose definition.

Input: d,w, b, Lw,Mb, zmax, kmin, r
1: r = r + 1
2: for all dij do
3: wij = 0 ”leave one out“
4: solve for pose x e.g., using closed form solution in

[8]
5: calculate predicted measurement d̂ using measurement

function
6: calculate difference vector of predicted and actual

distance measurement
7: calculate z, e.g., the MSE of the difference above
8: wij = 1 → reset weight to 1
9: end for

10: blank the index-pair ij that caused the minimum MSE by
writing a 0 to bij and store the 1 permanently in wij

11: calculate pose x, predicted measurement d̂, and quality z
based on the best subset (according to b and w)

12: if z > zmax AND k > kmin AND r < rmax then
Input: d,w, b, Lw,Mb, zmax, kmin, r (step down in recursion

with one measurement less)
Output: x̂, d̂, z (step up from recursion)
13: end if
Output: x̂, d̂, z (end recursion)

Fig. 2. Discriminate outliers from a set of partial NLOS measurements

The pseudo code in Fig. 2 is intended to illustrate the
recursive algorithm in more detail.
Inputs are:

• d - containing n ·m distance measurements between n
loudspeakers and m microphones

• w - containing the corresponding weight components
• b - a vector ∈ [0..1]n·m to blank out distances considered

false
• Lw,Mb - containing geometry information (given posi-

tions Lw,i , i = 1..n of loudspeakers in world coordinates
and Mb,j , j = 1..m microphones in body coordinates

• zmax, kmin, r - criteria for exiting recursion
Outputs are:

• x̂ - estimated pose
• d̂ - calculated (predicted) distance measurement
• z - the achieved quality (e.g., MSE)
In Section V-B the effectiveness of the above stated algo-

rithm is demonstrated upon different emitter/receiver configu-
rations. It runs with O(n ·m)2 complexity.

IV. SYSTEM DESIGN

The tracking system consists of stationary infrastructure
and one or more mobile units. The stationary side is made
up of a number of beacons (loudspeakers) that connect to
a central signal generator, shown in Fig. 3. The DSP based
signal generator produces n distinguishable, unique broad
band sound sequences (above 20 kHz) that are emitted by
the n loudspeakers at coordinated times. The present design
comprises eight channels, bearing easy scaling capability.

On the receiving side, microphones aboard the mobile, user
worn unit (see Fig. 4) capture the sound in up to eight parallel
buffers. A BlackfinTM DSP handles the signal processing as
well as the localization tasks.



Fig. 3. The signal generator with 6 beacons attached. In the left upper corner:
Radio module for synchronization with the mobile unit.

Fig. 4. A microphone array in tetrahedral shape mounted on a rail for testing.
In the middle, a 3-axis-gyroscope is supplied to be fused with the acoustic
tracking system. Microphones as well as the gyroscope are micro-electro-
mechanical systems (MEMS).

To allow for distance measurements using the time of flight,
mobile and stationary units are closely synchronized using
ZigBEETM radio modules.

V. EVALUATION

This section opens up with a general discussion of different
geometries and numbers of emitters/receivers, and how they
influence measurement and pose estimation quality.

A. Sensitivity Analysis
Concluding from Time-of-Flight (TOF) measurements to

positions can be considered as intersecting spheres around
the emitters. Now it would be naive to think that by simply
increasing the number of emitters and receivers the overall
precision would increase, too. Depending on the position in a
space, the intersecting angles of the spheres can get too obtuse,
which leads to degradation of the position estimation.

This effect is known as geometric delusion of precision
(GDOP). In order to find good, or even optimal configura-
tions, a number of promising designs have been evaluated in
Monte-Carlo-Simulations. As the minimum number of emit-
ters/receivers for full 3D pose definition is 3/3 (see Eq. III),
the arrangement to maximize base length leads us to isosceles
triangles. For configurations with more emitters/receivers (as
required for reasons of redundancy in NLOS environments),
tetrahedra have shown good results, as well as cubes. It seems,
as if those geometric forms that maximize volume are suited
best for localization, whereas planar configurations suffer from
higher errors at marginal areas.

An exemplary setup of the sensitivity analysis is shown in
Fig. 5. Simulated distance measurements are added a normally
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Fig. 5. The grid of microphone positions for sensitivity analysis comprises
50 lines times 50 columns to cover an area of 5 ·5 m2 at a common height of
1.5 m. Six loudspeakers are mounted in a prismatic constellation, according
to our actual setup.

distributed noise with σ = 0.01 m. Fig.6 shows the resulting
positional standard deviation as norm over x, y and z. Fig.7
shows the standard deviation in yaw angles. Both plots show
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Fig. 6. Standard deviation in position as a result of a 1 cm standard deviation
normally distributed noise in distances, estimated over 100 monte carlo runs
per position.

that best precision is given at positions close to the center of
the room, whereas estimations deteriorate when approaching
marginal areas.
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Fig. 7. Standard deviation in yaw angles as a result of a 1 cm standard
deviation normally distributed noise in distances, estimated over 100 monte
carlo runs per position.

B. Experiments on Real Data
The experiments performed aim at showing the influence of

outliers from NLOS measurements. As a testing scenario for
all the experiments, the mobile unit is mounted on a tripod
equipped with a 4 meter horizontal arm, to allow for precise
circular trajectories of radius 2 m. Its origin coincides with the
world coordinate system’s origin. Its height is fixed at 1.85
meter, also both roll and pitch angles are fixed at 0◦. Fig. 8
shows an image of the experimental setup. The rotatable arm

Fig. 8. The tripod is centered at the origin of the world coordinate system.
The tetrahedral microphone array is mounted eccentrically by 2 m to allow
for precise circular movements (see closeup at bottom). All axes are aligned
to the x-y-plane using water-levels. The dark circles highlight two of the
loudspeakers.

was turned by hand, so the angular rate can not be considered
perfectly constant, yet, as we focus on instantaneous pose
estimation, this issue can be neglected. Update rates were
10 Hz and 5 Hz for the 4/4 and 6/4 loudspeaker/microphone
configuration, respectively. In both scenarios, two consecutive

circles were turned. The time to complete one circle was
about 200 samples in the 10 Hz case, i.e., 20 s to cover
2 π r ≈ 12.5 m, to imply slow walking speed.

1) Configuration: 4 loudspeakers and 4 microphones: The
first experiment shows a setup of 4 loudspeakers as beacons,
and 4 microphones mounted on the mobile unit. Both the
beacons and the microphones are arranged to form tetrahedra.
The base length (distances between microphones) is 0.2 m.
As for a complete definition in 3D a minimum of 3 beacons
and 3 microphones are required, this configuration leaves only
little redundancy to be exploited by our algorithm.

Fig. 10 shows positions over time of the above stated sce-
nario when all measurements are equally weighted regardless
of possible outliers.
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Fig. 9. The full set of distances is ordered by speaker index. Each speaker
measures distances to 4 microphones. Outliers can be easily spotted by visual
inspection.

The corresponding distances are shown in Fig. 9, ordered by
the loudspeakers they originated from. As all the microphones
are grouped within little distance, we can see that they form
sine and cosine movements in the x-y-plane, according to the
circular motion around the vertical (z) axis. After applying our
algorithm for NLOS discrimination, the resulting trajectory
can be seen in Fig. 12.

If we compare both before and after plots, we notice that
the outcome is still not too satisfiable. As in some areas of the
room the NLOS conditions were overwhelming, the minimum
of 12 distances, given by Eq. III, was reached for several times,
as shown in Fig. 11. Where the recursive algorithm clips, an
untreated number of extra outliers still enters the final pose
estimation. Especially for estimating the orientation, due to
the small base length, these errors still lead to high deviations,
which results in jittering, if transmitted unfiltered to the user’s
HMD.

With the most severe outliers eliminated, the results are
suited for stochastic filtering. In our design, a gaussian-
assumed density filter [9] is used, to dynamically fuse static
(acoustic) measurements with gyroscope values, while assum-
ing an adequate user motion model. Results are depicted in
Fig. 13.
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Fig. 10. Trajectory based on distance measurements from 4 loudspeakers to
4 microphones, using all 16 measurements
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Fig. 11. Number of distance measurements chosen by the recursive algorithm
for a total of 4 · 4 measurements.

2) Configuration: 6 loudspeakers and 4 microphones:
Now we use higher redundancy to better cope with the over-
whelming number of NLOS measurements. The corresponding
measurements are all concentrated in Fig. 14. Two counter-
clockwise circles have been turned, Fig. 15 shows the trajectoy.

Finally, the proposed algorithm took care of most of the
outliers, as can be seen in Fig. 17. Due to the short base
length of 0.2 m (distance between microphones) the estimation
of the orientation is very sensitive. If erroneous distances are
included, the resulting angles degenerate completely. After
outlier handling, the angles are in acceptable shape (see
Fig. 19) to be passed to downstream fusion with gyroscope,
and stochastic state estimation.

The corresponding calculated distances are shown in
Fig. 16. As the number of distances used (Fig. 21) indicates,
the total number of distances was still not sufficient to com-
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Fig. 12. Trajectory based on a subset of distance measurements from 4
loudspeakers to 4 microphones, outliers reduced by the proposed algorithm
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Fig. 13. Jittering yaw angle values from acoustic measurements (green) are
fused with measurements from the onboard MEMS gyroscope (red) using a
gaussian-assumed density filter (blue)[9]. A constant (angular-) velocity model
is assumed to predict motion based on prior steps.

pletely eliminate all NLOS conditions. The surroundings in our
testing area mark a worst case scenario, as there are reflecting
surfaces all around. The result is illustrated once more for
better comparison with ground truth, which is an assumed
ideal circle of 2 m radius, in Fig. 18 and Fig. 20.

VI. CONCLUSION

We have introduced a single shot pose estimation method
that operates on highly redundant, partially NLOS distance
measurements. The approach to select valid distances for
robust outlier detection and dependable pose estimation has
proven qualified for the task of indoor pose estimation, as it is
required in various applications, such as telepresence systems.

Overall, in conditions with only few measurements orig-
inating from NLOS sources, accuracy is the same as in
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Fig. 14. Distances measured between 6 loudspeakers and 4 microphones.
Visual inspection still allows us to tell the true distances from the erroneous.
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Fig. 15. Trajectory based on 6 · 4 measurements prior to outlier handling.
Notice the false z-value perpetuating throughout the whole plot.

Full-LOS-environments. In surroundings with severe NLOS
conditions, the calculation complexity rises, as the search for
outliers makes the algorithm descend deeper into recursion.
In LOS environments, position can be resolved reliably down
to centimeter range, orientation in all axes to within 5◦,
depending on the base length (inter-microphone distances).

During experiments in a room of size (5 · 5 · 4) m3 with
plenty of reflecting surfaces, such as walls, shelves, windows,
and a haptic display [10] consisting of aluminum, the number
of outliers could still be handled adequately by the algorithm.

Especially during initialization time robust outlier elimi-
nation is crucial, whereas during the uptime of the tracking
system, localization can be supported by a gyroscope and a
motion model that prevents outliers by a gating as part of
stochastic state estimation.
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Fig. 16. Measurements calculated from the corrected pose by forward
mapping.
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Fig. 17. Trajectory after outlier reduction. Complete elimination is possible,
yet requires a higher redundancy in measurements, i.e., more loudspeak-
ers/microphones.

A. Future Work

Ongoing research is concerned with improving the quality
criterion deployed in the recursive outlier detection algorithm.
On the way to hyper-redundancy additional knowledge, e.g.,
from GDOP considerations, can be exploited. Based on this
notion, entire subnets of emitter/receiver pairs could be adap-
tively switched on and off, depending on where the best gain
in information is expected. This way, exorbitant complexity
can be mitigated.

As the system scales easily, hyper-redundant configurations
of 50 and more microphones can be evaluated to provide
guaranteed robustness and superior performance.

To overcome the limited number of loudspeakers emitting
concurrently (due to bandwidth restrictions above 20 kHz),
cyclic emission schemes can be evaluated.
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Fig. 18. Positions calculated using all measurements (before outlier
detection), compared to ground truth (circle of 2 m radius at 1.85 m height.)
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Fig. 19. Angles after outlier handling. The quality is sufficient to enter
the dynamic stochastic filtering process (fusion with gyroscope and state
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