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Abstract—The fusion under unknown correlations is an im-
portant technique in sensor-network information processing as
the cross-correlations between different estimates remain of-
ten unknown to the nodes. Covariance intersection is a wide-
spread and efficient algorithm to fuse estimates under such
uncertain conditions. Although different optimization criteria
have been developed, the trace or determinant minimization
of the fused covariance matrix seems to be most meaningful.
However, this minimization requires numeric solutions of a
convex optimization problem. We derive an algorithm to reduce
this nonlinear optimization to the well-known polynomial root-
finding problem. This allows us to present closed-form solutions
for the determinant criterion when the dimension of the occurring
covariance matrices is at most 4 and for the trace criterion
when the dimension of the covariance matrices is at most 3.
We demonstrate the effectiveness of the approach by means of a
speed evaluation.

I. INTRODUCTION

With the development of small sensor systems, decentralized
data fusion has become an important topic in estimation theory.
Due to the progress in hardware development over the last two
decades, the costs for small systems have dropped considerably
while the computational power has been improved and the
energy consumption has been lowered. This enables system
designers to apply decentralized estimation techniques not only
in wide-area observation scenarios with massive nodes such
as the tsunami warning system, but also in applications where
data from multiple small sensor sources is combined in a
decentralized fashion without the need for a central processing
system.

Estimating the state of one phenomenon in multiple nodes
requires further considerations compared to a central Kalman
filter processing. When all nodes utilize the same system model,
the same process noise is modeled at all nodes, which, in turn,
leads to dependencies between the local estimates that make it
difficult to estimate linearly optimal in a global sense [1].

Besides this source of correlations, which is often referred
to as common process noise in literature [2], the estimates
are typically exchanged and combined regularly, which again
implies a correlation between the local estimates that is caused
by common prior information [3], [4]. In sensor networks
with a tree topology, the common prior information can
be cached with the Channel Filter [4]. In more complex
network topologies or when the network topology is unknown,
common prior information in general comes not from estimates

of direct neighbours and thus, can only be identified by a
complex communication history and with a significantly higher
communication effort.

Due to these effects, the estimates of the local nodes are
correlated, which, in turn, prevents the nodes from applying
a joint Kalman filter as the global optimal filter step would
require the remote nodes to be updated when measurements
are incorporated into local estimates. Although there exists
a solution to bypass this problem when global knowledge
about the utilized models is available to all nodes [5], the
decentralized estimation under consideration of the correct
correlations is often challenging. This motivates the application
of suboptimal methods such as the Channel filter [4] or the Bar-
Shalom/Campo formula [2] that take only one of the correlation
sources each into account.

Alternatively, the estimates from different nodes are fused
under unknown dependencies. In this research area, different
approaches have been proposed that optimize the fusion
of two estimates according to different criteria. Ellipsoidal
intersection [6], [7] calculates the fusion under the assumption
that the common information is maximized, the uniform
distribution approach [8] considers the possible correlations and
takes an average over all potential estimates, and covariance
intersection(CI) [9], [10] determines a consistent estimate1 with
a tight covariance bound.

The most popular of them is CI for what different opti-
mization criteria have been developed and theoretic attributes
have been derived. In [11] it was proven that CI with trace
minimization calculates the trace-minimizing covariance matrix
in a family of consistent linear combinations. Although it
remains to show that CI yields the fused covariance matrix
with minimum trace – respectively minimum determinant –
when the optimization criterion is chosen accordingly, this
seems to be more a theoretic problem than an open question.

However, as CI is especially meaningful when the trace or the
determinant of the fused covariance matrix is minimized2, the
application of the algorithm requires the solution of a (convex)
nonlinear optimization problem. As this is computationally
expensive, extensions to CI have been proposed that calculate

1The difference between calculated covariance matrix and real error
covariance matrix is positive-semidefinite.

2The decision which of the criteria is best to apply is problem specific and
is not treated in this paper.



suboptimal optimizations in closed-form [12], [13] or optimize
other criteria than the trace or determinant [14], [15].

In this paper we present closed-form solutions for the
optimization of CI for covariance matrices with dimension less
than 5 when the determinant is minimized and for less then
4-dimensional covariance matrices when the trace is minimized.
We furthermore propose a strategy to solve the optimization
problems in higher dimensions more effectively than the naı̈ve
procedure.

The basic idea of this paper as well as some interesting
attributes concerning the tight intersection of ellipsoids have
been presented by Kahan in 2006 in an update [16] of the
article [17] with the same name. As the authors derived
the algorithm independently of Kahan and it seems to be
worthwhile to present the application of the idea to CI, we
further extended and evaluated the algorithm.

The structure of the paper is as follows. In Sec. II we
shortly present CI and a technique to jointly diagonalize two
covariance matrices that is utilized in the proposed approach.
We derive the closed-form solutions for both optimization
criteria in Sec. III and discuss the results in Sec. IV. The
performance of the proposed approach is then demonstrated by
means of a runtime evaluation in comparison to two different
naı̈ve CI implementations.

II. PROBLEM STATEMENT

A. Covariance Intersection

CI is an algorithm to efficiently combine two estimates
under unknown correlations. Assume the estimates x1 and
x2 with error covariance matrix bounds C1 and C2 to
be given. We assume the estimates to be consistent, i.e.,
E
{

(x− xi) (x− xi)T
}
≤ Ci ∀i ∈ 1, 2 where x denotes

the real state and ≤ indicates that the difference of the two
matrices is positive-semidefinite.
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Figure 1. The error ellipses of two covariance matrices C1 = [5 1; 1 2] and
C2 = [2 −1;−1 6] are given as the black lines and the CI fused covariance
matrix Cω is given in red for ω = 0.3 in and in blue for ω = 0.7.

The CI combination formulas are given by

Cω =
(
ω (C1)

−1
+ (1− ω) (C2)

−1
)−1

xω =Cω
(

(C1)
−1
x1 + (C2)

−1
x2

)
,

(1)

where ω ∈ [0, 1] is a design parameter that is optimized
according to some criteria. Typically, the determinant or trace of
the fused covariance matrix Cω is minimized. The motivation
for (and the name of) CI comes from geometry as the fused
covariance error ellipsoids enclose the intersection of the input
covariance error ellipsoids, which can be seen in Figure 1 for
two different parameter values.
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Figure 2. The same error ellipsoids as in Figure 1 without the error ellipsoid
for ω = 0.7. The green dotted lines mark the error ellipsoids of the true error
covariance matrices that are calculated with randomly chosen cross-covariances.

From a theoretic point of view more important is the
fact that the difference between calculated covariance matrix
Cω and real covariance matrix E

{
(x− xω) (x− xω)

T
}

is
positive-semidefinite for all valid cross-correlations [9]. This is
graphically illustrated in Figure 2 where the error ellipsoid of
Cω encapsulates the true error ellipsoids of the fused estimate
for randomly selected cross-correlations. This attribute does
not only provide a reliable error bound, but also prevents the
estimates from diverging.

B. Joint Diagonalization of Two Covariance Matrices
It is well known in literature that two covariance matrices can

be jointly diagonalized by transforming one of the covariance
matrices to an identity matrix while the other matrix keeps
its covariance matrix structure with an orthogonal eigenvector
decomposition [6], [18], [19]. This facilitates the application
of a second, orthogonal transformation that does not affect the
identic matrix and diagonalizes the other matrix.

Assume the covariance matrices C1 and C2 to be given.
Let E1 be the diagonal matrix with the eigenvalues of C1 on
its diagonal and let V1 denote the corresponding eigenvector
matrix. The eigenvector matrices of symmetric matrices are
orthogonal V1 (V1)

T
= I and therefore

C1 = V1E1 (V1)
T

= V1

√
E1 (V1)

T
V1

√
E1 (V1)

T



holds. We set T1 =
(
V1

√
E1

)−1
and obtain the transformed

matrices

C′1 = T1C1 (T1)
T

= I and C′2 = T1C2 (T1)
T .

As C′2 is still hermitian, an eigenvalue decomposition
provides an orthogonal eigenvector matrix V′2. Let E′2 be
the eigenvalue matrix of C′2. We define

T = V′2T1 = V′2

(√
E1

)−1

(V1)
T (2)

and obtain with

E′2 = V′2C
′
2 (V′2)

T
= V′2T1C2 (T1)

T
(V′2)

T
= TC2 (T)

T

the transformed matrices

C′′1 =TC1T
T = I

C′′2 =TC2T
T = E′2 .

The inverse of the transformation matrix T is given by

(T)
−1

= V1

√
E1V

′
2 .

III. DERIVATION OF CLOSED-FORM FORMULAS

In this section, we derive closed-form formulas for the
determinant as well as the trace optimization criterion of CI.
To do that we reduce the nonlinear optimization problems by
means of the joint diagonalization from Sec. II-B to scalar-
valued polynomial optimizations.

A. Transformation of the Cost Function

Let J denote an arbitrary cost function. The CI optimization
is given as

ω∗ = argminω

{
J

((
ω (C1)

−1
+ (1− ω) (C2)

−1
)−1

)}
.

(3)
While most of the matrix optimization criteria such as the trace
or the determinant are invariant for similarity transformations,
this argument does not hold for general matrix transformations
ACωAT . As the joint diagonalization of two covariance
matrices is in general no similarity transformation, we are
only allowed to modify (3) according to

ω∗ = argminω

{
J
(
A−1ACω (A)

T
(A)

−T
)}

, (4)

with Cω from (1).
Let A be the transformation matrix from (2). We obtain for

ACω(A)
T

=A
(
ω (C1)

−1
+ (1− ω) (C2)

−1
)−1

(A)
T

=

(
ω
(
AC1 (A)

T
)−1

+ (1−ω)
(
AC2 (A)

T
)−1

)−1

=
(
ωI + (1− ω) (D)

−1
)−1

.

The matrix D is a diagonal matrix with positive scalars
d1, . . . , dn. As both matrices within the brackets are diagonal,
the inverse can be calculated element-wise. Thus, we obtain

ACω(A)
T

= diag

(
1

ω + (1− ω)d̄1
, . . . ,

1

ω + (1− ω)d̄n

)
,

(5)

with d̄i = 1
di
∀i ∈ 1, . . . , n.

In the following, trace and determinant optimization criteria
are investigated and closed-form solutions are derived by
performing an extreme value search. As the optimization is
convex [13], a zero point of the derivation characterizes a
minimum when it is from the interval [0, 1]. Nevertheless, it is
not guaranteed that the optimal ω∗ lies within the open interval
and so, a manual check whether C1 or C2 provides lower
costs is necessary when the combination of both matrices does
not improve the costs.

B. Determinant Minimization

For J(Cω) = det{Cω}, equation (4) is simplified to

ω∗ =argminω

{
det
{
A−1ACω (A)

T
(A)

−T
}}

=argminω

{
det
{
A−1

}
det
{
(A)

−T
}

det
{
ACω (A)

T
}}

.
(6)

With regular A, it follows det
{
A−1

}
6= 0. As the de-

terminant is invariant to the transposed attribute, it holds
det
{
A−1

}
det
{

(A)
−T
}

= det
{
A−1

}2
> 0 and therefore,

the optimization (6) equals

ω∗ = argminω

{
det
{
ACω (A)

T
}}

.

With (5), the optimization is given as

ω∗ =argminω

{
n∏

i=1

1

ω + (1− ω)d̄i

}

=argmaxω

{
n∏

i=1

ω + (1− ω)d̄i

}
.

(7)

The derivative of the maximization term in (7) is obtained by
utilizing the derivative product rule as

det
{
ACω (A)

T
}′

=

n∑
i=1

(
1− d̄i

)∏
j 6=i

(
ω + (1− ω)d̄j

)
.

With

ω + (1− ω)d̄j = (1− d̄j)
(
ω +

d̄j
1− d̄j

)
∀j ∈ 1, . . . , n

the derivative is simplified up to

det
{
ACω (A)

T
}′

=

n∑
i=1

(1−d̄i)
∏
j 6=i

(1− d̄j)
(
ω +

d̄j
1− d̄j

)
.

(8)
We set (8) to zero, divide the equation by

∏n
i=1(1− d̄i) and

obtain with the substitution d̃j =
d̄j

1−d̄j
∀j ∈ 1, . . . , n

0 =

n∑
i=1

∏
j 6=i

(
ω + d̃j

)
, (9)

which is equivalent to a polynomial derived in [20]. Thus,
the extreme-value determination is reduced to the problem of
finding the roots of a polynomial of rank n− 1 that is given as

0 =n · ωn−1+ (n−1)π1ω
n−2+ (n−2)π2ω

n−3+ · · ·+ πn−1

(10)



with

πi =

n∑
j1=1

n∑
j2=j1+1

· · ·
n∑

ji=ji−1+1

d̃j1 · · · d̃jn .

From the Abel-Ruffini theorem we know that there is no
algebraic solution when the dimension of the polynomial is
above 4 (n > 5). For polynomials with a degree below 5,
however, closed-form solutions can be given. We provide such
solutions for n ≤ 3 below and for n = 4 in Appendix A.
Note that also a solution for (10) with n = 5 can be obtained
in closed form. But as the eigenvalue decomposition of the
corresponding matrices requires numeric approaches in this
case (c.f. Sec. IV) and the equations become lengthy we will
not present this formulas here.

For n = 1, the problem of finding the best ω is trivial as it
holds ω = 1 when C1 < C2 and ω = 0 otherwise. For n = 2,
equation (10) is given by

0 = 2 · ω + d̃1 + d̃2 ⇔ ω = −1

2

(
d̃1 + d̃2

)
⇔ ω = −1

2

(
1

1− d1
+

1

1− d2

)
.

(11)

For n = 3, equation (10) is given as

0 = 3 · ω2 + 2
(
d̃1 + d̃2 + d̃3

)
ω + d̃1d̃2 + d̃1d̃3 + d̃2d̃3 ⇔

ω1/2 = −1

3

((
d̃1 + d̃2 + d̃3

)
±√

d̃2
1 + d̃2

2 + d̃2
3 − d̃1d̃2 − d̃1d̃3 − d̃2d̃3

)
.

(12)
As it has been mentioned, the optimization problem (3) is
convex on the interval [0, 1] and therefore, there is only one
valid solution for ω∗ ∈ [0, 1]. A detailed approach to extract
the optimal ω∗ from the candidates is given by Algorithm 1.

C. Trace Minimization

In contrast to the determinant, the trace of the product of
matrices does not equal the product of the trace of the matrices.
However, as the trace is invariant to cyclic permutations

tr
{
A−1ACωATA−T

}
= tr

{
A−TA−1ACωAT

}
holds. Again, we assume A to be the transformation matrix
from (2) and obtain

ω∗ = argminω

{
n∑

i=1

ai
ω + (1− ω)d̄i

}
, (13)

where ai > 0 denotes the ith diagonal element of A−TA−1

∀i ∈ 1, . . . , n.
The derivation of the trace directly follows as

tr
{
ACωAT

}′
=

n∑
i=1

ai
(
1− d̄i

)(
ω + (1− ω)d̄i

)2
=

n∑
i=1

ai
(
1− d̄i

)(
ω(1− d̄i) + d̄i

)2 .

(14)

We simplify (14) to
n∑

i=1

ai
(
1− d̄i

)−1
(
ω +

d̄i
1− d̄i

)−2

, (15)

set the equation to zero and obtain

0 =

n∑
i=1

ai
(
1− d̄i

)−1∏
j 6=i

(
ω +

d̄j
1− d̄j

)2

. (16)

By substituting d̃i = d̄i

1−d̄i
∀i ∈ 1, . . . , n, we obtain

0 =

n∑
i=1

ai

(
1 + d̃i

)∏
j 6=i

(
ω + d̃j

)2

. (17)

Again, equation (17) is a polynomial. As the normal form
of this polynomial does not provide new insights and has a
complicated and elongated structure, we do not present it here
and give only closed-form solutions for n ≤ 2. Solely, it is
worth to mention that the degree of the polynomial is 2(n− 1)
and so – following the argumentation from the determinant
minimization – a general algebraic solution is only found for
n ≤ 3.

For n = 1, the problem is equivalent to the determinant
minimization. For n = 2, the polynomial from equation (17)
is given as

0 =a1(1 + d̃1)(ω2 + 2ωd̃2 +
(
d̃2

)2

)+

a2(1 + d̃2)(ω2 + 2ωd̃1 +
(
d̃1

)2

) ⇔

0 =ω2 + 2
a1d̃2(1 + d̃1) + a2d̃1(1 + d̃2)

a1(1 + d̃1) + a2(1 + d̃2)
ω+

a1

(
d̃2

)2

(1 + d̃1) + a2

(
d̃1

)2

(1 + d̃2)

a1(1 + d̃1) + a2(1 + d̃2)
.

(18)

As this is a quadratic equation, we directly obtain the two
candidates

ω1 = −p+
√
p2 − q and ω2 = −p+

√
p2 − q (19)

with

p =
a1d̃2(1 + d̃1) + a2d̃1(1 + d̃2)

a1(1 + d̃1) + a2(1 + d̃2)
and

q =
a1

(
d̃2

)2

(1 + d̃1) + a2

(
d̃1

)2

(1 + d̃2)

a1(1 + d̃1) + a2(1 + d̃2)
.

D. Algorithm

We conclude this section with a skeleton algorithm that
simplifies the implementation of the proposed closed-form
solution of CI. Basically, we show how to choose the correct
candidate and describe the handling when the extreme value
search does not provide a solution in the specified interval. This
occurs – but is not limited to the case – when the eigenvalues
of one covariance are all smaller than those of the other
covariance.



The notation corresponds basically to that of MATLAB with
element wise division ’./’, ’%’ for comments, ’diag’ for the
diagonal elements of a matrix and a matrix decomposition in
eigenvector- and eigenvalue matrices with ’eig’.

Input: C1, C2, J

1: % Joint diagonalization
2: [V1, D1] ← eig(C1);
3: T1 ← (

√
D1)−1(V1)T ;

4: [V′2, D′2] ← eig(T1C2(T1)T );
5: d̄ ← (diag(D′2))−1;
6: d̃ ← d̄./(1− d̄);
7:
8: % Find optimal ω
9: if J == trace then

10: a ← diag(V′2D1(V′2)T );
11: ωcand ← candidates from (19);
12: else if J == det then
13: ωcand ← candidates from one of (11), (12) or (20);
14: end if
15: ω ← ωcand ∩ [0, 1];
16:
17: % Handle ω out of bounds
18: if ω = ∅ then
19: ω ← (J(C1) < J(C2)) ? 1 : 0;
20: end if
Output: ω

Algorithm 1: Skeleton algorithm for closed-form CI.

The function J in Algorithm 1 is a place-holder for the
optimization criterion and is to be replaced by trace or
determinant. It is worth to point out that both optimization
criteria are convex on the interval [0, 1] and therefore, a solution
obtained from the interval always denotes a minimum.

IV. DISCUSSION

In this section, the proposed closed-form formulas for CI are
discussed from different point of views. Before benchmarks are
presented, we investigate the effort of the utilized mathematic
methods. Besides simple matrix operations, such as the inverse,
the multiplications and so on, which can be obtained in
closed form, the joint diagonalization of two covariance
matrices requires an eigenvalue decomposition. The eigenvalue
decomposition of a matrix can be reduced to the problem of
finding the roots of the corresponding characteristic polynomial
and thus, can be calculated in closed form when the dimension
of the matrix is below 5.

When the proposed procedure is used to speed up CI for
matrices of dimension above 4, additional computational effort
is necessary. While efficient, numerically stable algorithms such
as the Cholesky decomposition and the QR-algorithm (and its
derivatives) exist for matrix operations on positive-definite
symmetric matrices [19], [21], the eigenvalue decomposition
and the root-finding of the derivative must be solved by means
of numeric algorithms. Nevertheless, as the derivatives of the

trace (17) and determinant (10) optimizations are given as
simple polynomials, efficient root-finding algorithms such as
Laguerre’s method can be applied that outperform the direct
covariance matrix optimizations of (3). Consequently, a speed
improvement is obtained by utilizing the proposed approach
even when the dimension of the occurring matrices is to high
to provide closed-form solutions.

For a speed evaluation of the closed-form and the naı̈ve CI
algorithm, the MATLAB implementation of Julier from [22],
an improved variant of this implementation and the skeleton
Algorithm 1 have been compared with the MATLAB profiler.

We randomly generated 106 joint covariance matrices for
each test and extracted the top-left and the bottom-right block
matrices as C1 and C2 for the evaluation. All approaches were
utilized to obtain the optimal ω∗, where assertions made sure
that all approaches yielded – besides numeric inaccuracies – the
same ω∗. We compared the CPU-time for different optimization
criteria and dimensions and obtained the following results

CI naı̈ve CI naı̈ve opt. closed-form
det(n=2) 1075.44 s 274.71 s 22.56 s
det(n=3) 933.95 s 257.19 s 29.91 s
trace(n=2) 1017.64 s 309.62 s 24.90 s

.

As can be seen, the speed-up of the closed-form solutions
is remarkably for all dimensions and optimization criteria. The
performance increase between the two naı̈ve implementations
is due to a more efficient call of ’fminbnd’.

It is worth to mention that the closed-form formulas are
implemented with the standard eigenvalue decomposition
method of MATLAB that does not calculate the eigenvalues in
closed from. These calculations count for approximately 25%
of the computation effort of the closed-form approach and can
be reduced significantly.

Overall, the closed-form CI calculations are between 31
and 48 times faster than the naı̈ve implementation from [22]
and still 8.6 to 12.4 times faster than the optimized naı̈ve
implementation.

While the performance improvements are an obvious ad-
vantage of the proposed closed-form approach, it is worth to
point out that the precision of ω∗ depends only on the value
representation in the computer and no longer on the number of
iterations in the numeric procedures. Although this is probably
not relevant in practical applications, it might be interesting
for theoretic considerations.

V. CONCLUSION

In this paper we proposed a skeleton algorithm to speed up
the CI trace and determinant optimization. It has been shown
that the algorithm does not require numeric calculations when
the determinant minimization is performed with covariance ma-
trices of dimension lower than 5 or when the trace optimization
is performed with covariance matrices of dimension lower than
4. In an evaluation with random covariance matrices we have
demonstrated that the new algorithm outperforms the naı̈ve CI
optimization implementation by a factor higher than 8.



In particular, when only low-dimensional covariance ma-
trices are combined, the proposed algorithm can guarantee
exact results under tight runtime constraints. As there is no
need for optimization methods it is also preferable from an
implementation view. In summary, the proposed algorithm is
beneficial when only low computation power is available or
when large scenarios are simulated and the simulation time
depends for the most part on CI optimizations.

Although there seems to be no chance to solve the optimiza-
tion for arbitrary dimensions in closed form when the proposed
approach is utilized, it remains to improve the root-finding
algorithm application. Additionally, the fusion of multiple
covariance matrices with CI is an interesting area. While it is
obvious that the block-fusion supplies better results than the
recursive one, the optimization becomes complex as the number
of optimization parameters linearly increases with the number
of covariance matrices to fuse. Especially for low-dimensional
covariance matrices, this problem might be solvable when an
algorithm to simultaneously diagonalize multiple matrices is
applied. Although such an algorithm will be suboptimal as the
simultaneous diagonalization of more than two matrices can
be calculated approximately only, the overall result will likely
be better than a recursive application of CI.
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APPENDIX

A. Determinant Minimization of 4-dimensional Matrices

We assume d̃i to be defined as in (9) ∀i ∈ 1, . . . , 4.
From (10), we obtain the condition

0 =4ω3 + 3

(
4∑

i=1

d̃i

)
ω2 + 2

 n∑
i=1

n∑
j=i+1

d̃id̃j

ω1+

n∑
i=1

n∑
j=i+1

n∑
k=j+1

d̃id̃j d̃k .

Let b = 3
4

(∑4
i=1 d̃i

)
, c = 1

2

(∑n
i=1

∑n
j=i+1 d̃id̃j

)
and d =

1
4

∑n
i=1

∑n
j=i+1

∑n
k=j+1 d̃id̃j d̃k. Then, possible candidates

for the determinant minimizing ω∗ are

ω1 =− b

3
− C

3
− b2 − 3c

3C

ω2 =− b

3
+
C(1 + i

√
3)

6
+

(1− i
√

3)(b2 − 3c)

6C

ω3 =− b

3
+
C(1− i

√
3)

6
+

(1 + i
√

3)(b2 − 3c)

6C

(20)

with
Q =

√
(2b3 − 9bc+ 27d)2 − 4(b2 − 3c)3

C = 3

√
1
2 (Q+ 2b3 − 9bc+ 27d) .
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