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Abstract—The distributed processing of measurements and the
subsequent data fusion is called Track-to-Track fusion. Although
a solution for the Track-to-Track fusion that is equivalent to
a central processing scheme has been proposed, this algorithm
suffers from strict requirements regarding the local availability
of knowledge about utilized models of the remote nodes. By
means of simple examples, we investigate the effects of incorrectly
assumed models and trace the errors back to a bias, which we
derive in closed form. We propose an extension to the exact Track-
to-Track fusion algorithm that corrects the bias after arbitrarily
many time steps. This new approach yields optimal results when
the assumptions about the measurement models are correct and
otherwise still provides the exact value for the mean-squared-
error matrix. The performance of this algorithm is demonstrated
and applications are presented that, e.g., allow the employment
of nonlinear filter methods.

I. INTRODUCTION

For the purpose of computing an estimate of an uncertain
state, the Bayesian estimation framework provides the means
to update estimates with the observed data, to fuse different
estimates of the same state, and to account for the temporal
evolution of the state by predicting the corresponding estimates.
In large-scale networks, it is often desired not to communi-
cate the measurement information of each sensor node to a
central station that manages the entire state estimation process.
Although multisensor data can be very efficiently processed
by means of the information filter [1], which basically is
an algebraic reformulation of the Kalman filtering scheme, a
frequent and reliable communication is inevitable. Therefore,
it is often preferable to compute estimates locally on sensor
sites and to interchange them between the nodes in order to
fuse them to a global estimate. Forming a global estimate
from estimates that only incorporate local sensor data and
local prediction steps corresponds to the problem of fusing
two tracks, i.e., Track-to-Track fusion (T2TF).

The main difficulty of T2TF manifests itself within the
cross-correlations between the local tracks to be fused. If
these interdependencies are known, the Bar-Shalom/Campo
formulas [2] encompass the best fusion rule. Correlations
between locally processed estimates further imply that a
local observation not only updates the corresponding local
estimate, but also all other estimates that are correlated to
the local one. Therefore, establishing an estimation quality
that equals a centralized Kalman filter again comes at the

cost of full-rate communication. Otherwise, the results of the
Bar-Shalom/Campo rule are suboptimal, but in general, still
precise.

As sources of correlation, common process noise and
common prior information can be identified. The former is due
the fact that for a single state, the same system noise is modeled
on several sensor nodes, which implies a full correlation
between the local noise terms. The latter results from common
prior information or double-counting of data, i.e., data that is
already included in both local estimates to be fused. Cycles in
the network topology can, for example, prevent the common
data to be separated from the independent information. In the
case of negligible process noise or a full-rate communication,
a hierarchical network topology can be employed in order to
allow for identifying common information [3], [4] and removing
it from the fusion result, e.g., by means of the channel filter
[5]. In general, neither the process noise can be ignored nor the
sensor sites can communicate at full rate. Instead of striving
for an optimal fusion result, suboptimal fusion algorithms, such
as Covariance Intersection [6]–[8] or Ellipsoidal Intersection
[9], provide conservative estimates that do not underestimate
the actual mean-squared-error matrix. These methods yield
covariance-consistent, but often less informative fusion results.

An alternative approach is to modify the local estimators
in order to keep the tracks decorrelated. For this purpose, the
federated Kalman filter [10], [11] alters the system noise in each
local prediction step, such that the effect of the common process
noise is canceled. If all local estimates can be collected and
fused at each time instant, the optimal Kalman filter result can
be embodied, otherwise the result is a conservative bound. The
federated Kalman filter requires that each node is aware of the
total number of nodes participating in the network. Furthermore,
cycles must not occur. Koch and Govaers provided an exact
distributed Kalman filter algorithm [12]–[14] that employs the
same relaxed prediction step as the federated Kalman filter, but
also modifies the filtering step by globalizing the likelihood
function. After arbitrarily many time steps, the fusion of all
local estimates captures exactly the same result as a centralized
Kalman filter. This solution to distributed T2TF involves further
prerequisites. In order to compute the globalized likelihood,
each node must know the sensor models, i.e., measurement
mappings and noise terms, of each other node. The difficulty



with the globalization becomes apparent when nodes fail or
sensor models change, for example, due to linearization.

After elucidating the exact distributed estimation scheme
from [12]–[14] in Sec. II, we will analyze the aforementioned
issues in Sec. III. Sec. IV provides a calculation of the bias
that is introduced to the global estimate when the local models
rely on incorrect assumptions. In Sec. V, we will show how
to eliminate the bias in order to again compute a consistent
fusion result. An evaluation of the proposed concept in Sec. VI
and an outlook in Sec. VII conclude this paper.

II. EXACT TRACK-TO-TRACK FUSION ALGORITHM

The exact T2TF algorithm proposed in [12] and [14] adapts
both the local prediction and the local filtering step to ensure
that the local tracks remain decorrelated. Let

xi
k|k ∼ N

(
x̂i
k|k,C

xi

k|k

)
(1)

denote the local estimate of the i-th sensor node with mean
vector x̂i

k|k and covariance matrix Cxi

k|k, where the subscript k|l
indicates that observations up to time step l have been
incorporated into the state estimate at time step k. If the local
estimates (1) are uncorrelated, the global fusion result of N
estimates is obtained by the Kalman filter formulas
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In order to initialize the local estimators, the local estimates (1)
are globalized by transforming them into

(
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)
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(3)

Note that the transformed local estimates share the same
globalized covariance matrix C̄x

k|k, they only differ in x̄i
k|k.

Apparently, applying the fusion rule (2) to the globalized
estimates (3) again yields the same global fusion result.

The local prediction steps are carried out by means of a
relaxed system model, i.e., the parameters of

(
x̄i
k+1|k, C̄

x
k+1|k

)
are obtained by

x̄i
k+1|k =Akx̄

i
k|k and

C̄x
k+1|k =AkC̄x

k|kAT
k + NCw

k ,
(4)

where Cw
k is the covariance matrix of a white Gaussian

system noise. The local predictors employ scaled versions
of Cw

k , which complies with the local prediction models
of the federated Kalman filter [10]. The relaxed prediction
step obviously preserves the equality of the local covariance
matrices.

Fusing estimates locally with observations will result in
different covariance matrices and therefore, the tracks will

not remain decorrelated. Koch presents two solutions to this
issue [12], [14]: Either the filter step is performed locally
according to the Kalman filter principle and the estimates are
globalized afterwards by means of (3) or a globalized likelihood
function is applied. In the latter case, the filter step is given by
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)T (
C
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(5)
where M̄k contains the indices of those sensor nodes that
obtain measurements zik at time step k.

It is straightforward to show that the convex combination,
i.e., fusion (2), of the globalized tracks yields the central
fusion result after all globalized prediction and filter steps. The
following example will explicate the high attainable accuracy
of this approach.

Example II.1 The idea of this example is to reconstruct the route
of an object in 2D space with multiple randomly placed sensors.

We assume the sensors to have a small internal storage,
limited computational power, and no communication capabilities.
Many of these sensors are randomly placed in a 2D area and
locally estimate the state of an object. After a certain time, the
sensor data is collected and the result is evaluated at a powerful
workstation.

As the internal storages of the sensors are limited, the
measurements, estimates etc. cannot be saved separately, but
must be stored recursively or in compressed form. To do so, the
sensors recursively calculate local estimates by means of the
exact T2TF and store them every 10th time step in order to allow
a reconstruction of the object track later on.

Let the number of sensors be N = 100 and the number of
time steps also be 100. The system model is given as a disturbed
rotational motion model

xk+1 =


1 sin(ω)

ω
0 − 1−cos(ω)

ω
0 cos(ω) 0 − sin(ω)

0 1−cos(ω)
ω

1 sin(ω)
ω

0 sin(ω) 0 cos(ω)

xk + wk (6)

with ω = 0.13 and

wk ∼ N

0,

0.8 0 0.1 0.2
0 0.3 0 0

0.1 0 0.7 0
0.2 0 0 0.4


 . (7)

The measurement model is

zi
k = Hi

kxk + vi
k , (8)

with Hi
k = I and

vi
k ∼ N

0,

 1 0.4 0 0
0.4 2 0 0
0 0 1 0.25
0 0 0.25 2


 . (9)

The tracking results of one run of this scenario are given
in Figure 1. As it can be seen, the assumed route matches
the real route almost perfectly, which is straightforward as
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Figure 1. The tracking results of Example II.1. The green points mark the
sensor positions, the black dotted path is the real route, and the red path
indicates the position estimated by the exact T2TF algorithm at different time
steps. Actually, the position estimation is only available each 10th time step.
For an easier evaluation, however, we also added the fused results in between
these time steps.

the exact T2TF algorithm equals the best linear unbiased
estimator (BLUE) and all sensors obtain good-quality, distance-
independent measurements at each time step.

The average error over the available estimates is given by

BLUE Exact T2TF
x 0.104 0.104
y 0.07 0.07

.

Applying the exact T2TF formulas not only requires knowl-
edge about the total number of participating nodes, but also
exact knowledge about the sensor models and measurement
frequencies, as can be seen in (5). The remainder of this
paper discusses the situation when reality does not meet the
assumptions, i.e., when nodes are not aware of the other nodes’
behavior and cannot compute the exact globalized likelihood.

III. MOTIVATION AND PROBLEM STATEMENT

Finding the optimal sensor network fusion algorithm remains
an open topic in fusion theory. Different approaches such as
the Bar-Shalom/Campo formulas or the Channel Filter provide
reliable estimations when the common prior information,
respectively the process noise, is negligible or a full rate
communication is employed. However, they fail to provide
consistent1 estimates when the assumptions are not met. This
leads to global estimates whose precision and quality is hard
to determine and in general is worse than the central estimate.

Although the exact T2TF algorithm provides the possibility
of exact distributed fusion, it can rarely be applied since
the assumptions on the global knowledge are restrictive. In

1The difference between the real mean-squared-error matrix and the
calculated covariance matrix is not positive-semidefinite, which means that
the error is underestimated.
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Figure 2. The tracking results of Example III.1. In addition to Figure 1,
15 defect sensors are crossed out and the BLUE solution, which equals the
centralized Kalman Filter result, is given as a blue path.

particular, in large sensor networks it is hard to guarantee a
fixed number of working, respectively defective, sensor nodes.
A naı̈ve approach is to give a lower bound for the number of
functioning sensors or estimate this number in order to nearly
obtain the exact estimate. Both ideas hardly work with the
exact T2TF algorithm as it is shown in the next example.

Example III.1 We assume the models to be the same as in
Example II.1. In order to make the scenario more realistic, we let
the probability of sensor failure be 0.2. This quota is assumed
to be known so that the globalized covariance matrix (5) is
determined corresponding to the failure rate. Nevertheless, as the
exact number of sensor failures is not known before the scenario
starts, it is possible that the number of functioning sensors is
under- or overestimated.

As it can be seen in Figure 2, the estimate of the exact T2TF
algorithm is biased when this happens. This is caused by the
difference between the assumed number of defect sensors 100 ∗
0.2 = 20 and the real number of defect sensors that is only 15 in
this run. The average of the rooted error of each 10th estimate is
obtained by

BLUE Exact T2TF (biased)
x 0.123 3.833
y 0.138 2.687

.

As it becomes obvious by comparing the results of this
example with those of Example II.1, the average error of the
centralized BLUE filter is higher when the sensors are defect.
Even more remarkable is the increase in the average error of
the exact T2TF algorithm. Although less sensors than assumed
are defect and therefore, it is reasonable to expect the system to
perform well, the estimate is biased.

Besides the rate of failure, sensor networks that consist of
many nodes are often established as the estimation quality of
many distributed, low-quality sensors is assumed to be better
than one high-quality sensor. This, however, usually implies
that the local measurement quality depends on the distance
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Figure 3. The tracking results of Example III.2. In addition to Figure 1, the
sensors obtain measurement only in a limited area that is indicated by the
transparent blue circles.

between sensor and target or at least means that not all sensors
detect the target at once with equal measurement uncertainties.

Example III.2 Again, we suppose the configuration to be the
same as in Example II.1. Instead of assuming a probability of
failure, the sensor range is limited by 15 in this example. The most
meaningful assumptions seems to be to calculate the globalized
likelihood by help of the expected number of sensors that are
simultaneously detecting the object. The derivation of this value
is out of scope of this paper, but is given in our scenario by
approximately 6.3. Therefore, the time-independent, globalized
likelihood is obtained by(

C̄v
k

)−1
= 6.3 · (Hk)T (Cv

k)−1 Hk ∀k ∈ {1, . . . , 100} . (10)

As expected, it becomes clear from Figure 3 that the exact
T2TF algorithm is not working in this scenario. Due to the time-
dependent true globalized likelihood that differs considerably
from the assumed globalized likelihood, the results are biased.
Compared to Example III.1, this bias is significantly higher as the
globalized likelihood can be massively under- or overestimated.

By taking the examples and the flaws of the existing
algorithms into account when the restrictive assumptions are
not met, it is hard to establish a distributed sensor network
fusion strategy that gives guarantees about the estimation
uncertainty. In the following, the cause for the inconsistency,
respectively the bias, of the exact T2TF algorithm is derived
and an extension is proposed that guarantees consistency when
the models cannot be predetermined.

IV. BIAS CALCULATION

In this section, we investigate the global estimate that
is obtained by fusing all local estimates. In particular, we
determine the bias of this estimate when the assumptions about
the local measurement uncertainties are not met.

In addition to the variables (3) from Sec. II, we consider
the fused (global) estimate that is obtained by

x̃k =C̃x
k

(
N∑
i=1

(
C̄x

k

)−1
x̄i
k

)
=

1

N

N∑
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(
N
(
C̄x

k
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=
1

N
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k

(11)

and the true globalized likelihood(
C̃v

k

)−1

=
1

N

∑
i∈M̃k

(
Hi

k

)T
(Cvi

k )
−1

Hi
k , (12)

where M̃k contains the indices of all sensor nodes that
have processed a measurement at time step k. The true
globalized likelihood is the sum of actually used measurement
models, where the assumed globalized likelihood (C̄v

k)−1 from
equation (5) is the likelihood that is utilized in the local sensors
to calculate the estimates.

By taking (11) into account, the fused mean is obtained by

x̃k|k =
1

N
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( N∑
i=1

(
C̄x

k|k−1

)−1

x̄i
k|k−1+

∑
j∈M̃k

(
Hj

k

)T(
C

vj

k

)−1

zjk

)

=
1

N
C̄x

k|k

(
N
(
C̄x

k|k−1

)−1

x̃k|k−1+
∑

j∈M̃k

(
Hj

k

)T(
C

vj
k

)−1

zjk

)
.

(13)
By help of (5), the true state is given as
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N
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(14)

Therefore, we obtain for the difference between the estimated
and the true state

xd
k =x̃k|k − xk =

1

N
C̄x

k|k

(
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∑
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In order to obtain the true covariance of x̃k|k based on the pre-

dicted estimates and measurements, we evaluate E
{
xd
k

(
xd
k

)T}
,

which is given by

1

N2
C̄x

k|kE
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(17)

Let (·)2 be a short version of the matrix (·)(·)T , then the
product Rk (Rk)

T equals

N2
(
C̄x

k|k−1

)−1

E
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)2
}(

C̄x
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which is simplified to
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when the covariance matrix estimation C̃x

k|k−1 is correct.
With zjk = Hj
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The measurement noise vj

k is independent of xk and of vi
k

for i 6= j. Therefore, the expected value of the product

E

{∑
i,j∈M̃k

Si
k

(
Sj
k

)T}
is obtained by

∑
j∈M̃k

(
Hj

k

)T (
C

vj
k

)−1

Hj
k +

(
N
(
C̃v

k

)−1

−N
(
C̄v

k

)−1
)
·

E
{
xkx

T
k

}(
N
(
C̃v

k

)−1

−N
(
C̄v

k

)−1
)T

.

(22)
For (C̄v

k)−1 = (C̃v
k)−1, this is simplified according to (12) to

N(C̃v
k)−1.

By help of (21), we calculate the cross-correlation

E
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(
Sj
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)T}
up to
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)−1
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)−1
)T}
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(23)

By taking the definition of Rk from equation (16) and the
independence of xk and vj

k into account, this is simplified to

N2
(
C̄x

k|k−1

)−1

E
{
x̃k|k−1x

T
k−xkx

T
k

}((
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(
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)−1
)T
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(24)
However, for (C̄v

k)−1 = (C̃v
k)−1, the cross-correlation is zero.

Thus, when the assumed globalized likelihood covariance ma-
trix (C̄v

k)−1 equals the actual globalized likelihood covariance
matrix and C̃x

k|k−1 is a correct estimation of the predicted error

covariance matrix, the error covariance matrix E
{
xd
k

(
xd
k

)T}
of the filtered global estimation is

1

N2
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(
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(
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)−1
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(
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)−1
)(
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)T
=

1

N
C̄x

k|k ,

(25)
which equals the error estimation C̃x

k|k. This is a straight-
forward result since the presented procedure is optimal in

the Kalman filter sense. However, the derivation of the error
covariance matrix becomes interesting when the globally
assumed measurement covariance matrix does not equal the
actual one, i.e., (C̄v

k)−1 6= (C̃v
k)−1. When C̃k|k−1 is the correct

error covariance matrix, (24) is given as

E
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k− xkx

T
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}
x̃T
k|k−1 = −C̃k|k−1 .

(26)
Then, the error covariance matrix of the globally fused result
E
{
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(
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)T}
is obtained with (19), (22) and (24) as

C̄x
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(
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+
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)−1
+
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with
∆Cv

k =
(
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)−1

−
(
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)−1

. (28)

This equation is simplified to

1

N
C̄x

k|k +
1
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(
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xkx
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− I
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(∆Cv
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(
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(29)
It is obvious from (29) that the positive-definite term E

{
xkx

T
k

}
denotes the bias and takes values of arbitrary size and thus,
cannot be bounded by a state-independent covariance matrix.

Therefore, when at least one sensor in the network stops
working, but also when an additional sensor is added to the
sensor network or the assumed globalized likelihood does not
exactly match the real one, then the true error covariance matrix
can be larger than the estimated one and thus, the estimation
is inconsistent.

V. SELF-ADAPTING EXACT T2TF

The inconsistency of the presented exact T2TF algorithm,
when the globally assumed parameters are not exactly met,
arises mainly from the derived bias (27). In the following, we
propose a procedure to eliminate this bias and to guarantee
consistent results even when the globally assumed parameters
are not exactly met.

As the presented T2TF algorithm allows an independent
calculation of the local estimates, it is not surprising that the
bias is caused by an incorrect combination of the globalized
local estimates to the global estimate. Based on the actually
utilized measurement models, a matrix to correct the bias that
is caused by the incorrectly assumed measurement models is
calculated recursively. For that purpose, we distinguish between
initialization, prediction, and filtering.

A. Initialization

We assume that the nodes with indices in M̃1 have
performed consistent measurements2 and have fused them

2The local measurement uncertainties C
vi
1 have not been underestimated.



according to equation (5) to there own estimates. When
M̃1 6= M̄1, the assumed globalized measurement covariance
matrix (C̄v

1)−1 does not match the real one and thus, by
applying the standard exact T2TF algorithm, the global estimate
is biased and inconsistent.

Therefore, we define

∆x
1|1=Ĉx

1|1

(
C̄x

1|1

)−1

with Ĉx
1|1=

((
C̄x

1|0

)−1

+
(
C̃v

1

)−1
)−1

.

(30)
The bias is eliminated by scaling the global estimate x̃1|1 by
∆x

1|1. The real error matrix is obtained by simple algebraic
operations based on the difference between the scaled estimate
and the true random variable

xd′

1|1 = ∆x
1|1x̃1|1 − x1 =

1

N
∆x

1|1

N∑
i=1

x̄i
1|1 − x1 (31)

as

P̃x
1|1 = E

{
xd′

1|1

(
xd′

1|1

)T}
=

1

N
Ĉx

1|1 . (32)

B. Prediction

The bias elimination of the predicted estimate is reduced to
the bias elimination of the initialization/filtering step by defining
∆x

k+1|k = A∆x
k|k (A)

−1. We obtain for the difference term

xd′

k+1|k =∆x
k+1|kx̃k+1|k − xk+1

=∆x
k+1|kAx̃k|k −Axk −wk

=A
(
∆x

k|kx̃k|k − xk

)
−wk

(33)

and so, the error covariance matrix, considering the indepen-
dence between the noise term wk and the state xk, is given
by

P̃x
k+1|k =E

{
xd′

k+1|k

(
xd′

k+1|k

)T}
=AE

{(
∆x

k|kx̃k|k − xk

)2
}

(A)
T

+ Cw
k

=AP̃x
k|k (A)

T
+ Cw

k .

(34)

C. Filtering

The most of what has to be taken care of to eliminate the
bias in the filter step has been considered in the initialization
paragraph V-A. In a more general form, we define the matrix

∆x
k|k = Ĉx

k|k

(
C̄x

k|k

)−1
(35)

with

Ĉx
k|k =

((
C̄x

k|k−1

)−1 (
∆x

k|k−1

)−1

+
(
C̃v

k

)−1
)−1

. (36)

It remains to derive the error covariance matrix for ∆x
k|k−1 6= I

and P̃x
k|k−1 = E

{
xd′

k|k−1

(
xd′

k|k−1

)T}
6= C̃x

k|k−1. We define

xd′

k|k analogously to (33) and split it up into

1

N
Ĉx

k|k

 N∑
i=1

(
C̄x

k|k−1

)−1

x̄i
k|k−1+

∑
j∈M̃k

(
Hj

k

)T(
C

vj
k

)−1
zjk


− 1

N
Ĉx

k|k

(
N
(
C̄x

k|k−1

)−1(
∆x

k|k−1

)−1

xk+N
(
C̃v

k

)−1

xk

)
.

(37)
Equation (37), however, equals

1

N
Ĉx

k|k

((
C̄x

k|k−1

)−1
(

N∑
i=1

x̄i
k|k−1 −N

(
∆x

k|k−1

)−1

xk

)
+

∑
j∈M̃k

(
Hj

k

)T (
C

vj
k

)−1
zjk −N

(
C̃v

k

)−1

xk

)
(38)

and can be further simplified to

1

N
Ĉx

k|k

(
N
(
C̄x

k|k−1

)−1(
∆x

k|k−1

)−1(
∆x

k|k−1x̃k|k−1−xk

)
+∑

j∈M̃k

((
Hj

k

)T (
C

vj
k

)−1
zjk −

N

|M̃k|

(
C̃v

k

)−1

xk

))
.

(39)
Finally, the true error covariance matrix is given as

P̃x
k|k =

1

N2
Ĉx

k|k

(
N2
(
C̄x

k|k−1

)−1 (
∆x

k|k−1

)−1

P̃x
k|k−1·(

∆x
k|k−1

)−T (
C̄x

k|k−1

)−T

+ N
(
C̃v

k

)−1
)(

Ĉx
k|k

)T
.

(40)
It is worth mentioning that in general ∆x

k|k−1C̄
x
k|k−1 6=

P̃x
k|k−1 holds and the error covariance bound P̃x

k|k is no longer
globally optimal as some information has been lost due to the
processing with the incorrectly assumed measurement models.
Nevertheless, the proposed extension to the exact T2TF offers
system designers a flexible and efficient method for the sensor
network fusion, when the local estimates are collected in a sink
and the locally available estimates are of marginal interest.

VI. EVALUATION

The main challenge in applying the proposed algorithm is the
transmission of the actually utilized measurement models and
the computational effort in order to obtain the bias correction
matrix. As the focus of this algorithm is not laid on obtaining
high quality estimates in the local nodes, the application is
especially meaningful in sensor networks with a distinct fusion
center and therefore, the computational burden should be
usually negligible. Nevertheless, the demand for communication
is often a limiting factor in sensor networks and should be
minimized. Thus, we discuss the application of the extended
exact T2TF algorithm in different scenarios and propose ideas
to reduce the necessary communication effort that is necessary
to receive the actually utilized measurement models.

In simple scenarios, where the utilized measurement models
are communicated (time delayed), the application of the
proposed extended exact T2TF algorithm is straightforward.



This implies sensor networks where a – in general unreliable –
communication is employed, but the sensors can regularly
transmit or store their locally utilized models as long as it is
possible to guarantee that the globalized likelihood is known
when the bias is determined. Optimizations to bundle model
information from different sensors are conceivable that sum up

the measurement matrix combinations
(
Hj

k

)T (
C

vj
k

)−1
Hj

k of
a subset of the sensors as only the globalized likelihood (as
the sum of the local measurement information) is needed to
obtain the bias. In order to further reduce the communication
effort, the sensors can utilize a standard measurement model
as long as the measurement noise is overestimated and adapt
the model only when the difference between real and assumed
noise is to big or the noise would have been underestimated.
This allows the sensors to transmit measurement models only
in (rare) cases when the assumed model differs considerably
from the assumed one.

An application of the proposed algorithm that suggests
a possibility of handling the actually utilized measurement
models is given in the next example. It should be mentioned
that in this example the storage of data is minimized instead
of the data transfer. This, however, is an equivalent problem
in this context.

Example VI.1 In this final example, we do not only consider a
limited sensor measurement area and take the sensor failure
rate into account, but also allow the measurement quality to be
distance-dependent. This scenario is a challenging extension
to example III.2 and allows us to demonstrate the application
of the proposed algorithm in a more complex environment. We
discretize the space of measurement noises into 15 matrices
and assume the true measurement noise to be smaller than
the assumed one. Therefore, the assumed noise is obtained by
d · Cvj

k , where d is a factor depending on the distance of the
sensor position pvi and the object position px

k
that is obtained by

d = ceil
(∣∣∣pvi − px

k

∣∣∣
2

)
. When d is larger than 15, the sensor does

not obtain a measurement and thus, sets (Hk)T (Cv
k)−1 Hk = 0

and d = 0.
The 4 bit for the distance factor are stored in every time step to

allow a reconstruction of the utilized measurement model later on.
When we assume that it is sufficient to store an estimate every
10th time step and the state variables can be stored in 32 bits
each, the entire storage needed for 100 time steps is obtained by

100

10
· 4 · 32 bit + 100 · 4 bit = 1680 bit = 210 byte . (41)

Thus, the percentage for storing discretized measurement
information is approximately 24% (∼ 100 · 400 bit

1680 bit ) in this scenario.
For the sake of simplicity, we determine the assumed global-

ized likelihood by only taking the sensor failure rate into account
and neglect the number of sensors that simultaneously detect
the object as well as the distance dependent measurement
matrices. Although considering these facts would lower the bias
and therefore the RMSE of the unbiased exact T2TF result, we
will not investigate this here since this topic is out of scope of this
paper and the effects are negligible.

A comparison of the unbiased T2TF algorithm with the BLUE
estimator is given in Figure 4. The quality of the measurements
is significantly worse than in the other scenarios since the
measurement noise is multiplied by a factor between 1 and 15 and
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Figure 4. The notation is the same as in the previous figures. The estimate
of the unbiased exact T2TF algorithm is given as the magenta coloured path.
The true path is dotted in black and the BLUE solution is blue again.
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Figure 5. The RMSE of the unbiased exact T2TF algorithm compared to
the optimal results.

thus, the BLUE solution as well as the unbiased T2TF algorithm
is no longer exactly matching the true path.

As it is possible to calculate the RMSE of the BLUE solution
as well as of the unbiased exact T2TF algorithm in closed form,
we compare these values at different time steps – instead of the
noise depending instances of one run – in Figure 5. By taking the
ellipses that mark every 10th time step in Figure 4 into account,
it can be seen that the RMSE of both procedures is increasing in
areas with low sensor coverage. The difference of the RMSE is
remarkably low, which means that the unbiased T2TF algorithm
nearly achieves the best possible performance of central data
fusion in this scenario, even if it is working distributed under
unreliable conditions.

As estimates from sensors that are not available at a
calculation node can be predicted from the last time step



to the current time step, it is always possible to obtain an
estimate of the current state by adding zero matrices for the
unknown estimates to the real globalized likelihood of each
time step – that means, by implicitly assuming that the sensors
have not obtained any measurements since the last information
exchange.

In particular, this allows each sensor to obtain an unbiased
estimate, even if this sensor only holds estimates of some of his
neighbours or in the extreme case, only holds its own estimate.
This, however, enables the local sensors to apply nonlinear
algorithms such as the Extended Kalman filter or the Unscented
Kalman filter. Therefore, the proposed extension to the exact
T2TF algorithm provides flexible and precise estimates that are
exact, when the globalized likelihood is estimated correctly.

In order to emphasize this, it is not necessary to estimate the
local measurement matrix information correctly. As long as the
globalized likelihood (as the sum of the measurement matrix
information) matches the assumed one, the estimate is exact.
For small differences between the real and assumed globalized
likelihood, the globally fused estimate is almost exact and
otherwise, the estimate is still consistent and unbiased.

Finally, it is worth mentioning that the proposed extension to
the exact T2TF algorithm always provides exact results when
the process noise is negligible. This is easily proven by setting
Cw

k = 0 in (34) and comparing the exact covariance matrices
of the subsequent filter step with the unbiased ones.

VII. CONCLUSION

Implementing Kalman filtering algorithms in a distributed
manner is still challenging. In [12], [14], it was shown that
prediction and filtering can be performed locally and the local
estimates can be fused to a global one that is equal to the result
of a centralized Kalman filter. However, the global fusion result
can only be computed when all local estimates are available
and every node has been able to determine the actual globalized
likelihood function in every filtering step, i.e., was aware of
every other node and its models. If the underlying assumptions
on the used sensor models are not fulfilled all the time, not even
a suboptimal fusion result is attained, but a biased result, since
the local estimates of this approach do not represent themselves
valid and consistent estimates. As illustrated in Sec. IV, a bias
is even introduced when one attempts to formulate cautious
and conservative assumptions on the network’s behavior, e.g.,
failure rates.

Therefore, we have shown in Sec. V how to compute a
correction matrix from the utilized measuring characteristics
that removes the bias from the fusion result. It is open to
the user to utilize measurement models that allow an easy
discretization for efficient storage and transmission as long as
the sum of these models is a conservative bound of the real
globalized likelihood. In particular, in scenarios where only
the rate of sensor failures is of interest, the bias correction
matrix can be obtained without additional data transmission
needed. Additionally, the proposed approach now allows to use
nonlinear filter methods, such as the Extended or Unscented
Kalman filter, within the T2TF framework of [12], [14].

The corrected fusion result is an almost optimal estimate of
the state and the corresponding covariance matrix embodies
the actual mean-squared-error matrix. When the assumed
globalized likelihood equals the real one, the results are
moreover equivalent to those of the central fusion, while
the precision degrades proportional to the deviation between
assumed and real models.

Future research will focus on the derivation of precise
quality guarantees. For example, the authors observed the
mean-squared-error matrix of the proposed approach to be
always lower than the assumed covariance matrix when the
real globalized uncertainty is lower than the assumed one,
independent of the deviation between the assumed and the real
globalized likelihood.
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