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Abstract—We present a novel method for tracking multiple
targets, called Kernel-SME filter, that does not require an
enumeration of measurement-to-target associations. This method
is a further development of the symmetric measurement equation
(SME) filter that removes the data association uncertainty of
the original measurement equation with the help of a symmetric
transformation. The key idea of the Kernel-SME filter is to define
a symmetric transformation that maps the measurements to a
Gaussian mixture function. This transformation is scalable to
a large number of targets and allows for deriving a Gaussian
state estimator that only has a cubic runtime complexity in the
number of targets.

Index Terms—Multiple Target Tracking, Data Association,
Symmetric Measurement Equation.

I. INTRODUCTION

A main challenge in multiple target tracking [1], [2] is
that the association of measurements to targets is unknown.
In this context, a variety of different multiple target tracking
methods has been developed. For example, the Joint Prob-
abilistic Data Association Filter (JPDAF) [3] enumerates all
feasible association hypotheses in order to compute a Gaussian
approximation of the posterior density of the target states.
Unfortunately, the number of possible association hypotheses
grows exponentially with the number of targets so that the
tracking of a large number of closely-spaced targets becomes a
serious challenge (see [4]–[7] for approaches for dealing with
the complexity). The Probability Hypothesis Density (PHD)
filter [8], [9] maintains the first moment of the multi-target
posterior random set called PHD. By this means, association
hypotheses are not explicitly enumerated, i.e., data association
is performed implicitly. The PHD, however, contains less
information than the full posterior random set [8], e.g., it does
not maintain correlations between targets.

This article is about an implicit data association approach
named Symmetric Measurement Equation (SME) filter [10],
[11]. The SME filter removes the data association uncertainty
from the original measurement equation using a symmetric
transformation. This allows to bypass the combinatorial com-
plexity of the data association problem. Unfortunately, existing
SMEs suffer from strong nonlinearities and lack an intuitive
semantic so that existing SME filters are not competitive to
established approaches such as JPDAF and PHD filters.

In this article, we introduce the so-called Kernel-SME filter
that can be seen as an extension of the SME approach.
The basic idea is to define a symmetric transformation that
maps the set of measurements to a function, i.e., a Gaussian

mixture, and deterministic sampling of this function gives the
symmetric transformation. In this manner, a data-dependent,
i.e., non-parametric, symmetric transformation is obtained.
The Kernel-SME has an intuitive semantic and it is suitable
for a large number of closely-spaced targets due to a cubic
time complexity. In this vein, the advantages of an implicit
data association method are exploited while having the full
joint density of the multi-target state available. In addition,
there is an intriguing connection to the PHD filter that renders
the Kernel-SME filter to an in-between of the PHD filter and
the JPDAF.

The remainder of this paper is structured as follows: In the
next section, we give a detailed description of the considered
multi-target tracking problem. The subsequent Section III, in-
troduces and discusses the original SME approach. The novel
Kernel-SME filter is introduced in Section IV. In Section V,
the Kernel-SME filter is compared by means of simulations
with the Gaussian mixture implementation of the PHD filter
[9] in various scenarios with a known number of targets. This
paper is concluded in Section VI.

Remark 1. A preprint of this article is available at [12].

II. PROBLEM FORMULATION

We consider the tracking of multiple targets based on noisy
measurements, where the target-to-measurement association is
unknown. Specifically, we make the following assumptions:
A1 The number of targets is known.
A2 Each target gives rise to exactly one single measurement

per time instant, i.e., no missed detection.
A3 There are no false measurements, i.e., each measurement

originates from a target.
The n-dimensional single target state vectors are denoted with
x1
k, . . . ,x

N
k , where k denotes the discrete time and N is the

number of targets1. The single target states are stacked in a
joint target state vector xk =

[
(x1
k)T , . . . , (xNk )T

]T ∈ IRn·N .

A. Measurement Model

At each time step k, N measurements y1
k
, . . . ,yN

k
are

available. Each measurement is related to a single target
through the linear measurement model

yπk(l)
k

= Hl
kx

l
k + vlk , (1)

1 Note that vectors are underlined, e.g., x, and random variables are
printed in bold, e.g., x and x.



where πk ∈ ΠN is a permutation in the symmetric group ΠN

that specifies the unknown target-to-measurement assignment
and vlk is additive zero-mean white noise with covariance
matrix Σvk,l. The single target measurement equations (1) can
be composed to an overall measurement equation

y
πk(1)
k

...
y
πk(N)
k


︸ ︷︷ ︸
=Pπk (y

k
)

=

H
1
k

. . .
HN
k


︸ ︷︷ ︸

=Hk

·

x
1
k
...

xNk


︸ ︷︷ ︸

=xk

+

v
1
k
...

vNk


︸ ︷︷ ︸

=vk

, (2)

where y
k

:=
[
(y1
k
)T , . . . , (yN

k
)T
]T

and Pπk(y
k
) permutes

the single measurements in y
k

according to πk.

B. System Model

The temporal evolution of a single target is specified by a
linear motion model

xlk+1 = Al
kx

l
k + wl

k , (3)

where Al
k is the system matrix and wl

k is additive white noise
with covariance matrix Σwlk . The single target motion models
(3) can be composed asx

1
k+1
...

xNk+1


︸ ︷︷ ︸

=xk+1

=

A
1
k

. . .
AN
k


︸ ︷︷ ︸

:=Ak

·

x
1
k
...

xNk


︸ ︷︷ ︸

=xk

+

w
1
k

...
wN
k


︸ ︷︷ ︸

=wk

. (4)

III. SME-FILTER

This section is about the Symmetric Measurement Equation
(SME) filter as introduced by Kamen [10], [11]. The basic idea
of the SME filter is to remove the association uncertainty πk
from the measurement equation (2) by applying a symmetric
transformation to the measurement vector.

Definition 1. A transformation S(y) of a measurement vector
y with S : IRN ·n → IRNa is called symmetric if

S(y) = S(Pπ(y)) (5)

for all π ∈ ΠN .

Remark 2. Of course, the symmetric transformation should
not remove information, i.e., it should be injective up to
permutation.

Example 1. The Sum-Of-Powers [10], [11], [13], [14] trans-
formation for two targets and one-dimensional measurements
y1 and y2 is given by

S
([
y1, y2

]T)
=

[
y1 + y2(

y1
)2

+
(
y2
)2] .

The application of a symmetric function S to (2) yields

sk := S(Pπk(y
k
))︸ ︷︷ ︸

=S(y
k
)

= S(Hk · xk + vk) , (6)

where sk is a pseudo-measurement constructed from the
original measurement vector y

k
. The pseudo-measurement sk

can be determined without knowing πk due to the symmetry
property of S. Hence, the data association uncertainty has been
removed, however, instead a nonlinear measurement equation
is obtained. Based on the nonlinear measurement equation
(6), nonlinear Bayesian state estimators such as the Extended
Kalman Filter (EKF) or Unscented Kalman Filter (UKF) [13],
[14] can be used for performing inference.

Although the SME approach is a very neat way for dealing
with data association uncertainties, it comes with some serious
challenges:

1.) The generalization of existing symmetric transforma-
tions, i.e., the Sum-Of-Powers and [10], [11], [13]–[16],
to states with dimension larger than 1 is nontrivial due
to the so-called ghost target problem [13], [14] resulting
from non-injective transformations. As a consequence,
tedious and highly nonlinear symmetric functions that
have no intuitive, physical meaning are obtained. Addi-
tionally, these symmetric transformations are unsuitable
for larger target numbers as the order of the involved
polynomial increases with the number of targets, i.e.,
for 10 targets polynomials up to order 10 are required.

2.) Due to 1.), the resulting nonlinear estimation problem is
very difficult. As there is non-additive Gaussian noise in
(6), the EKF cannot be applied directly and an approx-
imate measurement equation with additive noise has to
be derived first. The derivation of the additive noise term
is usually complicated and time-consuming. Besides,
Linear Regression Kalman Filters (LRKFs) such as the
UKF [13], [14] and analytic moment calculation [17]
do not give satisfying results due to the strong non-
linearities and numerical instabilities.

IV. KERNEL-SME FILTER

In the following, the Kernel-SME filter is introduced in two
steps. First, the basic idea for constructing a symmetric mea-
surement equation is discussed (see Section IV-A). Second,
a particular Gaussian estimator is developed based on this
symmetric measurement equation (see Section IV-B).

A. Kernel-SME

The basic idea of the Kernel-SME filter is to interpret
the measurements as the parameters of a function, where
the function is a sum of kernel functions that are placed at
the measurement locations. We focus on Gaussian kernels,
nevertheless other types of kernels may also be reasonable.

Definition 2 (Kernel Transformation). Let HNn denote the
space of all n-dimensional Gaussian mixtures with N compo-
nents. The kernel transformation SK : IRN ·n → HNn , which

maps y =
[
y1, . . . , yN

]T
∈ IRN ·n to a function Fy ∈ HNn , is

defined as

SK(y) = Fy with (7)
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Fig. 1: Illustration of the Kernel-SME: The measurements are
mapped to a Gaussian mixture function. The Gaussian mixture
function may be evaluated at specific test points (small blue
markers).

Fy (z) =

N∑
l=1

N
(
z; yl,Γ

)
, (8)

where N
(
z; yl,Γ

)
is a Gaussian kernel located at yl with

kernel width Γ.

Remark 3. The transformation (7) is symmetric due to
Fy (z) = FPπ(y)(z) for all z ∈ IRn. Furthermore, (7) is
injective up to permutation due to the identifiability of the
parameters of a multivariate Gaussian mixture density [18].
Hence, there is no ghost target problem (see for example [13]).
Remark 4. Note that the authors used kernel distances in [19]
to extract optimal point estimates from multi-target probability
densities. However, the data association problem has not been
treated in [19].

The transformation (7) has an intuitive semantic: The set of
measurements is interpreted as a continuous image, i.e., high
values of Fy (z) indicate a high measurement concentration.
Hence, the Kernel-SME reformulates the multi-target model
for thresholded data, i.e., point measurements, as a model for
unthresholded data (in a continuous domain). In this context,
see track-before-detect algorithms [20]–[24] that directly work
with unthresholded sensor data on a grid, i.e., a discrete
domain.

As the kernel transformation (7) maps the measurement
vector to a function, it can be seen as a generalization of the
original SME approach [10], [11] that maps the measurement
vector to vector again. Furthermore, this transformation is
suitable for a large target number as with an increasing target
number, only the number of summands (7) in increases.

Of course, the choice of a suitable kernel width Γ in (7)
is essential. It should be chosen similar to the measurement
noise covariance in order to ensure that the the kernels cover
the predicted measurements.

The measurements contained in the stacked measurement
vector y

k
can be used to form a random set {y1

k
, . . . ,yN

k
} for

which the first moment, i.e., the PHD, is [8]

Dy
k
(z) :=

∑
i

pyi
k
(z) , (9)

where pyi
k
(z) is the probability density of yi

k
. The following

theorem describes an insightful, inherent relationship between
the transformed measurements SK(y

k
) and the PHD of the

stacked measurements y
k
.

Theorem 1. The expected kernel transformation of the stacked
measurements y

k
coincides with the convolution of the PHD

with the kernel, i.e., E
{
Fy

k
(z)
}

=
∫
Dy

k
(t) · N (t; z,Γ) ds.

PROOF. According to [19], the following holds

E
{
Fy

k
(z)
}

=

∫
Fy

k
(z) · p(y

k
) dy

k

=

∫ ∫ ∑
i

δ(t− yi
k
) · N (t; z,Γ) dt p(y

k
) dy

k

=

∫ ∫ ∑
i

δ(t− yi
k
) · p(y

k
) dy

k
· N (t; z,Γ) dt

=

∫
Dy

k
(t) · N (t; z,Γ) dt .

�

As probabilistic inference in function spaces such as HNn
may be tedious, we propose to evaluate the function Fy

k
(z)

at specific test vectors a1
k, . . . , a

Na
k . By this means, we obtain

again a usual measurement equation that relates the state
vector to a measurement vector. More precise, we define a
“sampled” version of (7) as follows

SK
a1k,...,a

Na
k

(y) =

 Fy (a1
k)

...
Fy (aNak )

 (10)

How to choose the number and locations of the test vectors is
discussed in Section 5.

The application of (10) to (2) gives the following symmetric
measurement equation

sk = SK
a1k,...,a

Na
k

(y
k
) = SK

a1k,...,a
Na
k

(Hk · xk + vk) , (11)

where sk is the pseudo-measurement.
The symmetric measurement equation (11) is data-

dependent, i.e., it is constructed based on the measurements.
In contrast, the traditional SME approach [10], [11] is data
independent (see also Example 1).
Remark 5. Reasonably, the locations of the test vectors should
be chosen such that the transformed measurement vector, i.e.,
the Gaussian mixture function Fy (z) in (8), is approximated
well for all potential measurement vectors y . Hence, we
choose the test points depending on y

k
as the potential values

of y are expected to lie around y
k
. As Fy

k
(z) is a Gaussian

mixture, the test vectors can be seen as deterministic samples
of the Gaussian mixture and there is a strong relationship
to deterministic sampling problems that occur for example
in the UKF [25]. Due to this analogy, we propose to add
2 · n test vectors for each Gaussian component N

(
z;yl

k
,Γ
)

in (8) according to the deterministic sampling rule of the UKF



[25], i.e., the total number of test vectors is Na = 2 · n · N .
It is important to note that same test points are used for
the left hand side and right hand side of the measurement
equation (11).

Example 2. For two targets and one-dimensional measure-
ments y1 and y2, (10) becomes

SK
([
y1, y2

]T)
=

[
N
(
a1
k; y1,Γ

)
+N

(
a1
k; y2,Γ

)
N
(
a2
k; y1,Γ

)
+N

(
a2
k; y2,Γ

)]
when using two test vectors a1

k and a2
k. Note the test vectors

depend on the time index as they are chosen depending on the
particular measurement yl

k
.

B. Gaussian Estimator

Based on the (association-free) measurement equation (11),
we develop a Gaussian state estimator for the targets, i.e.,
a Gaussian approximation of the posterior probability den-
sity function for xk given the pseudo-measurements Sk :=
{s1, . . . , sk}

p(xk |Sk) = N
(
xk;µx

k
,Σxk

)
(12)

is to be computed, where µx
k

is the mean and Σxk the covariance
matrix of the Gaussian.

1) Time Update: The time update step determines
p(xk |Sk−1) = N

(
xk;µx

k|k−1
,Σxk|k−1

)
based on the previ-

ous density p(xk−1 |Sk−1). Due to the linear system model,
the prediction can be performed according the Kalman filter
formulas

µx
k|k−1

= Ak · µxk−1
, and (13)

Σxk|k−1 = AkΣxk−1(Ak)T + Σwk , (14)

where Σwk denotes the covariance matrix of the stacked system
noise wk. In the measurement update step, the prediction
N
(
xk;µx

k|k−1
,Σxk|k−1

)
is updated with the stacked measure-

ment vector y
k
.

2) Measurement Update: In order to perform the measure-
ment update, we propose to derive a Linear Minimum Mean
Squared Error (LMMSE) estimator [26] based on (11). For a
given prediction of the state µx

k|k−1
with covariance matrix

Σxk|k−1, the updated estimate µx
k

and Σxk according to (11) is
given by the Kalman filter formulas

µx
k

= µx
k|k−1

+ Σxsk (Σssk )−1
(
sk − µsk

)
, and (15)

Σxk = Σxk|k−1 − Σxsk (Σssk )−1Σsxk , (16)

where
• sk is the pseudo-measurement,
• µs

k
is the predicted pseudo-measurement,

• Σxsk is the covariance between the state vector xk and
the pseudo-measurement sk, and

• Σssk is the variance of the pseudo-measurement sk.
Closed-form expressions for the above moments are derived
in Appendix A.

Remark 6. According to Theorem 1 the predicted mean µs
k

can be interpreted as the PHD of the predicted measurement
smoothed with a kernel (evaluated at the test points). The
pseudo-measurement sk can be interpreted as the smoothed
measurements (evaluated at the test points). Hence, the above
linear filter minimizes the kernel distance [19], [27] between
the measurements and the PHD of the predicted measurements.

Fig. 2 depicts pseudo-code of the overall algorithm for the
measurement update.
• Step 1 computes the test vectors by calculating determin-

istic samples of the Gaussians according to the sampling
rule of the UKF (linear time complexity in the number
of measurements).

• Step 2 calculates the pseudo-measurement according to
(10) (quadratic time complexity as each component of the
pseudo-measurement can be determined in linear time).

• Step 3 calculates the moments required for performing the
LMMSE update in (15) and (16), see also Appendix A.
The mean in Step 3b is determined in quadratic time.
The covariance matrix in Step 3c is calculated with a
cubic time complexity as each entry can be determined
in linear time. Note that the double sum in Step 3c can be
determined in linear time as the inner sum does not have
to be computed from scratch for each summand. Step 3d
determines the cross-covariance matrix in cubic time.

• Step 4 performs the LMMSE update that has a cubic time
complexity.

All in all, the measurement update for the Kernel-SME filter
as presented here has a cubic time complexity.

V. EVALUATION

The performance of the Kernel-SME filter is demonstrated
with respect to the Gaussian mixture implementation of the
PHD filter (GM-PHD) [9]. Note that the PHD filter is also
capable to deal with false detections, missed detections, and
an unknown number of targets. Here, however, we assume
the number of targets to be given and neither false nor
missed detections (see Section II) may occur. Under these
assumptions, the total mass of the PHD always coincides with
the exact number of targets.

We consider three different scenarios, where all scenarios
consider targets that evolve according to a random walk model,
i.e., the dimension of the state vector is n = 2 and the
system matrix is the identity matrix, i.e., Hi

k = Ai
k = I2 for

i = 1 . . . N , where I2 is the identity matrix of dimension 2.
Furthermore, we assume that two-dimensional position mea-
surements of the targets are available, i.e., the measurement
matrix is Hi

k = I2 for i = 1 . . . N .
In all scenarios, the Kernel-SME filter employs a kernel with

covariance matrix Σ = I2. The GM-PHD filter maintains a
Gaussian mixture with 50 components in order to represent the
PHD. The parameters for the Gaussian mixture reduction have
been optimized for the best results and the mixture components
with the largest weights serve as point estimates for the single
targets.



Input:

• Mean µx
k|k−1

=
[
(µx1

k|k−1
)T , . . . , (µxN

k|k−1
)T
]T

and covariance matrix Σxk =
(

Σ
xixj
k|k−1

)
i,j=1...N

• Measurements y1
k
, . . . ,yN

k
(order of measurements is irrelevant)

Output:

• Updated mean µx
k

=
[
(µx1

k
)T , . . . , (µxN

k
)T
]T

and covariance matrix Σxk =
(
Σ
xixj
k

)
i,j=1...N

Algorithm:
1) Determine test vectors a1

k, . . . , a
Na
k with Na = 2 · n ·N according to

al+i−1
k := yl

k
+
(√

nΓ
)
i

and a
l+2(i−1)
k := yl

k
−
(√

nΓ
)
i

for i = 1, . . . , N and l = 1, . . . , n, where
(√
nΓ
)
i

denotes the i-th column of
√
nΓ.

2) Compute pseudo-measurement sk =
[
s1
k, . . . , s

Na
k

]T
with

sik =

N∑
l=1

N
(
aik;yl

k
,Γ
)

.
3) Determine moments for LMMSE update:

a) Define function PΓ
l (z) := N

(
z;Hl

kµ
x
l
,Hl

kΣxlk|k−1(Hl
k)T + Σvk + Γ

)
b) Mean µs

k
=
[
µs1
k
, . . . , µ

sNa
k

]T
of predicted pseudo-measurement:

µs
k,i

=
∑

l=1...N

PΓ
l (aik)

c) Covariance Σssk = (Σ
sisj
k )i,j=1,...,Na of predicted pseudo-measurement:

Σ
sisj
k =

(
N∑
l=1

PΓ
l (aik)

N∑
m=1,m 6=l

PΓ
l (ajk)

)
+N

(
aik; ajk, 2Γ

)
·
∑

l=1...N

P 0.5Γ
l ( 1

2 (aik + ajk))− µs
k,i
· µs

k,j

d) Cross-covariance Σxsk =
[
Σxs1k , . . . ,Σ

xsNa
k

]
between predicted pseudo-measurement:

Σxsik = −µx
k
· µsi

k
+

∑
l=1...N

PΓ
l (aik) · (µx

k|k−1
+ Kl

k(aik −Hl
kµ

xl
k

)) ,where

Kl
k =

[
Σx1xl
k|k−1, . . . ,Σ

xNxl
k|k−1

]T
Hl
k ·
(
Hl
kΣxlk|k−1(Hl

k)T + Γ + Σvk

)−1

4) Perform LMMSE update:

µx
k

= µx
k|k−1

+ Σxsk (Σssk )−1
(
sk − µsk

)
, and

Σxk = Σxk|k−1 − Σxsk (Σssk )−1Σsxk .

Fig. 2: Pseudo-code for a measurement update according to the Kernel-SME filter (see [28] for an example implementation).



The first estimate for the Kernel-SME filter is initialized
with the covariance matrix Σx0 = 0.5 I2N and the mean µx

0
is

sampled randomly from N (x̃0; 0,Σx0), where x̃0 denotes the
true target position at time instant 0. The GM-PHD filter is
initialized with the corresponding PHD.

Scenario 1: Eight Targets, Large Noise

In the first scenario, eight targets are initialized in a grid
as indicated in Fig. 3a. The system noise is Σwk = 0.05 I2

(Fig. 3a shows an example run). The measurement noise
is given by Σvk = 0.7 I2, which is high compared to the
inter-target distance (see Fig. 4b). As a consequence, the
tracking of the targets is a serious challenge for both filters.
As the PHD filter itself does not maintain target labels, the
performance of both filters is assessed with the Optimal Sub-
Pattern Assignment (OSPA) metric [29] that ignores target
labels. The averaged OSPA distance over 30 Monte Carlo runs
is depicted Fig. 3c. The Kernel-SME filter outperforms the
GM-PHD in this scenario. The reason is that the GM-PHD
filter tends to merge closely-spaced targets in a bulk so that
they cannot be differed anymore.

Scenario 2: Eight Targets, Medium Noise

The second scenario coincides exactly with the first sce-
nario, however, the measurement noise is smaller, i.e., Σvk =
0.3 I2. Both filters give better estimates than for the first
scenario. Nevertheless, the Kernel-SME filter still performs
better than the PHD filter according to Fig. 3c.

Scenario 3: Two Targets, Correlated System Noise

The purpose of the second scenario is to convey the effect
of neglecting the correlation between target states. For this
purpose, two targets whose temporal evolutions are correlated
is investigated. Specifically, the overall system noise (3) is set
to

Σwk = 1.5 ·


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

 ,

which essentially means that the x- and y-coordinates of both
targets are fully correlated. From a practical point of view,
such correlated system noise may be caused by disturbances
affecting both targets, e.g., wind may cause a similar effect in
air-surveillance as it is common to all targets. The measure-
ment noise is set to Σv = 0.1 I2 in this scenario, which is not
that high (in comparison with the distance of the targets). As
the PHD is not capable of representing correlations between
the targets, the Kernel-SME filter performs significantly better
than the GM-PHD filter in this scenario.

VI. CONCLUSIONS AND FUTURE WORK

This article presented a novel type of SME filter that is
based on a mapping from the measurements to a Gaussian
mixture. Intuitively, the filter recursively minimizes the kernel
distance between the measurements and the PHD of the pre-
dicted measurements. By this means, shortcomings of existing

SME approaches are remedied so that the Kernel-SME filter
is a competitive alternative to traditional tracking algorithms
such as JPDAF and PHD filters. The Kernel-SME filter is
particular advantageous for a large number of closely-spaced
targets.

Future investigations will concentrate on the effect of the
kernel width and the selected test points (number and lo-
cations) in the Kernel-SME filter update. In this context, it
may be interesting to employ filtering techniques for infinite-
dimensional measurement spaces in order to bypass the need
for selecting specific test vectors. Finally, the Kernel-SME
filter will be extended to missed detections and clutter mea-
surements in order render it more appealing for real-world
scenarios (see A2 and A3 in Section II). Of course, a more
exhaustive evaluation and comparison with other multi-target
tracking algorithms will highlight further strengths and weak-
nesses of the Kernel-SME filter.
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Fig. 3: Scenario 1: Setting and results.
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APPENDIX
CLOSED-FORM EXPRESSIONS OF THE MOMENTS FOR THE

LMMSE ESTIMATOR

In the following, analytic expressions for the moments in
the measurement update step (15) and (16) are derived (see
also the pseudo-code in Fig. 2). Essentially, the derivations
are straightforward as they all can be performed with the help
of the Kalman filtering formulas. First, we define the helper
function

PΓ
l (z) := N

(
z;Hl

kµ
xl
k
,Hl

kΣxlk|k−1(Hl
k)T + Σvlk + Γ

)
.

depending z ∈ IRn that allows to abbreviate the resulting
expressions.

A. Mean of Predicted Pseudo-Measurement

The mean of the predicted pseudo-measurement µs
k

=[
µs1
k
, . . . , µ

sNa
k

]T
is

µsi
k

= E
{
Fy

k
(aik) | Yk−1

}
(17)

=

N∑
l=1

∫
N
(
aik;Hl

kx
l
k + vlk,Γ

)
· (18)

N
(
xk;µx

k|k−1
,Σxk|k−1

)
· N (vk; 0,Σvk) dxlk dvlk

=

N∑
l=1

PΓ
l (aik) (19)

The simplification from (18) to (19) follows from the
fact that the test vector aik in (18) can be interpreted as a
measurement of the state vector xk under the measurement
model Hl

kx
l
k+v̄lk, where v̄lk is Gaussian noise with covariance

matrix Γ+Σvlk . With this interpretation in mind, the summands
in (19) result from evaluating the corresponding measurement
probability density at aik.

B. Cross-Covariance

The cross-covariance matrix between the multi-target
state vector and the pseudo-measurement becomes Σxsk =[
Σxs1k , . . . ,Σ

xsNa
k

]
with

Σxsik = E
{
xk · Fy

k
(aik) | Yk−1

}
︸ ︷︷ ︸

(∗)

−µx
k
· µs

k,i
,

where

(∗) =

N∑
l=1

∫
xk · N

(
aik;Hl

kx
l
k + vlk,Γ

)
· (20)

N
(
xk;µx

k|k−1
,Σxk|k−1

)
· N (vk; 0,Σvk) dxk dvlk

=
∑

l=1...N

PΓ
l (aik) · (µx

k|k−1
+ Kl

k(aik −Hl
kµ

xl
k

)) (21)

and

Kl
k =

[
Σx1xl
k|k−1, . . . ,Σ

xNxl
k|k−1

]T
·Hl

k·(
Hl
kΣxlk|k−1(Hl

k)T + Γ + Σvlk

)−1

. (22)

The result (21) follows from (20) the Kalman filter update
equations by interpreting again aik as a measurement of the
state vector xk under the measurement model Hl

kx
l
k + v̄lk.

The corresponding Kalman gain is given in (22). The term
PΓ
l (aik) results from normalizing the product of Gaussians.

C. Covariance Matrix of Pseudo-Measurement

The covariance matrix of the predicted pseudo-measurement
Σssk = (Σ

sisj
k )i,j=1,...,Na can be calculated with

Σ
sisj
k = E

{
Fy

k
(aik) · Fy

k
(ajk) | Yk−1

}
︸ ︷︷ ︸

(∗∗)

−µs
k,i
· µs

k,j
, where

(∗∗) =

N∑
l=1

N∑
m=1

∫
N
(
aik;Hl

kx
l
k + vlk,Γ

)
·

N
(
ajk;Hm

k x
m
k + vmk ,Γ

)
· N

(
xk;µx

k|k−1
,Σxk|k−1

)
·

N (vk; 0,Σvk) dxk dvk (23)

=

(
N∑
l=1

PΓ
l (aik)

N∑
m=1,m 6=l

PΓ
l (ajk)

)
+

N
(
aik; ajk, 2Γ

)
·
∑

l=1...N

P 0.5Γ
l ( 1

2 (aik + ajk)) . (24)

In analogy to (19) for the mean, the reformula-
tion from (23) to (24) results from the measurement
pdf for aik and ajk. In case l = m in (23), the
identity N

(
aik;Hl

kx
l
k + vlk,Γ

)
· N

(
ajk;Hl

kx
l
k + vlk,Γ

)
=

N
(
aik; ajk, 2Γ

)
· N

(
1
2 (aik + ajk);Hl

kx
l
k + vlk,

1
2Γ
)

has to be
exploited (can be proven using again the Kalman filter update
formulas).


