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Abstract—A new Gaussian filter for estimating the state of
nonlinear systems is derived that relies on two main ingredients:
i) the progressive inclusion of the measurement information
and ii) a tight coupling between a Gaussian density and its
deterministic Dirac mixture approximation. No second Gaussian
assumption for the joint density of state and measurement is
required, so that the performance is much better than that of
Linear Regression Kalman Filters (LRKFs), which heavily rely
on this assumption. In addition, the new filter directly works
with the generative system description. No Likelihood function
is required. It can be used as a plug-in replacement for standard
Gaussian filters such as the UKF.

Index Terms—Gaussian filter, nonlinear Bayesian state es-
timation, nonlinear filtering, recursive estimation, progressive
Bayesian estimation, homotopy, Dirac mixture approximation.

I. INTRODUCTION

This paper is about Gaussian filters for high-dimensional
nonlinear systems. The goal is to recursively estimate the
hidden state of the system given noisy measurements arriving
sequentially, a model for the relation of the state to measure-
ments, and a model for the temporal state evolution. A filter
is called a Gaussian filter when the estimated densities over
the unknown state are represented by Gaussian densities.

Gaussian filters are attractive especially for high-dimensional
systems, as they are usually simpler to implement than filters
operating on more complex types of densities. Computational
requirements are typically lower and the estimate can compactly
be represented by mean vector and covariance matrix. On the
downside, the simple density representation in some cases is not
enough for representing the state estimate. In addition, various
types of Gaussian filters exist that make further assumptions,
such as a second Gaussian assumption between state and
measurement. These filters, of course, do not achieve the
performance of filters just imposing the state estimates to
be Gaussian. However, without making additional assumptions,
Gaussian filters are far more difficult to design.

In a nutshell, the proposed new Gaussian filter uses a
deterministic Dirac mixture approximation (with an arbitrary
number of optimally placed components) of a Gaussian density
that is progressively updated. Instead of performing the filter
step at once, the measurement information is introduced
gradually. For that purpose, discrete information-preserving
sub-update steps are defined that keep the updated density
non-degenerate and close to Gaussian. For every sub-update,
the Dirac mixture is re-weighted, but the weight change is
immediately compensated by an appropriate modification of
the component locations. By doing so, the components of the

Dirac mixture approximation flow along the state space during
the progression and are kept in the relevant regions of the state
space. This allows i) to work with few components and ii) a
direct high-quality update without further assumptions.

A. Problem Formulation
We consider a measurement equation of the form

yk = hk(xk, vk) , (1)

with a time-varying measurement function hk(., .), an N -
dimensional state xk, and M -dimensional Gaussian noise vk
that enters in an arbitrary fashion. For simplicity, we assume
a scalar measurement yk with realization ŷk. In addition, we
consider a system model describing the time evolution of the
state according to

xk+1 = ak(xk, wk) , (2)

with time-varying system function ak(., .) and P -dimensional
Gaussian noise wk. Possible inputs are already included in the
mapping function.

For given noisy measurement realizations ŷk sequentially
received at time steps k = 0, 1, 2, . . ., the goal is to recursively
maintain the best possible Gaussian approximation of the true
state density.

B. State of the Art
We will distinguish between two different types of Gaussian

filters. The first type is the Gaussian assumed density filter
(GADF). This filters directly approximates the true posterior
resulting from multiplying the Gaussian prior and a Likelihood
function derived from the given measurement equation and
the noise description. The second type is the so called Linear
Regression Kalman Filter (LRKF) [1]. This commonly used
type of a Gaussian filter first approximates the (non-Gaussian)
joint density of state and measurement corresponding to
the prior density, the noise density, and the given nonlinear
measurement equation by a jointly Gaussian density, which is
independent of the actual measurement. In a second step, the
posterior is calculated based on the given measurement.

Examples of LRKFs [2] are the Unscented Kalman Filter
(UKF) [3] and its scaled version [4], its higher-order gen-
eralization [5], and a generalization to an arbitrary number
of deterministic samples placed along the coordinate axes [6].
Filters performing an analytic or semi-analytic calculation of the
required moments [7], [8] are based on a state decomposition
into two parts, where one part can be calculated in closed form



and the other part is calculated via a sample approximation
[9]. Some filters calculate the required nonlinear moments of
the prior Gaussian density based on numerical integration [10].
A progressive variant of an LRKF is proposed in [11].

GADFs are more complicated to implement in comparison
to the LRKFs and there are various options for minimizing
the deviation between the true posterior and its Gaussian
approximation. One option is to employ moment matching, i.e.,
using the mean and covariance matrix of the true posterior as
parameters for the desired Gaussian, as this is known to mini-
mize the Kullback-Leibler distance between the two densities.
Unfortunately, in the case of nonlinear measurement equations
and the corresponding complicated Likelihood function, it is
in general not a simple task to calculate mean and covariance
matrix of the true posterior, as analytic solutions are a rare
exception. In most cases, numerical integration over the true
posterior, i.e., the product of the (Gaussian) prior density and
the Likelihood function, is in order, such as Monte Carlo
integration [12].

This paper generalizes the progressive Gaussian filter derived
in [13] to the multi-dimensional case. In addition, it pursues
a different progression approach close to the general idea
presented in [14]. In [13], the progression is derived for a
continuous progression parameter γ, so that we obtain a system
of ordinary first-order differential equations (ODEs) for the
parameters of the Gaussian density. Solving this system of
ODEs gives the desired posterior. It is also what we call
iterative, as the representation of the prior density is modified
with increasing γ in order to keep the Dirac components in
relevant regions. A general continuous and iterative progressive
Bayesian approach has first been introduced [15] for state
estimation with Gaussian mixture representations minimizing a
squared-integral distance, which was generalized to the multi-
dimensional case in [16]. Other distance measures are proposed
in [17]. In contrast, the filtering method presented here and in
[14] is directly derived with discrete progression steps and it
is recursive in nature. Recursive here means that intermediate
posteriors are calculated for each discrete progression step.

Besides state estimation, the progressive processing idea has
been applied to moment calculation [18] and Gaussian mixture
reduction [19]. A homotopy-based filtering method operating
on a particle representation is given in [20].

Dirac mixture approximations for nonlinear estimation and
filtering have been proposed for the case of scalar continuous
densities in [21], [22] An algorithm for sequentially increasing
the number of components is given in [23] and applied to
recursive nonlinear prediction in [24]. Systematic Dirac mix-
ture approximations of arbitrary multi-dimensional Gaussian
densities are calculated in [25]. A more efficient method for
the case of standard normal distributions with a subsequent
transformation is given in [26]. Dirac mixtures calculated with
this method are used throughout this paper.

C. Key Ideas
In this paper, a new type of Gaussian filter, called the

Progressive Gaussian Filter (PGF 42), is derived that does not
require a second Gaussian assumption for the joint density
of state and measurement. Instead, the posterior Gaussian
representation is calculated directly. For that purpose, a Dirac
mixture representation of the Gaussian density is employed.

Without the second Gaussian assumption, directly performing
the measurement update would lead to sample degeneration
as mentioned above and many samples would be wasted.
That would necessitate a very large number of samples for
the approximation of the prior Gaussian density. Hence, the
idea is to gradually include the measurement information
instead of using all the information in one step. The total
measurement update is decomposed into several sub-updates
that are performed sequentially. A sub-update takes care of
keeping all components alive. No component is down-weighted
too much. This is achieved by adaptive sub-updates that keep
the distortion of the given Dirac mixture caused by re-weighting
within pre-specified bounds.

The result of a sub-update step is a re-weighted Dirac
mixture with nonuniform weights. For the next sub-update, a
uniformly weighted Dirac mixture is required. This re-sampling
of deterministic Dirac mixtures could be achieved by a general
optimization procedure as in [14]. This, however, would be too
complex here, as we are just interested in the approximation of
Gaussian densities. Hence, in this paper it is proposed to first
approximate the nonuniformly weighted Dirac mixture by a
continuous Gaussian that in a second step is re-approximated by
a uniformly weighted Dirac mixture. Doing so not only avoids
sample degeneration, but also causes the Dirac components to
flow along the state space during the progression as weight
changes are turned into location changes.

Although no second Gaussian assumption is imposed, an
explicit use of the Likelihood representation of the given
measurement equation is avoided. The desired backward
inference (from measurement to state) for the measurement
update is performed by a forward mapping, so that a generative
model is sufficient. In the additive noise case, this is equivalent
to the explicit use of the likelihood. For non-additive noise,
artificial additive noise is introduced and the state is augmented
with the original noise. After estimating the augmented state,
the original state is recovered by marginalization.

In summary, the proposed new Gaussian filter requires the
following ingredients:

i) An appropriate deterministic Dirac mixture representation
of Gaussian densities,

ii) a progression schedule for performing discrete sub-
updates,

iii) an adaptation mechanism for the “strengths” of the sub-
updates in order to keep the distorted Dirac mixture non-
degenerate and close to a Gaussian,

iv) and an efficient method for the re-approximation of a
nonuniform Dirac mixture by a uniform one, done here
via the corresponding continuous Gaussian density. This,
in turn, requires the efficient conversion between Dirac
mixtures and Gaussians.

Specific implementations for all these ingredients will be
derived in the following.

II. DERIVATION OF PROGRESSIVE GAUSSIAN FILTERING

We will now derive the new Progressive Gaussian Filter
(PGF 42) and all the details required for its efficient implemen-
tation. For that purpose, we will begin with a hypothetical
treatment of the filtering problem in terms of continuous
distributions. Then, Dirac mixture approximations are used



for establishing the desired joint density by means of forward
mappings, so that the method never actually requires the explicit
use of the Likelihood function1.

For the generative measurement equation in (1), a correspond-
ing probabilistic model is given in the form of the conditional
density

f(yk|xk, vk) = δ(yk − hk(xk, vk)) , (3)

where δ(.) is the Dirac delta function. With Bayes’ law, we
obtain the posterior joint density of state and noise given the
measurement sequence y0:k as

f(xk, vk | y0:k) = f(xk, vk | yk, y0:k−1)

=
f(yk |xk, vk, y0:k−1) f(xk, vk | y0:k−1)

f(yk | y0:k−1)
,

where f(yk |xk, vk, y0:k−1) = f(yk |xk, vk) as the current
measurement yk is assumed to be conditionally independent of
prior measurements given the current state of the system. The
numerator on the right-hand-side is a constant according to
f(yk | y0:k−1) = 1/ck. The predicted state and noise given the
measurements up to time step k − 1 can be assembled from
the prior state estimate f(xk | y0:k−1) and the noise density
f(vk) according to

f(xk, vk | y0:k−1) = f(xk | y0:k−1) f(vk) ,

as the noise is considered to be independent of the state and
of previous measurements. As a result, the desired posterior
density of the state given the measurement sequence is given
recursively as

f(xk | yk, y0:k−1)︸ ︷︷ ︸
fe
k(xk)

=

∫
IRM

f(xk, vk | yk, y0:k−1) d vk

= ck

∫
IRM

δ(yk − hk(xk, vk)) f(xk, vk | y0:k−1) d vk

= ck

∫
IRM

δ(yk − hk(xk, vk)) f(vk) d vk︸ ︷︷ ︸
fL
k (xk)

f(xk | y0:k−1)︸ ︷︷ ︸
fp
k (xk)

or
fek(xk) = ck f

L
k (xk) fpk (xk) , (4)

with posterior density fek(xk), Likelihood function fLk (xk),
and prior state density fpk (xk) at time step k.

For a given Gaussian prior fpk (xk), the posterior fek(xk)
will not be Gaussian for arbitrary measurement functions
— or corresponding Likelihood functions — and has to be
approximated by a Gaussian density for the next recursion
steps. As this is difficult for continuous densities, we directly
work with discrete densities on a continuous domain, i.e., Dirac
mixture densities, for representing prior and posterior densities.

Working with Dirac mixtures in (4) is still challenging as
just multiplying the Dirac components with the Likelihood
function leads to a starvation of components in regions of low
Likelihood. In addition, Likelihood functions corresponding to
measurement equations with non-additive noise such as (1) are

1It is usually more convenient to directly work with the generative
measurement equation without deriving the Likelihood. However, when the
Likelihood is available, the proposed filter can be used with little modification.

either difficult to obtain or not available at all. Hence, it would
be tempting to make the second Gaussian assumption that
simplifies matters considerably as discussed above. However,
this would limit the achievable estimation quality. In order
to avoid this limitation, we will pursue a progressive filtering
approach that neither requires the Likelihood function nor any
other assumption besides prior and posterior being Gaussian
distributed.

A. Progressive Filtering

We start by adding an artificial2 noise source uk to the
right-hand-side of (1), which gives

yk = hk(xk, vk) + uk . (5)

We assume the noise uk to be zero-mean Gaussian distributed
with unnormalized density

fuk (uk, γ) =

(
exp

(
−1

2

u2
k

σ2
u

))γ
, (6)

where σu is a small standard deviation and γ is the progression
parameter.

The resulting posterior for state and original noise is now
given by

f(xk, vk, γ | y0:k)

= ck(γ)

∫
IR

f(xk, vk, uk, γ | yk, y0:k−1) d uk

= ck(γ)

∫
IR

f(yk |xk, vk, uk) fuk (uk, γ) d uk

· f(xk, vk | y0:k−1) ,

where ck(γ) is a normalization constant. Converting (5) into a
probabilistic description gives

f(yk |xk, vk, uk) = δ(yk − hk(xk, vk)− uk)

and we finally obtain

f(xk, vk, γ | yk, y0:k−1)︸ ︷︷ ︸
fe
k(xk,vk,γ)

= ck(γ) fuk (yk − hk(xk, vk), γ)

· f(xk, vk | y0:k−1)︸ ︷︷ ︸
fp
k (xk,vk)

, (7)

with the modified prior and posterior densities over state and
noise.

The progression parameter γ controls the inclusion of the
original measurement information. Obviously, the case of γ = 1
corresponds to the original measurement equation when σu is
small. For γ = 0, the modified measurement equation does
not change the prior state estimate at all as we then have
fuk (uk, γ) = 1.

2In the case of purely additive noise, no artificial noise is required. The
procedure detailed here is then used with the original noise description instead.



B. Dirac Mixture Representation
For further processing, the prior over state and noise is

replaced by its Dirac mixture approximation

fpk (xk, vk) ≈
L∑
i=1

wpk,i δ(zk − ẑ
p
k,i) (8)

with the augmented state zk =
[
xTk , v

T
k

]T
, the Dirac compo-

nents in the augmented state space ẑpk,i =
[
(x̂pk,i)

T , (v̂pk,i)
T
]T

,
and its weights wpk,i for i = 1, . . . , L.

For calculating this Dirac mixture approximation of a given
Gaussian density, several options exist. Here, we use the
approach derived in [26], where an optimal approximation of a
standard normal distribution is efficiently performed offline in
a first step. For a given arbitrary Gaussian density, the stored
Dirac mixture approximation of the standard normal distribution
is then online transformed in a second step. Of course, the
resulting Dirac mixture approximation is not optimal anymore,
but the online step is computationally cheap. An alternative
would be to use the method for the direct and optimal Dirac
mixture approximation of arbitrary Gaussians in [25]. This
method, however, is computationally more expensive.

By inserting the Dirac mixture approximation into (7) we
obtain

fek(xk, vk, γ) ≈ ck(γ) fuk (ŷk − hk(xk, vk), γ) ·
∑L
i=1 w

p
k,i δ(zk − ẑ

p
k,i)

or

fek(xk, vk, γ) ≈ ck(γ) ·
L∑
i=1

wpk,i f
u
k (ŷk − ȳk,i, γ)︸ ︷︷ ︸
we

k,i(γ)

δ(zk − ẑ
p
k,i)

with
ȳk,i = hk(x̂pk,i, v̂

p
k,i) .

This means that the individual components do not change their
locations, but are re-weighted depending on their distance from
the actual measurement. The posterior Gaussian approximation
could now be determined by calculating mean and covariance
matrix of the density fek(xk, vk, γ) for γ = 1.

However, for increasing γ, we encounter the same effect as
when performing the measurement update in one step. More
and more components in (8) effectively are weighted to zero so
that we loose a lot of components for representing the posterior
Dirac mixture density fek(xk, vk, γ).

Hence, the key is to modify the given Dirac mixture
approximation during the progression in such a way as to
maintain its information content. This is generally achieved by
compensating weight changes by location changes. One option
is to use what we call an iterative progression, which replaces
the samples used for representing fpk (xk, vk) by more suitable
ones based on the current intermediate posterior fek(xk, vk, γ).
This is the approach taken in [13].

In contrast to iterative progression schemes, where the
representation of the prior density is changed, we call changing
the representation of the intermediate posterior a recursive
progression scheme. This scheme is pursued in this paper.

It is important to note that both approaches, iterative and
recursive progression, can either be derived in the form of

an ordinary differential equation that describes the change of
the parameters of the posterior Gaussian or in the form of
discrete sub-updates. Of course, on a digital computer, the
differential equation is solved in discrete steps anyway, so that
both approaches result in similar implementations. In the next
subsection, we will directly derive a recursive progression with
discrete sub-update steps.

C. Recursive Update of Dirac Mixture Representation

In this subsection, we will now directly derive a discrete
recursive progression method. After inserting the Dirac mixture
representation of fpk (xk, vk) into (7), we select an appropriate
value of γ corresponding to a small distortion of the mixture so
that it is still close to a Gaussian and far from being degenerate.
Then, we replace the weighted Dirac mixture representing the
intermediate posterior fek(xk, vk, γ) for the given γ by an
unweighted one and continue the progression.

The intermediate posteriors fek(xk, vk, γ) can be recursively
calculated over the progression by setting two consecutive
values of γ, say γt and γt+1, into (7) and dividing the two
expressions, which gives

fek(xk, vk, γt+1)

=
ck(γt+1)

ck(γt)︸ ︷︷ ︸
dk(γt+1,γt)

fuk (yk − hk(xk, vk), γt+1)

fuk (yk − hk(xk, vk), γt)
fek(xk, vk, γt) ,

where dk(γt+1, γt) is a new normalization constant. From (6),
we obtain

fuk (uk, γt+1)

fuk (uk, γt)
=

(
exp

(
−u2

k/
(
2σ2

u

)))γt+1

(exp (−u2
k/ (2σ2

u)))
γt

=
(
exp

(
−u2

k/
(
2σ2

u

)))∆γ
= fuk (uk,∆γ)

with ∆γt = γt+1 − γt. This finally gives

fek(xk, vk, γt+1) = dk(γt+1, γt) f
u
k (yk − hk(xk, vk),∆γt)

·fek(xk, vk, γt) . (9)

In summary, (9) is a single discrete recursion step from a
chain of discrete progression steps towards γ = 1. In this single
step, we take the unweighted Dirac mixture approximation of
fek(xk, vk, γt) and re-weight all of its components to obtain
a representation for fek(xk, vk, γt+1). The size of each step is
selected in such a way that the weights are not down-weighted
too much, i.e., remain non-degenerate and close to a Gaussian.
Now, the challenge is that for the next recursion step, we
again need an unweighted Dirac mixture approximation of
fek(xk, vk, γt+1). This problem will be solved in the next
subsection.

D. Reapproximation of Nonuniformly Weighted Dirac Mixture
by Uniformly Weighted One

After a certain sub-update step, we are given a Dirac
mixture approximation of the underlying Gaussian density
of fek(xk, vk, γt) as

fek(xk, vk, γt) ≈
L∑
i=1

wek,i(γt) δ(zk − ẑ
e
k,i(γt))



with nonuniform weights. The weights are stored in a weight
vector

wek(γt) =
[
wek,1(γt), w

e
k,2(γt), . . . , w

e
k,L(γt)

]T
and the component locations are stored in a component matrix

Zk(γt) =
[
zek,1(γt), z

e
k,2(γt), . . . , z

e
k,L(γt)

]
.

Before performing the next progression step, this Dirac mix-
ture approximation has to be re-approximated with a uniformly
weighted one as the components cannot be down-weighted
anymore without compromising its approximation quality. In
order to obtain equal weights, the component locations have
to be modified accordingly in order to compensate for the
weight changes. For performing this re-approximation, the
method proposed in [14] could be used. However, as we
are eventually interested in a Gaussian representation of the
true posterior, the solution proposed in this paper is to re-
approximate the weighted Dirac mixture by an appropriate
intermediate Gaussian and then to generate the new set of
unweighted Dirac components from this Gaussian.

For converting the weighted Dirac mixture to a corre-
sponding Gaussian representation of the intermediate posterior
fek(xk, vk, γt), we calculate the sample mean ẑek and the sample
covariance matrix Pek(γt) of the weighted Dirac mixture given
by wek(γt) and Zk(γt).

Given the intermediate Gaussian posterior described by
ẑek and Pek(γt), we can now obtain the desired uniformly
weighted Dirac mixture approximation from it. Again, the
method proposed in [26] is used.

E. Calculation of Progression Step Size
We now consider the maximum admissible step size during a

sub-update that does not distort our state density representation
too much.

First, we limit the distortion of the Dirac mixture approxima-
tion by defining a smallest ratio R ∈ [0, 1] between the smallest
component weight and the largest component weight of the
Dirac mixture after a sub-update. This step size limit can be
calculated before actually performing the next progression step.
Given the hypothetical measurement ȳk,i = hk(ẑek,i(γt−1))
obtained by propagating the current sample set through the
measurement function, the (unnormalized) posterior weights
are given by

wek,i(γt) = wek,i(γt−1) · exp

(
−1

2
∆γ

(ŷk − ȳk,i)2

σ2
u

)
according to (9). For scalar measurements, we can now consider
the posterior weights of the sub-update step according to the
distance of the corresponding hypothetical measurement ȳk,i
from the true measurement ŷk. With the smallest distance dnear
and the largest distance dfar and assuming equal prior weights,
we obtain

R = exp

(
−1

2
∆γ

d2
far

σ2
u

)
/ exp

(
−1

2
∆γ

d2
near

σ2
u

)
or

∆γ = −2σ2
u log (R) /

(
d2

far − d2
near

)
. (10)

Second, we control the information content by performing
an update (forward update) with ∆γ followed by a reversed

update (backward update) with −∆γ. When the backward
update leads to an estimate that is close to the estimate before
the forward update, the step size is acceptable (and can be
increased). Otherwise, it is too large (and has to be decreased).

For the last progression step, ∆γ could lead to γ larger then
one, so ∆γ has to be clipped accordingly.

III. FILTERING BASED ON DIRAC MIXTURE

We will now put all the ingredients together and define a
Gaussian filter comprising filter step and prediction step.

Filter Step: The complete filter step is summarized in
Alg. 1 for a single measurement ŷk taken at time step k (this
index is omitted in the algorithm). First, in line 4, the state
augmentation is performed by stacking state and measurement.
The subsequent progression loop makes use of the Update
subroutine given in Alg. 2. For a given step size ∆γ, an
update is performed (line 6) that is followed by a backward
update with negative step size (line 7). When the backward
update comes close to the previous estimate, this step size
is accepted (line 9), used for incrementing γ (line 10), and
increased (line 11). Otherwise, the step size is just decreased
(line 14). For a successful progression step, the progression
step counter is incremented3 in line 12. From line 16 to line 18,
∆γ for the final step is limited in order to keep γ within the
interval [0, 1]. Finally, when γ = 1 is reached, the desired
posterior parameters are extracted from the augmented state
representation in line 20.

Alg. 2 shows the Update subroutine that starts with convert-
ing a Gaussian given by mean and covariance matrix to a Dirac
mixture approximation in line 1 by means of Gauss2DM(., .)
that works according to Subsec. II-D. (Unweighted) Dirac
components are mapped to hypothetical measurements in line 2.
It is assumed that the measurement function h(., .) from (1)
accepts vectorized inputs (now written as h(.)) and produces
a corresponding output vector of hypothetical measurements,
one for each Dirac component. From line 3 to line 9, the
maximum allowable progression step size ∆γ is computed
according to Subsec. II-E for the forward update. With the given
∆γ, the actual re-weighting (also in vectorized form) is then
performed in line 10, where � denotes the element-by-element
product. The conversion from a Dirac mixture approximation
to a Gaussian given by mean and covariance matrix in line 11,
called DM2Gauss(., .), is discussed in Subsec. II-B.

Prediction Step: The prediction step consists of i) as-
sembling the mean and covariance matrix of the augmented
state comprising the original state xk and the noise term wk
in (2), ii) calculating its Dirac mixture approximation with
Gauss2DM(., .), iii) propagating the Dirac components through
the system model (2), and iv) converting the resulting (still
uniformly weighted) Dirac mixture back to a Gaussian with
DM2Gauss(., .).

IV. EVALUATION

The proposed new Gaussian filter will now be compared to
standard Gaussian filters. In order to give a quick insight into
the achievable performance, a basic two-dimensional estimation

3Of course, it also makes sense to not only count the progression steps, but
the actual number of updates performed.



Main Routine: PGF 42
Input : Prior mean x̂p and covariance matrix Cp, current mea-

surement ŷ, measurement mapping h(., .), noise covariance
matrix Cv , number of Dirac components L, and weight
ratio R

Output : Posterior mean x̂e and covariance matrix Ce, number of
progression steps PC

// Initialize progression step counter
1PC = 0;

// Initialize ∆γ
2∆γ = 1;

// Parameters for in-/decreasing ∆γ
3Down = 0.5 , Up = 1.5;

// Initial sub-posterior Gaussian for γ = 0

4ẑe =
[
x̂p

0M

]
, Pe = diag(Cp,Cv);

5while γ < 1 do
// Try forward update

6[ẑt,Pt,∆γ] = Update(ẑe,Pe,∆γ);
// Corresponding backward update

7[ẑb,Pb] = Update(ẑt,Pt,−∆γ);
8if Backward update close to previous estimate? then

// Make trial update the temporary estimate
9ẑe = ẑt , Pe = Pt;

// Increment γ
10γ = γ + ∆γ;

// Increase step size
11∆γ = Up ∗ ∆γ;

// Increment progression step counter PC
12PC = PC + 1;
13else

// Decrease step size
14∆γ = Down ∗ ∆γ;
15end

// Limit γ to [0, 1]
16if γ + ∆γ > 1 then
17∆γ = 1 − γ;
18end
19end

// Extract posterior mean and covariance matrix
20x̂ek = ẑ1:N , C

e
k = Pe

1:N,1:N ;

Algorithm 1: Progressive Gaussian Filtering with PGF 42. The
time index k has been omitted for the sake of clarity.

scenario is considered. The focus is on the filter step, for which
new results have been derived in this paper.

We estimate the hidden state of a stochastic system based
on scalar measurements y1, y2 ∈ IR related to the system state
x = [x1, x2]T ∈ IR2 with the two measurement equations

yi = hi(x) + vi , (11)

where vi are zero-mean additive Gaussian noise terms with
standard deviation σv. Two nonlinear measurement functions
are considered, i.e.,

h1(x) = x3
1 + x3

2 and h2(x) = x3
1 − x3

2 .

First, we select a true state x̃ by drawing a random sample
from a uniform distribution on the set S = [−1, 1]× [−1, 1].
For an individual true state, two measurement realizations ŷ1,
ŷ2 are produced based on (11) and the measurement functions
h1(.), h2(.), respectively. A prior estimate x̂p is produced

Subroutine: Update
Input : Prior mean x̂p and covariance matrix Cp, current mea-

surement ŷ, measurement mapping h(., .), noise covariance
matrix Cv , number of Dirac components L, weight ratio R,
and number of progression steps PC

Output : Posterior mean x̂e and covariance matrix Ce, number of
progression steps PC

// Convert continuous to discrete representation
1[w,Z] = Gauss2DM(ẑe,Pe);

// Map Dirac components to measurements
2ȳ = h(Z);

// Forward update?
3if ∆γ > 0 then

// Maximum allowable step size change
4[d2

near, d
2
far] = min/max

(
(ŷ − ȳ)2

)
;

5∆γmax = −2σ2
u log (R) /(d2

far − d2
near);

// Cap to maximum allowable step size change
6if ∆γ > ∆γmax then
7∆γ = ∆γmax;
8end
9end

// Perform re-weighting and renormalization

10w = w � exp
(
−∆γ 1

2

(ŷ−ȳ)2

σ2
u

)
, w = w/(1TL w);

// Convert discrete to continuous representation
11[ẑe,Pe] = DM2Gauss(w,Z);

Algorithm 2: Update subroutine for Progressive Gaussian
Filtering with PGF 42.

by adding a sample drawn from a zero-mean Gaussian prior
density with covariance matrix

Cp = diag(σp, σp)

to the true state. For estimating the true state x̃, the filter first
obtains the prior estimate x̂p with covariance matrix Cp and
gets access to ŷ1. An estimate xe1 is calculated that comprises
the expected value x̂e1 and the associated covariance matrix
Cp

1. Subsequently, a new estimate xe2 comprising x̂e2 and Cp
2 is

calculated based on the previous estimate xe1 and measurement
ŷ2. This is the final estimate.

This experiment is now performed 100 times for σv =
0.1 and 100 different prior noise levels adjusted by σp with
σp ∈ [0.1, 5]. In general, the complexity of nonlinear estimation
problems depends on how much the nonlinearity actually affects
the filter. For low prior noise, the effect of smooth nonlinear
measurement functions becomes negligible, so even simple
filtering approaches achieve good performance. For increasingly
uncertain prior information, however, the effective nonlinearity
becomes more and more severe, calling for advanced filters
when a decent estimation performance is expected.

The proposed new Progressive Gaussian Filter (PGF 42)
is compared to the Unscented Kalman Filter (UKF) [3] and
the Gaussian Particle Filter (GPF) [12] with the prior used as
proposal density and 106 prior samples. For such a high number
of prior samples, the GPF can be regarded as a reference in
terms of the estimation quality achievable with a Gaussian
filter, but is impractical in terms of computational complexity.
For the PGF 42, only 15 components are used. The allowed
weight ratio was selected to be R = 0.1. The choice of this
value affects the number of progression steps required, but



when selected within certain bounds, say 0.1 to 0.9, was found
to be uncritical for the estimation quality.

The estimation results of the three filters — GPF, PGF 42,
and UKF — are shown in Fig. 1. Each figure shows the
Root Mean Square Error (RMSE) of the errors between the
estimated and the true state for the respective filter. In addition,
the minimum and maximum errors obtained for the simulations
performed at each prior uncertainty level are shown.

GPF: As the number of samples is very large here, the
GPF produces very good results and is used a a reference
here. However, for smaller numbers of samples, we always
encountered the problem of singular weight sets, so no estimate
could be calculated. This is caused by sample sets placed in
regions of low Likelihood, which of course happens with
increasing frequency for larger prior uncertainties.

PGF 42: The PGF 42 produces results that are very close
to the reference, the GPF with 106 samples. It is very fast as
only 15 components are used and very reliable. The number of
progression steps required by the PGF 42 is shown in Fig. 2,
where for every prior uncertainty level, the average number of
steps and the minimum/maximum numbers are shown.

UKF: The UKF degrades pretty quickly in this case and
does not produce satisfying results for larger prior uncertainty.
The RMSE quickly increases and a lot of estimates are really
far from the truth.

V. CONCLUSIONS

A new Gaussian filter has been introduced that does not
require a second Gaussian assumption between state and
measurement and hence, is very accurate.

The key idea is to perform a progressive re-weighting and re-
approximation of a deterministic Dirac mixture approximation
by decomposing the measurement update into several sub-
updates. By means of adapting the “strengths” of the sub-
updates, degeneration of components is fully avoided. As a
result, only a few components are required, which makes the
filter very fast and efficient.

The new Gaussian filter offers a tradeoff between simplicity
and performance that cannot easily be beaten. It is very
elegant, easy to implement, and does not employ any sort
of optimization method. The measurement equation can exhibit
arbitrary non-additive noise structures and is used in generative
form. No Likelihood function is required.
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Figure 1. Estimation quality of three different Gaussian filters for different prior uncertainty levels. (Left) Gaussian Particle Filter (GPF). (Middle) The
proposed new Progressive Gaussian Filter (PGF 42). (Right) The Unscented Kalman Filter (UKF).
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Figure 2. Progression steps used by the proposed new Progressive Gaussian Filter (PGF 42).


