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Abstract—An accurate Linear Regression Kalman Filter
(LRKF) for nonlinear systems called Smart Sampling Kalman
Filter (S2KF) is introduced. It is based on a new low-discrepancy
Dirac Mixture approximation of Gaussian densities. The ap-
proximation comprises an arbitrary number of optimally and
deterministically placed samples in the entire state space, so that
the filter resolution can be adapted to either achieve high-quality
results or meet computational constraints. For two samples per
dimension, the S2KF comprises the UKF as a special case. With
an increasing number of samples, the new filter quickly converges
to the (typically infeasible) exact analytic LRKF. The S2KF can
be seen as the ultimate generalization of all sample-based LRKFs
such as the UKF, sigma-point filters, higher-order variants etc.,
as it homogeneously covers the state space with an arbitrary
number of samples. It is evaluated by performing extended target
tracking.

Index Terms—Nonlinear Kalman Filtering, LRKF, Dirac Mix-
tures, LCD, S2KF, Extended Object Tracking

I. INTRODUCTION

We consider estimating the hidden state of a discrete-
time stochastic nonlinear dynamic system based on Bayesian
inference. But, instead of maintaining the generally complex
state densities, we focus on the assumption of a Gaussian
distributed state vector in combination with Gaussian noise.
However, even with these simplifications, closed-form solutions
for the time, and especially for the measurement update, are
rarely possible. For that reason, a further common step is to
perform statistical linearization [1]. This makes it possible to
perform backward inference without the need of an explicit
likelihood function and use the well-known Kalman filter
formulas instead. Filters based on statistical linearization are
also referred to as Linear Regression Kalman Filters (LRKFs)
[2], [1].

In case of linear systems corrupted by additive noise, the
second Gaussian assumption, i.e., the statistical linearization,
has no impact concerning estimation quality, and is reflected
in the well-known Kalman filter equations [3]. But, in case
of nonlinear systems, this assumption is often violated. The
consequence is a diminished estimation performance compared
to the more general Gaussian filters not making use of statistical
linearization.

Basically, implementing an LRKF only amounts to calculat-
ing the first two moments of certain densities, depending on
the given system and measurement equations. For some equa-
tions, these moments can be calculated analytically, including

polynomials, trigonometric functions, and their combinations
[4]. Hence, this provides the LRKF with the best estimation
quality. However, besides the problem of a restricted number
of equations that allows analytic moment calculation itself, this
approach requires an individual treatment of each occurring
equation, which is time-consuming, error-prone, and prevents
a generic filter, applicable to any system and measurement
equation, regardless of its complexity.

A common solution are sample-based approaches, where
the occurring state and noise densities are represented as a
set of (non-)deterministically chosen samples. As a result,
time and measurement update have to be adapted in order
to handle these density representations. On the one hand,
the samples have to be propagated individually through the
given system and measurement equations. On the other hand,
occurring analytic moment calculations have to be turned into
their sample-based counterparts, i.e., sample mean and sample
covariance. Of course, this introduces a further approximation
step that may negatively affect the estimation performance.
Nevertheless, employing a sample-based LRKF offers several
advantages. First, due to the lack of an explicit use of a
likelihood, the problem of sample degeneration is avoided1,
and, second, we obtain a generic filter that allows us to switch
easily between different system and measurement equations
without any additional effort. Moreover, this facilitates filter
application engineering in the sense of rapid prototyping, as a
newly designed system or measurement equation can be tried
out immediately.

A. Contribution

In this paper, we introduce a new sample-based LRKF,
which can be seen as the ultimate generalization of all sample-
based LRKFs. For that purpose, we generate deterministic
approximations of N -dimensional standard normal distributions
comprising an arbitrary number of optimally placed samples
in the entire state space. These sets of deterministically chosen
samples serve as the fundamental basis for the new filter. In
contrast to approaches using non-deterministic sampling, this
lets the filter compute reproducible results and is more efficient,
as a much smaller amount of samples has to be employed.

1This is in contrast to filters explicitly using a likelihood, where backward
inference implies a sample re-weighting that typically leads to a significantly
reduced amount of samples contributing to the computation of the posterior
moments, and consequently, to inaccurate results.



By simply increasing the number of employed samples, the
new filter converges to the analytic LRKF, as the resulting
approximation of the standard normal distribution represents
higher order moments more accurately. Moreover, this ap-
proach requires only a single, especially simple to understand,
optimization parameter. This makes filter fine-tuning simple,
even for people not very familiar with (sample-based) Kalman
filtering.

B. Related Work

One of the most popular sample-based LRKFs is the
Unscented Kalman Filter (UKF) [5], [6]. It employs 2N + 1
systematically chosen, axis-aligned samples for the time and
measurement update, where N denotes the sum of state and
noise dimensions (see Figure 1a). One of its greatest advantages
is the ease with which the sample set can be created as well
as the low computational effort due to the small amount of
used samples. However, this last property introduces its main
drawbacks. First, the UKF is hardly capable of approximating
moments of a Gaussian distribution higher than second order.
Second, the state space coverage suffers from the fact that the
samples are placed solely on the principal axes. Both of these
factors have a negative impact on the estimation quality. And
third, the small amount of employed samples makes it rather
likely to compute non-positive definite, i.e., invalid, covariance
matrices, and thus, makes it hard for filtering applications to
work reliably. For example, if all samples fall onto the roots
of a sinus-shaped function [7].

Another drawback of the UKF are its rather unintuitive
parameters that control the sample spread, i.e., the scaling, and
their weighting (see Figure 1a). Besides the use of heuristics for
determining these parameters, maximum likelihood estimators
can be employed for this. In [8], the authors select a limited
set of possible values for the scaling parameter. During a filter
step they perform a measurement update for all selected scaling
values individually, and choose the update which fits best with
the given measurement as the actual filter step. Instead of simply
trying various parameters during a filter step, in [7] the authors
propose a parameter determination based on a Gaussian process
optimization. Both approaches can improve the estimation
quality, but also introduce new parameters (the possible scaling
values and parameters controlling the optimization) that have
to be determined in some way. Moreover, despite the additional
computational effort, due to the several computed updates for
one filter step, the number of samples remains the same, and,
hence, the problems of state space coverage and covariance
positive-definiteness are left unchanged.

The Gaussian Filter (GF) [9] improves the sampling by
deterministically placing an arbitrary number of samples on
each principal axis (see Figure 1b). Although the number of
samples can easily be adjusted, and the covariance computation
is more reliable, the state space coverage still remains sparse.

A non-deterministic LRKF sampling approach is given in
[10], where the moments for a filter step are calculated with
the aid of an iterative stochastic integration rule, where each
iteration uses an additional UKF sample set with random
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(b) GF using 17 samples.

Figure 1: Sampling methods of a two-dimensional standard
normal distribution. Covariance matrices with confidence
interval of 95% (black lines). UKF with scaling 0.5 (blue
points) and scaling 1.5 (red crosses).

scaling and rotation. Even though no complex parameters are
required and the state space coverage is improved, the approach
relies on the law of large numbers, and, hence, requires, even
in larger state spaces, a large amount of samples to produce
satisfying estimation results. In addition, estimation results are
not reproducible due to its non-deterministic manner.

In order to improve overall LRKF estimation quality, a
mixture of analytic and sample-based moment calculation (semi-
analytic approach) should also be used, if possible [4].

In contrast to statistical linearization, an explicit linearization
based on Taylor series approximation is also possible, such as
done by the Extended Kalman Filter (EKF) [11] or its second-
order variants [12]. The Divided Difference Filter (DDF) [13]
based on polynomial and derivative-free approximations by
employing a multivariable extension of Stirling’s interpolation
formula.

C. Overview

The remainder of this paper is structured as follows. In
Sec. II, we give a detailed formulation of the filtering problem
using statistical linearization. Sec. III describes the general
sample-based LRKF approach. After that, in Sec. IV, we
introduce our new Smart Sampling Kalman Filter (S2KF).
Extensive evaluation of the new filter is performed in Sec. V.
The conclusion and potential future work concerning the new
filter is presented in Sec. VI. Finally, in Sec. VII, links to
online resources concerning the new filter and this paper are
provided.

II. PROBLEM FORMULATION

We consider estimating the hidden state xk of a discrete-time
stochastic nonlinear dynamic system with system equation

xk = ak(xk−1, ûk,wk) , (1)

and measurement equation

y
k
= hk(xk, r̂k,vk) , (2)



where the subscript k denotes the discrete time step, ûk and
r̂k known inputs, and wk as well as vk known Gaussian noise
processes according to

wk ∼ N (wk, ŵk,C
w
k )

and
vk ∼ N (vk, v̂k,C

v
k) , (3)

with means ŵk and v̂k, and covariance matrices Cw
k and

Cv
k, respectively. It is assumed that both noise processes are

mutually independent and also independent of the state. For
brevity, the inputs ûk and r̂k are omitted for the remainder of
this paper.

Furthermore, we restrict ourselves to a Gaussian distributed
state xk for all time steps. We denote the estimated state distri-
bution at time step k after incorporating k given measurements
ỹ
1
, . . . , ỹ

k−1, ỹk as

fek(xk) = f(xk | ỹk, ỹk−1, . . . , ỹ1) = f(xk | ỹk:1)
= N (xk, x̂

e
k,C

e
k) .

Our goal is to perform a recursive state estimation based
on Bayesian inference. A Bayesian estimator consists of two
alternating steps, the time update, and the measurement update.

A. Time Update

The objective of the time update, also called prediction step,
is to propagate the last known state estimation fek−1(xk−1)
(from the past) to the present by exploiting the given system
model (1) in the form of its transition density fak (xk |xk−1).
This yields the predicted state estimation fpk (xk) according to
the CHAPMAN-KOLOMOGOROV equation

fpk (xk) = f(xk | ỹk−1, ỹk−2, . . . , ỹ1) = f(xk | ỹk−1:1)

=

∫
fak (xk |xk−1) · fek−1(xk−1) dxk−1

=

∫∫
δ(xk − ak(xk−1, wk)) ·

fek−1(xk−1) · fwk (wk) dxk−1 dwk ,

(4)

where δ(·) denotes the Dirac delta function [11]. However,
even though the prior state density fek−1(xk−1) is Gaussian,
this holds, in general, not for the predicted state density fpk (xk).
Therefore, we have to perform a subsequent moment matching
in order to fulfill our Gaussian state assumption by computing
mean

x̂pk =

∫
xk · f

p
k (xk) dxk (5)

and covariance

Cp
k =

∫
(xk − x̂

p
k) · (xk − x̂

p
k)

T · fpk (xk) dxk (6)

of fpk (xk), and finally approximating the predicted state density
according to

fpk (xk) :≈ N (xk, x̂
p
k,C

p
k) .

f
p
k (xk)
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f
y
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Figure 2: Statistical linearization in the case of an one-
dimensional state xk and measurement y

k
. The given mea-

surement ỹ
k

determines the position of where to slice the
joint density (dashed line) in order to get the posterior state
estimation fek(xk). It should be noted that the mean of posterior
state density is different from that of the prior due to the
existing correlation between state and measurement as well as
the difference between the most expected measurement ŷ

k
and

the given measurement ỹ
k
.

B. Measurement Update

The measurement update or filter step incorporates a given
measurement ỹ

k
at time step k into the predicted state

estimation fpk (xk) in order to correct it.
By turning the measurement model (2) into its corresponding

likelihood fhk (yk = ỹ
k
|xk) by assuming that the current

measurement y
k

is conditionally independent of the prior
measurements given the current state estimation, the corrected
state estimation can be obtained according to

fek(xk) = f(xk | ỹk:1)

=
fhk (yk = ỹ

k
|xk) · f

p
k (xk)

f(y
k
= ỹ

k
| ỹ

k−1:1)

=
fx,yk (xk, yk = ỹ

k
| ỹ

k−1:1)

f(y
k
= ỹ

k
| ỹ

k−1:1)
,

(7)

where f(y
k
= ỹ

k
| ỹ

k−1:1) is a normalization constant. As
we force fek(xk) to be Gaussian, its computation can be
simplified by making the additional, rough assumption in (7)
of a Gaussian distributed joint density fx,yk (·, ·) of prior state
xk and measurement y

k
according to

fx,yk (·, ·) ≈ N (

[
xk
y
k

]
,

[
x̂pk
ŷ
k

]
,

[
Cp

k Cx,y
k

(Cx,y
k )T Cy

k

]
) ,

where ŷ
k

and Cy
k denote the measurement mean and covariance,

and Cx,y
k the cross-covariance matrix of state and measurement

[11], [1]. This assumption of a second Gaussian density, related
to the already assumed Gaussian distributed state, is called
statistical linearization [1], as the relation between state and
measurement, i.e., the measurement model (2), gets linearized
by incorporating the entire statistical information of the prior
state estimation fpk (xk).



This simplification allows us to compute the corrected state
mean and covariance analytically by using the Kalman filter
formulas [11]

x̂ek = x̂pk +Cx,y
k · (Cy

k)
−1 · (ỹ

k
− ŷ

k
) , (8)

and
Ce

k = Cp
k −Cx,y

k · (Cy
k)
−1 · (Cx,y

k )T , (9)

and set the corrected state estimation to

fek(xk) :≈ N (xk, x̂
e
k,C

e
k)

afterwards. Based on the given measurement model (2),
measurement noise (3), and predicted state estimation fpk (xk),
we can compute the required measurement mean

ŷ
k
=

∫
y
k
· fyk (yk) dy

k

=

∫∫
hk(xk, vk) · f

p
k (xk) · f

v
k (vk) dxk dvk ,

(10)

measurement covariance

Cy
k =

∫
(y

k
− ŷ

k
) · (y

k
− ŷ

k
)T · fyk (yk) dy

k

=

∫∫
hk(xk, vk) · hk(xk, vk)T ·

fpk (xk) · f
v
k (vk) dxk dvk − ŷk · ŷ

T

k
,

(11)

and state measurement cross-covariance

Cx,y
k =

∫∫
(xk − x̂

p
k) · (yk − ŷk)

T ·

fx,yk (xk, yk) dxk dyk

=

∫∫
xk · hk(xk, vk)T ·

fpk (xk) · f
v
k (vk) dxk dvk − x̂

p
k · ŷ

T

k
.

(12)

The resulting measurement distribution

fyk (yk) = N (y
k
, ŷ

k
,Cy

k)

can be seen as which measurements the predicted state fpk (xk)
most likely expects at time step k.

A measurement update using statistical linearization can be
illustrated as a given measurement ỹ

k
slices the joint probability

density fx,yk (·, ·) at a certain position in order to obtain the
posterior Gaussian state fek(xk) (see Figure 2). It is important
to note that this measurement update is much different from
performing the unmodified measurement update using the
likelihood fhk (yk = ỹ

k
|xk) and reduce fek(xk) to a Gaussian

afterwards.

C. Recursive State Estimation

The alternating use of the introduced time and measurement
update, together with a given initial state estimation fe0 (x0),
forms the desired recursive estimation process called Linear
Regression Kalman Filter. Algorithm 1 summarizes the general
LRKF procedure.

Algorithm 1 Linear Regression Kalman Filter

1: Set fe0 (x0) = N (x0, x̂0,C0)

2: for k = 1, 2, . . . do
Time Update:

3: Compute predicted state moments x̂pk and Cp
k

according to (5) and (6)
4: Set fpk (xk) = N (xk, x̂

p
k,C

p
k)

5: if measurement ỹ
k

is available then
Measurement Update:

6: Compute measurement moments ŷ
k
, Cy

k, and Cx,y
k

according to (10), (11), and (12)
7: Compute posterior state moments x̂ek and Ce

k

according to (8) and (9)
8: Set fek(xk) = N (xk, x̂

e
k,C

e
k)

9: else
10: Set fek(xk) = fpk (xk)

11: end if
12: end for

III. SAMPLE-BASED LRKF

Calculating the required moments for the time and the
measurement update analytically provides the LRKF with the
best estimation quality. But, in case of non-existent closed-form
solutions or complicated system and measurement equations,
an approximate moment calculation has to be performed.

One way to achieve this is to replace the occurring state
and noise densities with proper Dirac Mixture densities, that
is, sample-based representations. As only a limited number of
samples can be used, this replacement always entails a density
approximation, and, hence, leads to an, in general, inferior
LRKF compared to the analytic solutions.

A Dirac Mixture approximation of an arbitrary density
function f(s), encompassing L samples, is defined as [14], [4]

f(s) ≈
L∑

i=1

wi · δ(s− si) ,

with samples si and non-negative scalar sample weights wi,
which hold

L∑
i=1

wi = 1 .

The samples si can be chosen in a random or deterministic
fashion. Moreover, a combination of both techniques is also
possible.

A. Sample-Based Time Update

Our goal is compute the required moments (5) and (6) for
the LRKF time update based on Dirac Mixtures. Therefore, we
have to replace the density product fek−1(xk−1) · fwk (wk) with
an appropriate Dirac Mixture. Of course, each density could
be approximated separately and the product of the resulting
Dirac Mixtures built afterwards.



However, this would cause two drawbacks. First, the result
of this density product would be the Cartesian product of
the employed state and noise Dirac Mixtures, i.e., a Dirac
Mixture with L · M samples, where L and M denote the
respective number of samples of the state and noise Dirac
Mixtures. Such an approach would not scale efficiently with
an increasing number of employed samples. Second, state
xk−1 and noise wk are independent of each other and their
respective densities, fek−1(xk−1) and fwk (wk), are Gaussian.
Thus, the product is equivalent to their, also Gaussian, joint
density fx,wk (xk−1, wk) with a zero cross-covariance matrix
Cx,w

k . As a consequence, in case of separate approximations,
the resulting joint density with its grid-like placed samples
would not be optimal for approximating the ellipsoid Gaussian
distribution fx,wk (xk−1, wk).

Hence, we can do better by approximating the joint density
directly according to

fx,wk (xk−1, wk) = fek−1(xk−1) · fwk (wk)

= N (

[
xk−1
wk

]
,

[
x̂ek−1
ŵk

]
,

[
Ce

k−1 0
0 Cw

k

]
)

≈
Lp

k∑
i=1

wp
k,i · δ(

[
xk−1
wk

]
−
[
xk−1,i
wk,i

]
) .

(13)

Plugging this into (4) and exploiting the Dirac sifting property,
yields to the predicted Dirac Mixture state density

fpk (xk) ≈
Lp

k∑
i=1

wp
k,i · δ(xk − ak(xk−1,i, wk,i))

=

Lp
k∑

i=1

wp
k,i · δ(xk − ak,i) ,

(14)

with new samples ak,i and unchanged sample weights wp
k,i. The

desired moments can now be obtained by computing sample
mean

x̂pk ≈
Lp

k∑
i=1

wp
k,i · ak,i , (15)

and sample covariance

Cp
k ≈

Lp
k∑

i=1

wp
k,i · (ak,i − x̂

p
k) · (ak,i − x̂

p
k)

T (16)

of (14).

B. Sample-Based Measurement Update

The sample-based measurement update can be computed in a
similar manner. We approximate the joint density fx,vk (xk, vk)
of state and measurement noise according to

fx,vk (xk, vk) = fpk (xk) · f
v
k (vk)

= N (

[
xk
vk

]
,

[
x̂pk
v̂k

]
,

[
Cp

k 0
0 Cv

k

]
)

≈
Le

k∑
i=1

we
k,i · δ(

[
xk
vk

]
−
[
xk,i
vk,i

]
) ,

(17)

and plug this into (10), (11), and (12). This yields the desired
measurement mean

ŷ
k
=

Le
k∑

i=1

we
k,i · hk(xk,i, vk,i) , (18)

measurement covariance

Cy
k =

Le
k∑

i=1

we
k,i · hk(xk,i, vk,i) ·

hk(xk,i, vk,i)
T − ŷ

k
· ŷT

k
,

(19)

and state measurement cross-covariance

Cx,y
k =

Le
k∑

i=1

we
k,i · xk,i · hk(xk,i, vk,i)T − x̂

p
k · ŷ

T

k
. (20)

In summary, performing the sample-based time and measure-
ment update is equivalent to propagating the samples from the
joint densities (13) and (17) individually through the system and
measurement equation (1) and (2), and subsequently computing
the sample means (15) and (18), and the sample covariances
(16), (19), and (20).

IV. THE SMART SAMPLING KALMAN FILTER

Sec. III dealt with the general sample-based LRKF. In order
to use it, appropriate Dirac Mixture approximations of Gaussian
densities to have be determined, i.e., sets of samples and their
respective sample weights.

We focus on deterministic Dirac Mixtures and utilize a
sample generator based on the Localized Cumulative Distri-
bution (LCD) described in [15], [16]. The LCD approach
turns the density approximation problem into an optimization
problem. More precisely, for a given number of samples, it
determines their optimal positions in the entire state space
by systematically minimizing a modified Cramér-von Mises
distance between the Dirac Mixture approximation and an
arbitrary Gaussian distribution.

Even though the LCD approach can approximate an arbitrary
Gaussian, it is computationally expensive, and thus, not well
suited for online usage. Hence, we have to be content with an
offline generated Dirac Mixture approximation

fLCD(s) =
1

L

L∑
i=1

δ(s− si) ≈ N (s, I) , (21)

of a standard normal distribution with L equally weighted, that
is, wi =

1
L , and optimally placed samples si, where L can be

chosen arbitrarily.
As the LRKF explicitly relies on the first two moments of the

employed densities, it is indispensable that the LCD-generated
Dirac Mixture approximation of a standard normal distribution
(21) has a zero sample mean, that is

ŝ =
1

L

L∑
i=1

si = 0 ,
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(a) S2KF using 10 samples.
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(b) S2KF using 25 samples.

Figure 3: LCD sampling of a two-dimensional standard normal
distribution. Covariance matrices with confidence interval of
95% (black lines). The excellent state space coverage can be
clearly seen.

and a unit sample covariance

Cs =
1

L

L∑
i=1

(si − ŝ) · (si − ŝ)T = IL ,

where IL denotes the L-dimensional identity matrix. Figures 3a
and 3b depict such generated Dirac Mixture approximations for
two different numbers of samples in case of a two-dimensional
standard normal distribution.

Given an arbitrary Gaussian distribution

g(z) = N (z, ẑ,Cz)

during filter usage, i.e., the densities fx,wk (xk−1, wk) and
fx,vk (xk, vk), we compute the matrix square root

√
Cz of Cz

using the Cholesky decomposition2, and individually rotate
and scale each sample of (21) according to

zi :=
√
Cz · si + ẑ ∀i ∈ {1, . . . , L} , (22)

where the samples zi represent the transformed Dirac Mixture
approximation.

By employing the LCD-generated Dirac Mixture approxima-
tion (21) in combination with the transformation (22) during
the sample-based LRKF time and measurement update, we
introduce the new Smart Sampling Kalman Filter (S2KF), with
its powerful feature of using an arbitrary number of optimally
placed samples. There exist no sampling constraints such as
axis aligned samples or that the number of samples must be a
multiple of the state dimension as with the UKF or GF.

With an increasing number of used samples in (21), the S2KF
quickly converges to the analytic LRKF, as the resulting Dirac
Mixture approximation of the standard normal distribution
quickly becomes more accurate, that is, captures more higher
order moments. In contrast to the UKF with its fixed-size
sample set, this allows an extensive evaluation of the given
system and measurement models, as more and more samples
become available in the important regions of the state space.
Moreover, this makes a non-positive definite state covariance

2Other matrix square root operations, such as the eigendecomposition, are
also possible.

matrix more unlikely and the filter more reliably. As a
consequence, the estimation quality can be easily improved
by simply increasing the number of employed samples, which
offers an intuitive and easy-to-use optimization parameter. Of
course, this effect is also true for filters relying on random
sampling. But, due to the optimal sample placement, the S2KF
converges much faster, so that already a small number of
samples provides an excellent estimation quality.

As the standard normal distribution is rotation-invariant, the
LCD generator cannot create unique Dirac Mixture approxima-
tions (21) for a given dimension of s and number of samples
L. Furthermore, for each combination of dimension of s and
number of samples L, an own Dirac Mixture approximation is
required, as the LCD-generator performs a global optimization
that takes all sample positions into account. Hence, a once
created Dirac Mixture cannot be extended by simply adding
additional samples and leaving the existing samples unchanged.

But, if we reuse a once generated LCD approximation, the
filter results become reproducible. For that reason, we store each
generated LCD approximation persistent in the file system for
later reuse. We call this storage the Sample Cache. Additionally,
if a required sample set for a given combination of dimension
and number of samples is not yet available in the Sample
Cache during filter usage, it is generated on demand, that is,
transparent for the user, and subsequently stored in Sample
Cache. A positive side-effect is that this avoids a complete
regeneration of all required sample sets on each program start,
and over time, the Sample Cache grows and the necessity
for time-consuming sample generation becomes more unlikely
during filter usage.

V. EVALUATION

In this section, we evaluate the S2KF by means of tracking
an extended target modeled as multiplicative noise.

Our goal is to estimate the position ck = [cxk, c
y
k]

T and extent
lk = [lxk, l

y
k]

T of a two-dimensional axis-aligned rectangular
target (see Figure 4a). The hidden system state is given by
xk = [lTk , c

T
k ]

T.
In order to incorporate target information into our state esti-

mation, we assume uniformly distributed, noisy measurements
stemming from the surface of the target. For this purpose, we
extend the approach proposed in [17]. The basic idea is that
each point of the target surface can be reached by scaling the
axis lengths lxk and lyk individually and adding the center ck,
i.e.,

zk = H · lk + ck ,

with uncorrelated state independent multiplicative noise H =
diag(hx,hy). As the measurements are uniformly distributed,
hx and hy also have to be uniformly distributed in the interval
[−1, 1] (see Figure 4a). Taking the measurement noise into
account yields the preliminary nonlinear measurement equation

mk = zk +wk = H · lk + ck +wk , (23)

where wk denotes an additive noise term.



x

y
lxk

lyk

ck

zk

(a) Axis-aligned extended rectangular target
with position ck, extent lk, and a target
surface point zk.
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(b) Representative simulation run.
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(c) RMSE for the target position.
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(d) RMSE for the target area.
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(e) RMS for the target region coverage in %.
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(f) RMS for the target position variance.

Figure 4: Representative simulation run (b) with extended target (red line), randomly generated noisy measurements (magenta
dots), analytic LRKF estimate (black dashed-line), 50 sample S2KF estimate (blue dotted line) and UKF estimate (green
dash-dotted-line). The UKF extent failure can be clearly seen. Evaluation results (c) – (f).

Unfortunately, as mentioned in [17], linear estimators,
including the S2KF as well, are unsuitable for tracking extended
targets modeled as multiplicative noise. To overcome this issue,
we seize the authors suggestion and extend the measurement
equation (23) to match the best quadratic estimator according
to

y
k
=

[
mk

(mk)
2

]
=

[
H · lk + ck +wk

(H · lk + ck +wk)
2

]
.

To keep things simple, this evaluation uses a static target with
extent l = [4, 2]T located at c = [3, 5]T. Thus, the temporal
evolution of xk is modeled as random walk, i.e., employing
the linear system equation

xp
k = xe

k−1 + v ,

where v is an additive, zero-mean Gaussian noise term with
covariance

Cv = diag(10−4, 10−4, 10−3, 10−3) .

The initial system state is given by x̂e0 = [1, 1, 0, 0]T and
Ce

0 = I4. At each time step, we receive a single measurement
from the target surface corrupted by additive, zero-mean
Gaussian noise with unit covariance. Due to the fact that
the S2KF requires a measurement noise described in terms
of a Gaussian distribution3, we approximate the uniformly

3This is a consequence of the S2KF relying on explicit sampling a Gaussian
distribution.

distributed multiplicative noise H as Gaussian distribution by
means of moment matching.

We compare the following estimators:

• Exact, analytic moment calculation (analytic LRKF) using
[18] to serve as theoretical optimal estimation solution.

• The widely used UKF with equally weighted samples.
• Three S2KF instances with 25, 50, and 75 samples,

respectively, in order to demonstrate the convergence of
the S2KF towards the analytic LRKF.

Figure 4c depicts the root mean squared error (RMSE) for
the estimated target position. It shows that all S2KF instances
are close to the analytic LRKF, and the S2KF instance using 75
samples is nearly identical to it. Moreover, it shows the expected
convergence of the S2KF towards the analytic LRKF. At the
beginning, the UKF is closest to the real target position, but
after incorporating over 100 measurements, it becomes slightly
worse than the other filters. Nevertheless, as the analytic LRKF
defines the best possible LRKF estimate, the UKF in fact yields
no better results than the S2KF instances.

Figure 4d shows the RMSE for the estimated target area,
i.e., the estimated target extent. The S2KF convergence towards
the analytic LRKF is even more evident and the 75 sample
instance yields the best S2KF results. As opposed to this, the
UKF area estimate is clearly incorrect. More precisely, as the
RMSE is constantly 28 m2, the initial axis lengths of 1 m were
left unchanged, as the true target area amounts to 32 m2 (see
Figure 4b).



In order to assess the overall target estimate, we combine
position and extent estimation by employing the intersection-
over-union measure [19] according to

M :=

∫
Re∩Rt

dxdy∫
Re∪Rt

dxdy
0 ≤M ≤ 1 ,

where Re denotes the respective estimated and Rt the true
target region in R2.

Figure 4e displays the resulting root mean square (RMS)
target region coverage. The results fit well into the already
discussed position and area estimation errors. On the one
hand, it shows the constantly wrong estimated 4 m2 target
region by the UKF, which lies completely within the true
target region (see Figure 4b). This results in only a 4

32 = 12.5%
region coverage. On the other hand, it is clearly visible that
the analytic solution possesses the best region coverage, and
that the employed S2KF instances continue their convergence
towards the analytic LRKF. As with the estimation errors, the
S2KF using 75 samples turns out to be the best of all employed
sample-based LRKFs.

An interesting side-effect of the UKF’s inability to track
the target extent can be seen in Figure 4f. It depicts the RMS
position variance, i.e., Var{cxk + cyk}, of each filter estimation.
Whereas all S2KF instances and the analytic solution converge
to the same RMS variance, the UKF converges to a much
smaller value, which can be interpreted as being more confident
of its estimated position, as it should be theoretically.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a new accurate LRKF called
Smart Sampling Kalman Filter (S2KF). It is based on optimally
LCD-generated Dirac Mixture approximations of standard
normal distributions comprising an arbitrary number of samples,
which are placed in the entire state space. Hence, the S2KF
can be seen as the ultimate generalization of all sample-based
LRKFs.

After describing sample generation and the actual filter
procedures, we evaluated the S2KF by means of extended target
tracking. The new filter showed the expected convergence of
the S2KF towards the analytic LRKF and outperformed the
widely used UKF. As the S2KF encompasses the same interface
as the UKF, the S2KF can easily replace it in order to enhance
existing and future filtering applications.

Although this paper focused on Gaussian noise and occurring
uniform noise processes during the evaluation were reduced to
Gaussian noise, the LCD approach can be used for optimal,
deterministic sampling of other, non-Gaussian noise densities,
and, hence, let the S2KF cope with non-Gaussian noise
processes as well.

Future work will be done on adaptively determining how
many samples are required per filter step in order to minimize
the computational effort.

VII. ONLINE RESOURCES

An implementation of the new Smart Sampling Kalman Filter
can be found online under [20]. Also the tracking simulation
from Sec. V is available under [21].
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[10] J. Dunı̀k, O. Straka, and M. Šimandl, “The development of a randomised
unscented kalman filter,” in Proceedings of the 18th IFAC World Congress,
Milan, Italy, August 2011, pp. 8–13.

[11] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Applications
to Tracking and Navigation. New York Chichester Weinheim Brisbane
Singapore Toronto: Wiley-Interscience, 2001.

[12] M. Roth and F. Gustafsson, “An efficient implementation of the second
order extended kalman filter,” in Proceedings of the 14th International
Conference on Information Fusion (Fusion 2011), July 2011.

[13] M. Nørgaard, N. K. Poulsen, and O. Ravn, “New developments in
state estimation for nonlinear systems,” Automatica, vol. 36, no. 11, pp.
1627–1638, 2000.

[14] O. C. Schrempf and U. D. Hanebeck, “Dirac mixture approximation
for nonlinear stochastic filtering,” in Informatics in Control, Automation
and Robotics — Selected Papers from the International Conference on
Informatics in Control, Automation and Robotics 2007, ser. Lecture
Notes in Electrical Engineering. Springer, September 2008, vol. 24, pp.
287–300.

[15] U. D. Hanebeck, M. F. Huber, and V. Klumpp, “Dirac mixture
approximation of multivariate gaussian densities,” in Proceedings of the
2009 IEEE Conference on Decision and Control (CDC 2009), Shanghai,
China, December 2009.

[16] I. Gilitschenski and U. D. Hanebeck, “Efficient deterministic dirac mixture
approximation (to appear),” in Proceedings of the 2013 American Control
Conference (ACC 2013), Washington D. C., USA, June 2013.

[17] M. Baum, F. Faion, and U. D. Hanebeck, “Modeling the target extent with
multiplicative noise,” in Proceedings of the 15th International Conference
on Information Fusion (Fusion 2012), Singapore, July 2012.

[18] R. Kan, “From moments of sum to moments of product,” in Journal of
Multivariate Analysis, March 2008, vol. 99, no. 3, pp. 542–554.

[19] B. Sapp, C. Jordan, and B. Taskar, “Adaptive pose priors for pictorial
structures,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2010, pp. 422–429.

[20] J. Steinbring, “Cloud runner – smart sampling kalman filter (s2kf),”
May 2013. [Online]. Available: http://www.cloudrunner.eu/algorithm/
124/smart-sampling-kalman-filter-s2kf/

[21] ——, “Cloud runner – tracking a rectangle extended target using lrkfs,”
May 2013. [Online]. Available: http://www.cloudrunner.eu/algorithm/
125/tracking-a-rectangle-extended-target-using-lrkfs/


