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Abstract—In this work, we derive a distance measure for
the detection of changes in the behavior of linear dynamic
single-input-single-output (SISO) systems based on input-output
data. The distance is calculated as a function of the system
poles, which are directly estimated from the given data. Poles
represent a system as a set and have no identities, which is
analogous to the nature of association-free multi-target tracking.
This motivates the application of set distances known from
multi-target tracking, namely the optimal subpattern assign-
ment (OSPA) distance. Thus, the OSPA distance as well as a
modification, the MAX-OSPA distance, are formulated as pole-
distances between dynamic systems. In this formulation, the
OSPA distance finds the optimal assingment by minimizing over
the sum of distances between poles. The MAX-OSPA chooses
an optimal assignment by minimizing the maximum distance
between two poles. The proposed distances are evaluated in
several simulations comparing the deterministic OSPA and MAX-
OSPA to a state-of-the-art metric for autoregressive-moving-
average (ARMA) processes, as well as OSPA and MAX-OSPA
using the direct pole estimation and a two step-pole estimation
utilizing recursive ARX (AutoRegressive model with eXogenous
input) system identification.

I. INTRODUCTION
Change detection considers the problem of finding modifi-

cations to the system based on observations. Depending on the
origin, specific formulation, and application, there are several
active research fields addressing this highly relevant problem.
The field of anomaly detection is concerned with finding
elements or behavioral patterns deviating from elements or
patterns that are defined as normal [1]. The detection of
outliers addresses the problem of finding elements of a set
that deviate markedly from other set members [2]. Even though
the expressions and the interpretation of anomaly and outlier
are distinct, both terms are sometimes used interchangeably in
literature. Originated in industrial applications, the research on
fault detection is concerned with the problem of recognizing
system behavior or states that exceed a permitted region of
operation [3], [4]. Very slow and gradual changes in processes
are studied under the expression of concept drift [5]. Finally,
novelty detection emerged from the field of machine learning
and has its focus on discerning incoming information with
respect to its coverage by already learned models and pattern
[6]. In all these research topics, change detection can be seen
as a neutral interpretation of the stated problem.

In this work, we are focusing on the detection of changes in
the parameters of dynamic systems, where the system output
depends on the system state and input. Therefore, the system
output signal cannot be compared directly to a reference signal.

There are three basic approaches to address this problem.
First, a reference system is identified and the system state is
tracked over time. Using state and input, the expected system
output is used to calculate the innovation or residual of the
measured system output, which is then utilized as basis for
decision-making. This validation of output data to the current
state and input, subject to the identified model, is effective for
tests of abrupt changes as well as single outlier detection. In
order to not only consider one state and input-output pair at
a time, but also to be able to detect slow and subtle changes
in the system cumulative sum approaches are applied [7]. The
second approach is a two system test, where a test system
is continuously identified based on actual system input-output
data, additional to the reference system. Then a sliding time
frame of constant length consisting of the latest data samples
is tested on both systems, which gives the basis for decision-
making. This was introduced first using a likelihood ratio test
[8]. In this work, we consider the third approach, which is to
compare two systems based on their parameters.

A direct comparison of systems instead of using available
signals abstracts from individual realizations, i.e., state and
input-output pairs, and thus, facilitates the comparison of the
system properties itself. One limitation of this method is that
this may not be possible for every system representation. Thus,
key to this approach is a set of representative and intuitive
parameters, in order to define a distance measure as a basis
for decision-making. There are two main requirements for the
parameters. First, two different sets of parameters have to
represent two different input-output systems, and second, the
magnitude of the behavior variation has to be evident in the
parameter variation. One common distance measure between
systems is based on the spectral characteristics, namely a
distance between the cepstra, the inverse Fourier transform
of the logarithm of the power spectrum [9]. In [10], Martin
derived the ARMA distance, a metric for ARMA processes
as the distance of two cepstra, which can be calculated by
a function of the system poles. Since poles also have an
intuitive interpretation and meet the stated requirements, we
are interested in this system representation and will derive a
new distance measure for linear dynamic single-input-single-
output (SISO) systems. In this type of system, the poles are
equivalent to the eigenvalues of the system matrix in state-
space formulation.

One approach for the estimation of system poles is to
estimate the coefficients of the system matrix in a first step,
then to determine the eigenvalues of the system matrix, which
requires polynomial root calculation. For small variations in



the parameters, an effective way is to track the roots using
homotopy continuation [11]. Another approach is to calculate
the poles directly from data. The main benefit is that infor-
mation about identification uncertainty is obtained directly in
pole space. The first method for direct pole estimation was
introduced by Nehorai et al. utilizing a recursive least squares
method (RLS) [12]. Weruaga derived a method for direct
pole estimation on spectral samples [13]. Third, a Bayesian
approach to direct pole estimation was derived in [14], which
will be employed in this work.

There are several proposals in literature using information
on the position of poles as an indicator of changes and
anomalies. In [15], a vibration test for fault detection of ball
bearings is introduced. Amplitudes of characteristic frequen-
cies are examined, which are represented by the closeness of
a system pole to the unit circle. Transformed into subspace
formulation, several applications of the ARMA distance were
proposed [16]. In the field of civil engineering, it is applied as a
damage indicator for structural health monitoring (SHM) [17].
Utilizing two sliding windows, a two-model approach for
change point detection was derived using this distance in [18].
In [19] a surveillance application with detection of anomalies
in crowd motion is presented.

In this work, the main contribution is the derivation of
two novel distance measures for linear dynamic SISO systems.
The analogy between a set poles, which are free of identities,
and association-free multi-target tracking, motivates the key
idea. That is the application of a set distance known from the
context of multi-target tracking and adopt it as a distance of
dynamic systems. Using an association-free distance measure,
namely the optimal subpattern assignment (OSPA) distance
[20], we define the system distance as a distance between
their sets of poles representing the spectral characteristics of
the system. The distance is derived as a function of point
estimates as well as random variables. This facilitates a direct
representation of the parameter estimation quality as part of the
novel system distance. The need to consider changes in single
frequencies of the spectral characteristics (i.e., movements of
single poles) necessitates a distance based on the maximum
distance between two single poles, which is derived from the
OSPA distance and will be referred to as MAX-OSPA.

The remainder of this paper is structured as follows. First,
in Sec. II we give a formal description of the considered
problem. Sec. III introduces the applied system identification
method, a Bayesian approach to direct pole estimation, where
the information about the parameter uncertainty is available
in pole-space. We derive a novel metric in pole-space for the
comparison of two dynamic systems in Sec. IV, exploiting this
uncertainty information. The effectiveness of the presented al-
gorithm is evaluated in Sec. V by means of several simulations.
Finally, Sec. VI concludes the work.

The following notation is used: Deterministic quantities a
and random variables a are distinguished by normal lettering
and bold face letters, respectively. The notation a ∼ f(a)
describes the characterization of a by its probability density
function f(a). Finally, a vector a is indicated by an underscore
and a matrix A will be denoted as a bold face capital letter.

II. PROBLEM FORMULATION

In this work, we consider the problem of finding a distance
function characterizing the distance dk between a reference

system S
(r)
k and a test system S

(t)
k calculated on basis of

their parameter vectors θ(r)
k and θ(t)

k , which are estimated from
input-output data, i.e.,

D
(
S

(r)
k , S

(t)
k

)
:= D

(
θ

(r)
k , θ

(t)
k

)
= dk . (1)

The superscripts (r) and (t) indicate the reference and the test
system, respectively. Throughout the work, we consider linear
time-variant single-input-single-output (SISO) systems of the
form Sk = {A,B,C} given in the control canonical state-
space form

xk+1 = Axk + B(uk +wk) ,

yk = Cxk + vk ,
(2)

with the state vector xk, the system input uk and output
yk, zero-mean white system noise wk, and zero-mean white
measurement noise vk. The matrices A,B, and C are charac-
terized by

A =


−a1 −a2 . . . −ap−1 −ap

1 0 . . . 0 0
0 1 . . . 0 0
...

. . . . . .
...

...
0 . . . 0 1 0

 , (3)

B = [1, 0, 0, . . . , 0]>, and C = [b1, b2, b3, . . . , bp], assuming
that C is given. We would like to emphasize that we are
considering time-variant systems. For the reason of better
readability, we will omit the time index k in the matrices and
the single parameters. In general, a parameter vector θk of a
system Sk = {A,B,C} comprises a function of Sk and will
be further specified later in this work.

In the following, we specify two problem formulations.
First, a general formulation of the distance between two
systems given input-output data is regarded. Second, a more
specific formulation for change detection in the system behav-
ior is derived.

A. Distance Between Systems
Given are two input-output time series W

(r)
1:N =[

u
(r)
1:N , y

(r)
1:N

]
and W

(t)
1:N =

[
u

(t)
1:N , y

(t)
1:N

]
subject to S

(r)
k ={

A(r),B(r),C(r)
}

and S
(t)
k =

{
A(t),B(t),C(t)

}
, respec-

tively. The superscripts (r) and (t) again indicate the reference
and the test system, respectively. The problem is to constantly
estimate the parameter sets θ(r)

k and θ(t)
k simultaneously with

the unknown system states x(r)
k and x(t)

k from W
(r)
1:N and W (t)

1:N
and calculate a distance dk as defined in (1).

In system identification, the system matrix A is typically
estimated based on the input-output time series W1:N by tra-
ditional approaches (e.g., Burg’s method [21]) using a sliding
window or a recursive formulation. Note that we are omitting
the superscripts here, meaning both reference and the test sys-
tem. A formulation of the parameter vector θk directly based
on coefficients ai does not allow for a representative distance
function, and thus, has to be transformed appropriately.

B. Change Detection
In change detection, only a single system Sk = {A,B,C}

is involved, given by the input-output time series W1:N =
[u1:N , y1:N ]. The time series W1:N can be subdivided into
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Fig. 1. Visualization of the sample-based transformations between pole and
coefficent space. Before transformation of an estimated parameter, the density
describing this parameter has to be sampled first, then transformed sample-
wise. The coefficient space is marked in blue, the pole space in green. Each
parameter sample corresponds to two complex conjugate poles.

W1:n−1 and Wn:N , where time step n is the change point. We
define the reference system as S(r)

ñ subject to W1:ñ, where
ñ is sufficiently large for the identification of θ(r)

ñ and the
last considered timestep of the reference system ñ � n.
Furthermore, we define the test system as S

(t)
k subject to

Wñ+1:N . The problem is to calculate the distance between
systems dk = D

(
θ

(r)
ñ , θ

(t)
k

)
analogous to Sec. II-A. In other

words, we first need to identify a reference system using
enough data, using only data prior to the change point. The rest
of the data is used to continuously estimate the test system,
which is compared to the reference system every time step.

III. DIRECT POLE ESTIMATION

There are two approaches for the estimation of the poles
of a system. First, there is a two-step approach, where initially
the coefficients ai of the matrix A are estimated. Then, the
poles are obtained by calculation of the eigenvalues of A.
Second, there is a one-step approach. In this so-called direct
pole estimation approach, the poles are directly estimated from
input-output data.

The disadvantage of the two-step approach is that infor-
mation about the estimation quality is at first available in the
coefficient space. This information is given in the form of a
probability density function and has also to be transformed
into pole space, which can be performed by sampling from
the density and sample-wise transformation. Thereby, every
sample corresponds to one set of all p coefficents. Thus, for
each sample the zeros of the p-order characteristic polynomial

have to be calculated. On the contrary, using the one-step ap-
proach, the poles are obtained including available information
about the estimation quality directly in pole-space.

In the following, we introduce the Bayesian direct pole
estimation in a general form for linear SISO systems [14].
In systems with real valued output, poles occur either real or
in complex conjugate pairs. In order to ensure this constraint
in an effective way, we later give a formulation for a known
proportion of real and complex poles. This assumption is not
unrealistic for change detection problems, since an a prior
estimate is easy to attain from a small number of data samples
and a change in the pole proportion results in a system change.

Let a system Sk be given by (2) and θk be the vector of
unknown poles characterizing Sk given by

θk := [λ1, . . . , λp]
> , (4)

where every λi = σi + jωi is one complex pole composed of
the real part σi and the imaginary part ωi, with the imaginary
unit j2 = −1. Note that the time index is omitted in every
λi and its components for better readability. Also, we would
like to emphasize that all σi and ωi have to be estimated
separately, thus, the length of the parameter vector to be
estimated is 2p, where p denotes the system order. Using state
augmentation in order to calculate the state and parameter xk
and θk simultaneously, we restate the system formulation by[

xk+1
θk+1

]
=

[
A 0
0 I

] [
xk
θk

]
+

[
1
0

]
(uk + wk) , (5)

yk = [C 0]

[
xk
θk

]
+

[
vk
0

]
,

where the matrix A is given by (3), with the parameters ai
directly calculated from θk by

a0 = (−1)0 ,

a1 = (−1)1(λ1 + λ2 + . . .+ λp−1 + λp) ,

a2 = (−1)2(λ1λ2 + λ1λ3 + . . .+ λ1λp + λ2λ3 + . . .) ,

a3 = (−1)3(λ1λ2λ3 + . . .+ λ1λ2λp + λ2λ3λ4 + . . .) ,
...

ap = (−1)p(λ1λ2λ3 · . . . · λp−1λp) ,

which can be rewritten as

ai = (−1)i ·
∑

M⊆{1..p}
|M |=i

( ∏
m∈M

λm

)
, (6)

i.e., the coefficients ai are replaced by the sum of all products
of poles consisting of i factors of all subsets M with i
elements.

The matrix A can be easily constructed by the power set of
all poles. Each ai is calculated from subsets with i elements of
the power set, which are element-wise multiplied and summed
up. Note that a power set has 2p subsets. Thus, the complexity
of one evaluation of (5) is in O(2p) for a dynamic system with
order p. We recommend using this approach only for systems
with p < 20. We also want to emphasize that a power set
is independent of the sorting of its elements. This results in
a function comprising a symmetry over the ordering of all
elements in θk. As a consequence, there are p! potentially
correct results of estimating all λi, namely all permutations of
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Fig. 2. Illustration of the challenge occuring in the representation of sets.
If a set is represented as a vector, all order permutations are equivalent.
Geometrically this can be represented by p! permutation hyperplanes in
state space, at which the estimate comprising all poles can be reflected. For
p = 2 there is one permutation line. The green cross shows the mean of
an estimated pole set and the ellipsoid its uncertainty. The red dots are the
actual system poles. Note that in the state space the red dot is on both sides
of the permutation line, whereas the estimation uses an ordered vector as
representation and thus, is only on one side.

θk. This shows that actually we are working on a set of poles
with no specific identities. However, this set is arranged in the
vector θk. This problem is well known from association-free
multi-target tracking, where one is interested in the positions of
a set of targets, disregarding their identities. We have visualized
both potential correct results of a system with two real poles
in Fig. 2. The two-dimensional state space is projected onto
the complex plane with two poles.

Under the assumption of a known proportion of real and
complex poles, and exploiting the fact that the output is real-
valued, we can give a more efficient formulation. In this case,
complex poles are given by complex conjugate pairs, and thus,
we can formulate a parameter vector θ̃k with reduced length
p. We define real poles as λRi := σRi and complex conjugate
pole pairs as λCi := σCi + j · ωCi and λC∗i := σCi − j · ωCi ,
respectively, with ωCi > 0. The set of poles is then given by

{λRi |i = 1, . . . , S} ∪ {λCi , λC∗i |i = 1, . . . , T} , (7)

with p = S+2T . Using this formulation, the parameter vector
can be written as

θ̃k =
[
σR1 , . . . , σ

R
S , σ

C
1 , . . . , σ

C
T , ω

C
1 , . . . , ω

C
T

]>
, (8)

which can be mapped back to θk in the form (4) in order
to calculate (6). This formulation allows to ensure that the
system output is real-valued and removes all redundancy in
the estimation.

Finally, for a given input-output time series W1:N , we
can estimate [xk, θk]> by recursive Bayesian estimation. We
would like to point out that the stated problem is nonlinear
with the matrix A being directly dependent on θk. Hence,
the commonly used Kalman Filter can only be used in the
measurement update step. For the time update step an effective
choice is, for example, a Linear Regression Kalman Filter
(LRKF), such as the Unscented Kalman Filter (UKF) [22]
or the Smart Sampling Kalman Filter (S2KF) [23]. Using this
approach the parameters are obtained as a Gaussian distributed
random variable θk ∼ N (θ̂k,C

θ
k). In the next section we use

this obained random variable for the calculation of a distance
between systems. The parameter vector θk can be employed
using the mean, or has to be transformed into a sample-
based form. This can, for example, be done by the sampling
technique of the UKF or S2KF.

IV. POLE-BASED DISTANCE

In the previous section, we have introduced the direct
estimation of poles and have shown that a system repre-
sentation in pole space has no fixed ordering in the esti-
mated parameter vector, i.e., we are actually estimating a
set. Comparing two sets requires specific distance measures,
where the correspondence of the present elements is implicitly
regarded. This fact is illustrated in Fig. 2. This problem is
well known from multi-target tracking, which was a major
inspiration for the exploitation of association free distance
measures for pole-based distances between systems. We would
like to emphasize that the correspondence problem of pole sets
occurs independent of the applied pole estimation method.

In the following, we derive the base distance of poles,
which is the distance between two single poles in the com-
plex plane. Then, we introduce two association free distance
measures, namely the optimal subpattern assignment (OSPA)
distance [20] and a modification, the MAX-OSPA. The MAX-
OSPA uses the OSPA assignment minimizing the maximum
base distance, then calculates this maximum base distance.

A. Base Distance of Poles
First, we introduce the so called base distance b(·, ·), with

b : C × C → R+
0 as a function satisfying identity, symmetry,

and the triangle inequality. The base distance is the distance
between two complex poles poles λ(r)

i and λ(t)
i . The z-plane,

in which the poles of a discrete-time system are defined, can be
interpreted as a specific Möbius transformation from the more
intuitive s-plane of a continuous-time system that transforms
the Cartesian coordinate system of the s-plane into a polar
coordinate system. The complete left hand side of the s-plane
is thereby compressed into the unit circle. Thus, we will define
the distance function in the s-plane and transform it into the
z-plane. In order to ensure unambiguity, we write s for a pole
in the s-plane and z for a pole in the z-plane in the following
definitions.

Definition 1 (Continuous-Time Base Distance) Let s and s̃
be two poles of a continuous-time system in the s-plane. The
base distance b(·, ·) between s and s̃ is defined as

b(s, s̃) =

√
(Re(s)− Re(s̃))

2
+ (Im(s)− Im(s̃))

2
,

i.e., the Euclidean distance between s and s̃ in the complex
plane.

We will now transform this distance into the z-plane using
the general transformation

s =
1

T
ln(z) , (9)

where s is a point in the s-plane, z is a point in the z-plane, and
T is the sampling rate. For s given in complex form s = σ+jω
and z in polar form z = r · ejρ we can rewrite (9) by

σ + jω =
1

T
ln(r · ejρ) =

1

T
ln(r) +

1

T
jρ .

Hence, the transformation yields

σ =
1

T
ln(r), ω =

1

T
ρ ,

which motivates the following definition.
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Fig. 3. Initial and resulting pole setups describing the system, as well as
the projection onto the complex plane of the direct pole estimation with its
initializiation and an exemplary outcome showing the final time step of the
run depicted in Fig. 5. The ellipsoids visualize the 3σ bound of the pole
estimation uncertainty.

Definition 2 (Discrete-Time Base Distance) Let z and z̃ be
two poles of a discrete-time system given in z-plane. The base
distance between the poles z and z̃ is defined as

b(z, z̃) =
1

T

√
(ln(r)− ln(r̃))

2
+ (ρ− ρ̃)

2
, (10)

where r and r̃, and ρ and ρ̃ are the polar coordinates of z and
z̃, respectively. The constant T is the sampling rate.

Since the distance was derived from the Euclidean distance
L2 by substitution, it can be easily shown that identity,
symmetry, and the triangle inequality are satisfied.

From stability analysis, it is well known that poles close
to the imaginary axis in the s-plane or close to the unit circle
in the z-plane have a strong effect on the system behavior. We
propose to weight (10) by

b̃
(
λ(r), λ(t)

)
= w

(
λ(r), λ(t)

)
· b
(
λ(r), λ(t)

)
,

with the exponential weighting function

w
(
λ(r), λ(t)

)
= er

(r)r(t) ,

in order to represent these relevant properties in the distance
measure.

B. OSPA Distance
As already mentioned, the challenge of calculating dis-

tances between sets is especially known from association-
free multi-target tracking. Considering the association of pole
tracking and multi-object tracking, we are introducing a label-
free distance measure as a distance between systems, namely
the optimal subpattern assignment (OSPA) distance [20].

Definition 3 (OSPA [20]) The optimal subpattern assignment
(OSPA) distance between two sets of poles

{
λ

(r)
1 , . . . , λ

(r)
p

}
and

{
λ

(t)
1 , . . . , λ

(t)
p

}
, each comprising p elements and given

by the ordered vectors θ
(r)
k =

[
λ

(r)
1 , . . . , λ

(r)
p

]>
and

θ
(t)
k =

[
λ

(t)
1 , . . . , λ

(t)
p

]>
is defined by

D(θ
(r)
k , θ

(t)
k ) =

(
1

p
min
π∈Πp

(
p∑
i=1

b
(
λ

(r)
i , λ

(t)
π(i)

)q))1/q

, (11)

with q ∈ IR and q ≥ 1. The function b
(
λ

(r)
i , λ

(t)
j

)
is the

base distance between the two elements λ(r)
i and λ

(t)
j . The

expression Πp describes all permutations of the set {1, . . . , p}
and the notation λ

(t)
π(i) is the i-th element of the permutation

π of θ(t)
k that is generated by reordering the vector.

Hence, the OSPA distance is a function of two vectors,
where the association problem is solved implicitly by finding
the minimal sum of all pairwise distances and can be imple-
mented effectively by the Hungarian algorithm [24]. In this
work, we are using the quadratic measure (q = 2). Considering
the result of Sec. III, the estimated parameter vector leads to
a formulation of a distance between random vectors. In the
following, we will omit the time index k in favor of readability.

Let θ(r) ∼ f
(
θ(r)
)

and θ(t) ∼ f
(
θ(t)
)

be two independent
random vectors. Thus, the OSPA distance

D
(
θ(r),θ(t)

)
= d

is itself a random variable d ∼ f(d), with the probability
density f(d) given by

f(d) =

∫ ∫
f
(
d|θ(r), θ(t)

)
· f
(
θ(r)
)
f
(
θ(t)
)

dθ(r)dθ(t).

Using f
(
d|θ(r), θ(t)

)
= δ
(
d−D

(
θ(r), θ(t)

))
, we can then write

f(d) =

∫ ∫
δ
(
d−D

(
θ(r), θ(t)

))
·

f
(
θ(r)
)
f
(
θ(t)
)

dθ(r)dθ(t) .
(12)

Unfortunately, the distance function D(·, ·) is nonlinear and
thus, this integral is not analytically solvable for arbitrary
probability densities. Hence, we will specify the calculation
of the f(d) for the special case of f

(
θ(r)
)

and f
(
θ(t)
)

given as Dirac mixture densities, which can be obtained by
deterministic or random sampling from arbitrary probability
density functions.

Let an estimated parameter vector θ be characterized by a
Dirac mixture density of the form

f̃(θ) =

L∑
j=1

wj · δ(θ − θj) , (13)

where δ(·) denotes the Dirac-delta function and θj with
j = 1, . . . , L is the position of the j-th Dirac component. The
component weights are given by wj > 0 with

∑L
j=1 wj = 1.

Each Dirac component θj can be interpreted as one realization
of the random vector θ, i.e., represents one set of poles.

Using θ(r) ∼ f̃
(
θ(r)
)

and θ(t) ∼ f̃
(
θ(t)
)

in accordance
with the density formulation (13), we can simplify (12) to

f̃(d) =

L(r)∑
j=1

L(t)∑
i=1

w
(r)
j w

(t)
i · δ

(
d−D

(
θ

(r)
j , θ

(t)
i

))
,

which corresponds to the Cartesian product of both Dirac
mixture densities representing the poles propagated through
D(·, ·). Summing up, the OSPA distance between two random
vectors, characterized by Dirac mixture densities, is itself a



random variable, also characterized by a Dirac mixture density.
The distance function is evaluated at every combination of
Diracs

[
θ

(r)
j , θ

(t)
i

]
. In the common case, where the reference

model S(r) is identified precisely enough to be represented
by a point estimate, this reduces to L(t) evaluations of (11).
The resulting random variable can then be used in the change
detection decision making process, e.g., by evaluating the mean
and variance of the distance.

C. MAX-OSPA Distance
The OSPA distance calculates the sum of point to point

distances, while resolving the assignment problem, by choos-
ing the minimum over all possible sums. Problems with this
approach can arise when many points are tested, but only few
– in the extreme only one – are strongly moving. This reduces
the visibility of the strong movement. In the case of testing
system poles, we get a reduced visibility of strong changes in
single frequencies, when the rest of the spectral characteristics
stays unchanged. Hence, we give an alternative implementation
using the maximum measure. In the following, we define the
MAX-OSPA distance.

Definition 4 (MAX-OSPA) Given two sets of poles by the
two vectors θ(r)

k and θ(t)
k , the MAX-OSPA distance is defined

by

Dmax
(
θ

(r)
k , θ

(t)
k

)
:= max

i=1,...,p

(
b
(
λ

(r)
i , λ

(t)
π∗(i)

))
, (14)

where π∗ is the optimal OSPA permutation, given by

π∗ := OSPA
(
θ

(r)
k , θ

(t)
k

)
= arg min

π∈Πp

max
i=1,...,p

b
(
λ

(r)
i , λ

(t)
π(i)

)
.

In other words, we are choosing the maximum base distance
between two single elements of a pair θ(r)

k and θ
(t)
k , while

using the optimal subpattern assignment over the maximum
norm (q → ∞). Thus, we are minimizing the maximal base
distance. Using this formulation, a higher sensitivity to single
frequency changes in the spectral characteristics of a system
can be attained.

V. EVALUATION

In order to demonstrate the value of the presented distance
measure, we evaluate it in several simulations. We have used a
linear system comprising six complex poles (i.e., system order
p = 6) and examined both gradual and sudden changes. We
have used the systems given by their poles

S(1) =

[−0.80± 0.40j
0.10± 0.90j
0.85± 0.30j

]
, S(2) =

[−0.65± 0.45j
0.45± 0.80j
0.75± 0.35j

]
,

where we assume that S(r) = S(1) is known and after the
change point n the system shifts to S(2). A gradual change
is performed by linear progression of the position of system
poles from S(1) to S(2). This setup is visualized in Fig. 3
with the initial and final pole setups, as well as a projection
of the estimation initialization and an exemplary outcome.
The measurement noise and the input noise are given by
vk ∼ N (0, 0.1) and wk ∼ N (0, 0.1), respectively. Using
this setup we have randomly generated two types of data
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Fig. 4. Two exemplary data sets, with (a) showing an input-output data set
with a gradual change from S(1) to S(2) with a linear transition over the time
period of 2000 time steps and (b) depicting an output only data set with an
abrupt change point at k = 3000. The changes are not visually apparent in
the noise-corrupted system output.

sets for the evaluations. First, we generated an input-output
data set with the input uk ∈ [−0.5, 0.5] alternating every 100
time steps comprising a gradual change between time steps
k = 2000, . . . , 4000. Second, we generated an output only
data set with a sudden change at k = 3000. In this case,
system excitation arises from extrinsic process noise only. An
exemplary outcome of the data sets is depicted in Fig. 4 (a)
and Fig. 4 (b), respectively.

In the following, we compare the novel measure to the
ARMA distance introduced in [10]. Subsequently, we evaluate
the presented method using direct pole estimation against the
traditional two step pole estimation approach.

A. Comparison of OSPA, MAX-OSPA and ARMA Distance

We are evaluating the presented distance in comparison
to the ARMA distance [10] using the two data sets depicted
in Fig. 4 and the mean of the estimated parameters. The
estimation of the system is performed by the direct pole
estimation described in Section III. The initial mean θ̂

(t)

0 of
the pole estimation vector is a random displacement from the
reference system θ(r) and is calculated by drawing a sample
from the distribution N (θ(r),C

(t)
0 ), with C

(t)
0 = 0.05I the

initial covariance matrix of θ(t)
0 . A visualization by projection

onto the complex plane of one exemplary initialization is
shown in Fig. 3 (a). The system state is initialized with x0 ∼
N (0, 0.5I). The additive noise variances for measurement and
prediction are given by Cv = 0.1 and Cw = 0.1I, respectively.
The parameter prediction variance is given by Cθ = 10−6I,
which is a good trade-off between identification quality and
parameter tracking ability. We would like to emphasize that
when performing simultaneous state and parameter estimation
a reasonable choice of the proportion between Cw and Cθ

is important. The estimation was performed by the Unscented
Kalman Filter (UKF) [22].

The results of this evaluation are depicted in Fig. 5 (a)
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Fig. 5. Exemplary evaluation of the presented OSPA and MAX-OSPA
distances in pole space, and the ARMA distance [10], which is scaled by
the factor of 1/3. The comparison shows a very similar performance of the
measures, but all have different properties and interpretations. In (a) we used
the input-output data set depicted in Fig. 4 (a) comprising a gradual change. In
(b) the distances were evaluated with the output-only data set with an abrupt
change point, which is visualized in Fig. 4 (b).

for the input-output data set and in Fig. 5 (b) for the input
only data set. In order to ensure a better comparability in the
plots, we scaled the ARMA distance by 1/3. It can be seen
that the performances of the distance measures are similar, but
there are differences in their properties. In the literature there
exist several different transformations of the ARMA distance
[10], [16], [25], but it is only valid for stable systems. On
the other hand, the OSPA and MAX-OSPA measures have a
more natural meaning in the pole-space and can be adjusted
and interpreted more easily. Using the maximum single pole
distance instead of the average of all poles, the MAX-OSPA
is always larger than the OSPA distance, as expected. This
helps to detect single frequency changes. The performance in
detecting changes itself depends on the identifiability of the
parameters, i.e., a sufficent excitation of the system, and on
the parameterization of Cθ. If the possible time-variance of
the system is not known, it is possible to use a multi model
approach with several different parameterizations [26].

B. Comparison of Distances Calculated Based on Direct Pole
Estimation and Two-Step Pole Estimation

In this second simulation, we are evaluating the OSPA and
MAX-OSPA distances comprising the parameter uncertainty
based on the Dirac mixture formulation derived in Sec. IV-B.
We are comparing the direct pole estimation as presented in
Sec. III to the commonly used two-step approach, where the
system coefficients are estimated first and then transformed
into pole-space. The direct pole estimation was initialized
equally to Sect. V-A. The estimation of coefficients was
performed using the recursive ARX estimator rarx() from
the MATLAB R© system identification toolbox with Kalman
Filter implementation. The mean of the initial state was deter-
mined by transformation of the mean of the initial poles into
coefficients by application of (6). The initial uncertainty was
also chosen as C0 = 0.05I, whereas the prediction uncertainty
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Fig. 6. Evaluation of OSPA and MAX-OSPA distances based on direct
pole estimation and two-step pole estimation using a recursive ARX system
identification method. (a) depicts the resulting distances for the input-output
data set with a gradual change. (b) shows the result for the output-only data
set with an abrupt change point. The behavior of the distance variance of
the two-step pole estimation comes due to the sample-based transformation
of estimated polynomial coefficients. In certain cases the transformed poles
sheer off resulting in large distances.

was set to Cw = 5 · 10−6 to match the parameter tracking
characteristic. The poles, together with their uncertainty, were
calculated by UKF-sampling of the uncertain coefficients and
sample-wise transformed into pole-space. Thus, 2 · p+ 1 root
calculations have to be performed.

The evaluation is depicted in Fig. 6, where again (a) shows
the results based on a realization of the input-output data set
with a gradual change as shown in Fig. 4 (a), and (b) shows
the results of the output-only data with an abrupt change as
depicted in Fig. 4 (b). Prominent in this evaluation is that the
variance of the distances calculated by the two step approach
has a very extreme behavior in the initialization phase, where
the variance is high. This is due to the effect that whenever
the uncertainty of two complex poles rises to actually cross
the real axis, the two complex pole-samples become two real
poles sheering off. This leads to strong changes in the distance
measure. We have visulalized this effect in Fig. 7.

VI. CONCLUSIONS

In this work, we have derived a novel distance measure
for linear SISO systems in the context of change detection
by exploiting the strong analogies of pole identification to
association-free mulit-target tracking. The novel pole-based
distance comprises parameter uncertainty resulting from sys-
tem identification, which can be used in the decision process
of change detection. In the evaluation, we have shown that
the performance of the mean distance is similar to the well
comparable ARMA distance [10], but the interpretation in
pole space is more natural as the poles have an intuitive
interpretation. Evaluating direct pole estimation against two-
step pole estimation using standard system identification and
explicit sample-based root calculation revealed problems of the
explicit root calculation in case of large parameter uncertainty
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Fig. 7. Visualization of the two-step pole estimation by sample-based explicit
root calculation of an p = 2 order system with the parameters a1 = −1.4 and
a2 = 0.58. (a) shows the parameter space with the 3σ-bounds displayed by
the covariance ellipses of different size, as well as the UKF-samples. (b) shows
the transformed samples in pole space. Each 2-D coefficient sample results in
two pole samples. We have marked one sample red, in order to emphasize its
correspondence. As soon as the sample reaches the real axis in pole space,
it transforms from two complex poles into two real poles sheering off on the
real axis.

or complex poles close to the real axis. Probability mass of
complex poles growing to cross the real axis, lead to real poles
moving apart (see Fig. 7). Hence, using this approach only
shows good results for relatively small parameter uncertainty.
On the other hand, the computational complexity of direct pole
identification grows exponentially in the number of pole, and
thus, it is not applicable to very high order systems.
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