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Abstract—In multi-sensor distributed estimation fusion, local
estimation errors are correlated in general. Two extreme ways to
handle this correlation is either to ignore them completely or to
have them fully considered. There is another case in the middle:
it admits the existence of the correlation, but does not know how
large it is. A sensible way is to set up an optimality criterion
and optimize it over all possible such correlations. This work
is a new development in the third class. First, a new general
objective function is introduced, which is the minimum sum
of statistical distances between the fused density and the local
posterior densities. Then it is shown that the new criterion leads
to a convex optimization problem if the Kullback-Leibler (KL)
divergence is used as the statistical distance between assumed
Gaussian densities. It is found that although the analytically
obtained fused estimate using the new criterion differs from
the simple convex combination rule only in mean squared error
(MSE) by a scaling factor N (the number of sensors used), it is
pessimistic semi-definite in MSE. Numerical examples illustrate
the effectiveness of the proposed distributed fuser by comparing
with several widely used distributed fusers.

Keywords: Estimation fusion, distributed fusion, statistical
distance, KL divergence, Gaussian assumption, convex
optimization.

I. INTRODUCTION

Estimation fusion, or data fusion for estimation, is the
problem of how to best utilize useful information contained in
multiple sets of data for the purpose of estimating a quantity—
a parameter or a process [1]. It has wide application because of
potentially improved estimation accuracy, enhanced reliability
and survivability, extended coverage and observability, etc. Es-
timation fusion has two basic architectures: centralized fusion
and distributed fusion. In centralized fusion, all raw measure-
ments are sent to the fusion center, while in distributed fusion,
each sensor only sends in processed data. They have pros and
cons in terms of performance, communication requirements,
reliability, survivability, information sharing, etc. Theoretically
speaking, centralized fusion is nothing but traditional esti-
mation with distributed data, which can be simply tackled
through data stacking. Comparatively, distributed fusion is
more challenging and has been the focus of most fusion related
research.
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Distributed fusion has been studied for decades and results
are abundant. It can also be split into two classes: standard and
nonstandard [1]. In standard distributed fusion, also known as
track fusion, local sensors send in their local estimates (tracks).
Any distributed fusion other than standard distributed fusion
all belong to nonstandard distributed fusion. For example,
two lossless linear transformations of the sensor data were
proposed in [2]. It was proven that nonstandard distributed
fusion using the transformed data at the fusion center can
achieve the same estimation performance as the centralized
fusion. Also this nonstandard distributed fuser can help save
communication from local sensors to the fusion center and may
even have increased numerical robustness. It was found that
local estimation MSE matrices are all singular in a multi-sensor
constrained distributed fusion problem. To still use the existing
distributed fusion rules, it was suggested to send in dimension
reduced local estimates to the fusion center in [3]. Obviously,
this also belongs to the nonstandard distributed fusion class. In
light of communication constraints, it is usually more desirable
for local sensors to send in compressed data [4]–[7]. The
distributed fusion rules developed therein all belong to the
nonstandard distributed fusion family.

The standard distributed fusion is the other focus of dis-
tributed fusion and there are also many results available for
this class. The simple convex combination (SCC) method
[8], [9] is probably the earliest such algorithm. It is also
probably the simplest one in which the fused estimate is
a matrix-valued weighted sum of local estimates. Due to
the ignorance of the cross-correlation among local estimation
errors, the SCC method is computationally simple. It was
shown explicitly in [10] that due to common process noise
and the common initialization, local estimation errors across
sensors are correlated. By treating local estimates as data
in an estimation problem, a two-sensor track-to-track fusion
algorithm based on the maximum likelihood principle for
the Gaussian case was proposed in [11] and [12]. For more
than two sensors, a track-to-track fusion algorithm based on
the maximum likelihood (for the Gaussian case) and optimal
weighted least squares (OWLS) was proposed in [1], [13] and
[14]. A standard distributed fusion algorithm that is optimal in
the sense of maximum a posteriori principles was proposed
in [15]. Furthermore, by additional use of local predicted
estimates when compared with [15], another fusion algorithm
was proposed in [1], [16], which is optimal in the sense
of minimum mean-squared error (MMSE) for the Gaussian
case or linear MMSE. Performance of distributed fusion with



LMMSE and OWLS estimation and measures of their relative
efficiency compared with centralized fusion were discussed in
[17]. Relationships among various LMMSE and OWLS fusion
rules with complete, incomplete, and no prior information were
clarified in [18]. Also, the effect of prior information and data
on fusion performance was quantified in [18]. A general data
model for discretized asynchronous multi-sensor systems was
presented in [19] and serveral theoretically important issues
unique to fusion for dynamic systems were also discussed in
[19].

In all these standard distributed fusion algorithms, the
cross-correlation among local estimation errors is fully con-
sidered. There is another class of standard distributed fusion
algorithms, in which the cross-correlation among local es-
timation errors is circumvented. For example, for the case
with uncorrelated measurement noise across sensors, by using
both predicted and updated estimates from local sensors,
the information matrix fusion method [20] was proposed in
[21] and [22], which can completely reconstruct the optimal
centralized estimate. An extension to the case with correlated
measurement noises was proposed in [23]. Another well known
standard distributed fusion algorithm in this class is the fed-
erated Kalman filter [24], [25]. It uses the upper bounding
approach for the state and process noise covariance matrices
to circumvent the cross-correlation among local estimation
errors. It also uses the information-sharing principle and a
master filter to combine the sensor-dedicated local filters. As a
result, it can also achieve the same performance as the optimal
centralized fusion. In many cases, however, it is not necessarily
easy or feasible to obtain the cross-correlation among local
estimation errors. For example, when local estimators are
nonlinear filters or multiple-model estimators, it is usually
difficult to obtain the cross-correlation exactly, sometimes even
just approximately. To tackle this, other types of standard
distributed fusion algorithms have been studied. For example,
the covariance intersection (CI) method [26], [27] tries to
reserve the simple form of the SCC method while considering
the cross-correlation among local estimation errors to some
extent. To make the fused estimate unique, CI uses some
optimality criterion, e.g., minimization of the determinant or
trace of the fused MSE. Modifications of the original CI
method are abundant [28]–[31]. A main difference between
the improved ones and the original one is in the optimality
criterion.

In this paper, it is also assumed that cross-correlation
among local estimation errors are unavailable/unknown to the
fusion center and standard distributed fusion is considered.
Unlike existing work on this problem, a new optimality crite-
rion to obtain the fused estimate is introduced. Inspired by the
least squares fitting for parameter estimation and the fact that
statistical distance is a measure of similarity between densities,
we propose to use the minimum sum of statistical “distances”
between the fused density and local posterior densities as a new
objective function. Intuitively, the fused density should be most
similar to all local posterior densities. The KL divergence is
chosen as the statistical closeness measure between densities
in the new criterion. Although it is not a true distance, it does
measure similarity between densities. To simplify computation,
Gaussian distributions are assumed for all densities. It is found
that the new criterion leads to a convex optimization problem,
which is then solved analytically. The fused estimate using the

new criterion is the same as the one given by the SCC method.
But the fused MSE is different. For the two-sensor case, it is
proven that the new fuser is pessimistic semi-definite in MSE.
Numerical examples show that the new distributed fuser is
effective when compared with several other widely used fusion
rules.

This paper is organized as follows. Sec. II formulates the
problem. Sec. III gives a brief summary and classification
of the existing standard distributed fusion algorithms. Sec.
IV presents the minimum sum of statistical distances based
distributed fusion algorithm. Sec. V provides two numerical
examples to illustrate the effectiveness of the proposed fuser.
Sec. VI gives conclusions.

II. PROBLEM FORMULATION

For simplicity, assume we want to estimate a parameter
x. Suppose that altogether N sensors are used to observe x
simultaneously and the local estimates of x are x̂i = f i(zi),
where zi is the measurement of x at local sensor i and f i is the
corresponding local estimator, i = 1, 2, · · · , N . The associated
MSE of x̂i, P i = MSE(x̂i), is known.

In distributed fusion, we are trying to figure out a fused
estimate x̂ = f({x̂i, P i}Ni=1) through some fusion rule f(·).
It is expected that the fused estimate is better than any local
estimate.

III. EXISTING CLASSES OF FUSION ALGORITHMS

In this section, we give a summary of existing fusion
rules in three basic classes. They differ in how the cross-
correlation among local estimation errors is used. For each
class, a representative fusion rule is provided.

A. Completely Ignored

In this class, the cross-correlation among local estimation
errors is completely ignored although it is known to exist. This
is so mainly for computational consideration. A representative
of this class is the SCC rule, which is probably the earliest
fusion rule in history:

x̂SCC = P SCC
∑N

i=1
(P i)−1x̂i,

P SCC = (
∑N

i=1
(P i)−1)−1,

where P SCC is the fuser calculated MSE matrix of x̂SCC.

It can be easily shown that the true MSE matrix of x̂SCC

is

P SCC
true = MSE(x̂SCC) = E[(x− x̂SCC)(x− x̂SCC)′]

= P SCC(
∑N

i=1
(P i)−1

+
∑N

i,j=1,i6=j
(P i)−1P i,j(P j)−1)P SCC

= P SCC + P SCC
∑N

i,j=1, i6=j
(P i)−1P i,j(P j)−1)P SCC,

where P i,j = E[x̃i(x̃j)′], i 6= j. However, we do
not know whether P SCC ≥ P SCC

true or P SCC ≤ P SCC
true

since the definiteness of the difference term
P SCC

∑N

i,j=1,i6=j(P
i)−1P i,j(P j)−1)P SCC is not clear.

This can be easily seen from the numerical example provided
later.



B. Fully Considered

The second class takes full account of the cross-correlation
among local estimation errors and no information is lost. A
representative of this class is the OWLS fusion rule:

x̂OWLS = POWLS
I
′
NP

−1
N x̂N ,

POWLS = (I′NP
−1
N IN )−1,

where

IN = [ In In · · · In ]′,

x̂N = [ (x̂1)′ (x̂2)′ · · · (x̂N )′ ]′,

PN =











P 1 P 1,2 · · · P 1,N

P 2,1 P 2 · · · P 2,N

...
...

. . .
...

PN,1 PN,2 · · · PN











,

and In is the n× n identity matrix.

Since the cross-correlation is fully accounted for, the fuser
calculated MSE is the true MSE:

POWLS = POWLS
true = E[(x− x̂OWLS)(x − x̂OWLS)′].

Moreover, the MSE of the OWLS rule is the minimum one of
all linear distributed fusion rules [18].

C. Selecting One Out of Many

The OWLS rule does perform the best theoretically, but its
success depends heavily on correct knowledge of the cross-
correlation. Unfortunately, such knowledge is not available in
many cases. For a linear dynamic system with linear measure-
ments, recursive formulas to obtain the cross-correlation were
given in [10], [32]. However, if the dynamic system is nonlin-
ear, it is usually hard to obtain the cross-correlation exactly.
The same difficulty exists if local filtering is a multiple-model
estimation problem. Also, even for a linear system, the limited
communication bandwidth may not allow the transmission
of all information needed to recursively calculate the cross-
correlation exactly at the fusion center. In these cases, cross-
correlation among local estimation errors is known to exist but
not available precisely to the fusion center. Then we can get
fused estimates that are worse than when the cross-correlation
is fully considered, but not worse than when it is completely
ignored. The third class of fusion rules is exactly for this
purpose. A typical idea here is to consider all feasible cross-
correlations. As a result, such fusion with unavailable cross-
correlation has infinitely many possible fused estimators. The
common practice in this class is to set up some objective
function first and then optimize it over the feasible set of
cross-correlations to get a meaningful one. This idea is widely
used in signal processing. For example, an underdetermined
system of linear equations also has infinitely many possible
solutions. To get a unique meaningful solution, a criterion such
as norm minimization or sparseness maximization [33], [34]
is imposed.

A representative of this class is the CI algorithm:

x̂CI = P CI
∑N

i=1
ωi(P

i)−1x̂i,

P CI = (
∑N

i=1
ωi(P

i)−1)−1,

where
∑N

i=1
ωi = 1 and ωi ≥ 0,

and ωi, i = 1, 2, · · · , N , are determined by some optimality
criterion, e.g., minimization of the determinant or trace of P CI.

It can be easily shown that the true MSE matrix of x̂CI is

P CI
true = MSE(x̂CI) = E[(x− x̂CI)(x − x̂CI)′]

= P CI(
∑N

i=1
ω2
i (P

i)−1

+
∑N

i,j=1, i6=j
ωiωj(P

i)−1P i,j(P j)−1)P CI.

It was proven in [26], [27] that for the two-sensor case
(i.e., N = 2), we have

P CI ≥ P CI
true.

That is why this fuser is sometimes said to be conservative.

The new fusion rule we will propose also falls into the
third class and is presented next.

IV. FUSION BASED ON MINIMUM DISTANCE SUM

A. Optimization Problem Formulation

Suppose that the local posterior densities are p(x|zi), i =
1, 2, · · · , N . A potential fusion rule is to minimize distance
sum:

p̂(x|z) = arg min
p(x|z)

∑N

i=1
d(p(x|z), p(x|zi)),

where d(·, ·) is some statistical “distance” between two distri-
butions, p(x|z) is an arbitrary posterior density function of x,
p̂(x|z) is the fused posterior density of x, and z = {zi}Ni=1.

The use of the minimum distance sum criterion for dis-
tributed fusion can be justified as follows. The statistical
“distance” d(p(x), p(x|zi)) measures the similarity between
p(x) and p(x|zi). The smaller d(p(x), p(x|zi)) is, the more
similar p(x) and p(x|zi) are. Thus of all possible distributions
p̂(x) obtained is most similar to the local posterior densities.

Remark 1: The above criterion is inspired by the widely
used least squares criterion. As is well known, the sum of
fitting error squared is minimized in the least squares method
where the fitting error measures similarity between the actual
data and the fitted data. Since the fitting error can be either
positive or negative, it is squared to guarantee non-negativeness
and mathematical tractability. For the minimum distance sum
criterion, there is no need to do so because the statistical
“distance” is always non-negative.

To make this criterion work for estimation fusion, a key
issue is to determine the statistical distance used. A widely
used closeness measure between two arbitrary density func-
tions p(x) and q(x) is the KL divergence [35] (also referred to
as information divergence, information gain, relative entropy,
KL distance, etc.):

DKL(p(·), q(·)) =
∫

log(
p(x)

q(x)
) · p(x)dx

= Ep(x)[log(p(x)) − log(q(x))].



The KL divergence measures the average logarithmic differ-
ence between p(·) and q(·), so it can be used as a candidate
distance in our criterion. However, the KL divergence is not
a true distance: it is not symmetric, nor does it satisfy the
triangle inequality.

Since the KL divergence is asymmetric: DKL(p(·), q(·)) 6=
DKL(q(·), p(·)), to make our criterion work for estimation fu-
sion, it matters whether p(x|z) or p(x|zi) is the first argument
of the KL divergence. It is more preferable to use p(x|z) as
the first argument, that is, to use the following criterion

p̂(x|z) = arg min
p(x|z)

∑N

i=1
DKL(p(x|z), p(x|zi)).

This is because DKL(p(·), q(·)) is the divergence of q(x) from
p(x). In other words, p(x) is considered the underlying “true”
or “best guess” distribution, so expectations are evaluated with
reference to it, while q(x) is another distribution.

As formulated above in estimation fusion, most often we
know only the first two moments of each local estimation
instead of the local posterior densities. To make our crite-
rion using the KL divergence work, the following Gaussian
assumption is made

p(x|zi) ≈ N (x; x̂i, P i), i = 1, 2, · · · , N
p(x) ≈ N (x; x̂, P ).

Remark 2: Such a Gaussian approximation to each local
posterior density is widely used in filtering, especially in
nonlinear filtering. Nonlinear filters based on such an ap-
proximation include Gaussian-Hermite filtering [36], [37], etc.
Although some other nonlinear filters, e.g., the unscented filter
[38] and the divided difference filter [39] using Stirling’s
interpolation do not depend on Gaussian approximation di-
rectly, they often use a Gaussian assumption indirectly when
designing deterministic sampling points.

When both p(x) and q(x) are Gaussian as

p(x) = N (x;µp,Σp), q(x) = N (x;µq ,Σq),

their KL divergence is simplified to

DKL(p(·), q(·)) =
1

2
(tr(Σ−1

q Σp) + (µp − µq)
′Σ−1

q (µp − µq)

+ ln(
|Σq|
|Σp|

)− n),

where n is the dimension of x.

With the above Gaussian assumptions for both local poste-
rior densities and the fused global density, our criterion using
the KL divergence becomes

(x̂, P ) = argmin
x,Σ

∑N

i=1

1

2
(tr((P i)−1Σ)

+ (x̂i − x)′(P i)−1(x̂i − x) + ln(
|P i|
|Σ| )− n).

Since x and Σ are uncoupled, this minimization problem can
be equivalently decomposed into the following two minimiza-

tion sub-problems

x̂ = argmin
x

∑N

i=1

1

2
(x̂i − x)′(P i)−1(x̂i − x), (1)

P = argmin
Σ>0

∑N

i=1

1

2
(tr((P i)−1Σ) + ln(

|P i|
|Σ| )− n). (2)

B. Solution of the Formulated Optimization Problem

Sub-problem (1) is a weighted least squares problem if we
treat x̂i as sensor observed data and P i as the corresponding
measurement noise covariance matrix. That is, we can con-
struct the following pseudo measurement equations 1 about x:
x̂i = x − x̃i, i = 1, 2, · · · , N , where the estimation error x̃i

is treated as the pseudo measurement noise with the first two
moments

E[x̃i] = 0, cov(x̃i) = P i,

cov(x̃i, x̃j) = 0, i, j = 1, 2, · · · , N, i 6= j.

Note that the cross-correlations between x̃i and x̃j , i, j =
1, 2, · · · , N, i 6= j, are all completely ignored so that the
fitting error under the least squares criterion can be written in
the summation form of (1) although they do exist. Thus the
solution of (1) is

x̂ = (
∑N

i=1
(P i)−1)−1

∑N

i=1
(P i)−1x̂i.

The second sub-problem (2) for the MSE matrix is much
harder than problem (1) in two aspects. First, problem (2) is
a matrix optimization problem. Second, the minimizer P is
required to be symmetric and positive definite since it is an
MSE matrix and (2) involves ln |Σ|.

Due to the constraint Σ > 0, problem (2) is a semi-definite
programming problem in essence. Next we discuss how to
solve this minimization problem analytically.

Define

f(Σ) =
∑N

i=1

1

2
(tr((P i)−1Σ) + ln(

|P i|
|Σ| )).

For any X1, X2 ∈ S
n
++, where S

n
++ is the set of all n×n

positive definite matrices, and any θ with 0 ≤ θ ≤ 1, it can be
easily seen that

0 < θX1 + (1 − θ)X2 ∈ S
n
++.

So the domain S
n
++ of f(Σ) is a convex set.

It is well known that affine functions are both con-
vex and concave [40]. Since g(X) = tr(A′X) + b =
∑m

i=1

∑n

j=1 AijXij + b, where X ∈ R
m×n, is an affine

function, all terms tr((P i)−1Σ), i = 1, 2, · · · , N , within f(Σ)
are convex and concave. Also, it is known that the function
ln |X | with X ∈ S

n
++ is a concave function [40]. So − ln |Σ| is

a convex function. Furthermore, since a nonnegative weighted
sum of convex functions is still convex [40], f(Σ) is clearly a
convex function over Sn++. Therefore, problem (2) is a convex
programming problem.

1This is exactly the same idea for unified linear model used in [1] for
distributed fusion so that the centralized fusion and distributed fusion can be
treated in a unified manner.



Using Properties 1 and 2 in the appendix, we have

∂f

∂Σ
=

1

2
(2C − diag(C)),

where

C =
∑N

i=1
((P i)−1 − Σ−1).

Set ∂f
∂Σ = 0, that is,

2C − diag(C) = 0.

Clearly this equation holds if and only if C = 0. As a result,
the unique stationary point of f(Σ) is

Σ∗ = N · (
∑N

i=1
(P i)−1)−1.

Since f(Σ) is a convex function defined on the convex set

S
n
++ and ∂f

∂Σ

∣

∣

∣

∣

Σ=Σ∗

= 0, Σ∗ is the unique global minimizer of

f(Σ) over Sn++ [41].

In summary, the best fused estimate using our criterion is

x̂ = (
∑N

i=1
(P i)−1)−1

∑N

i=1
(P i)−1x̂i,

P = N · (
∑N

i=1
(P i)−1)−1.

Remark 3: Due to the constraint Σ > 0, there are only
n(n + 1)/2 independent variables within Σ. Without it, all
n×n elements of Σ must be treated as independent variables
and problem (2) would be much harder.

C. Discussion on our least distance based distributed fusion

Remark 4: It can be easily seen that our fusion rule differs
from the SCC rule only in the fuser calculated MSE matrix
by a scaling factor of N .

Remark 5: It can also be seen that our fusion rule turns
out to be a special case of the CI rule with ω1 = ω2 = · · · =
ωN = 1

N
.

For the two-sensor case, our fusion rule is pessimistic semi-
define in MSE matrix [42], i.e.,

P ≥ Ptrue,

where Ptrue is the true MSE matrix of the fused estimate x̂.
This can be shown as follows.

For the two-sensor case, it follows from our fusion rule
that

x̂ = ((P 1)−1 + (P 2)−1)−1((P 1)−1x̂1 + (P 2)−1x̂2).

Correspondingly,

x̃ = x− x̂

= ((P 1)−1 + (P 2)−1)−1((P 1)−1x̃1 + (P 2)−1x̃2).

Thus

Ptrue = MSE(x̂) = E[(x − x̂)(x − x̂)′]

= ((P 1)−1 + (P 2)−1)−1((P 1)−1 + (P 2)−1

+ (P 1)−1P 1,2(P 2)−1 + (P 2)−1P 2,1(P 1)−1)

· ((P 1)−1 + (P 2)−1)−1,

where P i,j = E[x̃i(x̃j)′], i 6= j. Then we have

P − Ptrue

= ((P 1)−1 + (P 2)−1)−1(2(P 1)−1 + 2(P 2)−1)

· ((P 1)−1 + (P 2)−1)−1

= ((P 1)−1 + (P 2)−1)−1((P 1)−1 + (P 2)−1

− (P 1)−1P 1,2(P 2)−1 − (P 2)−1P 2,1(P 1)−1)

· ((P 1)−1 + (P 2)−1)−1

= ((P 1)−1 + (P 2)−1)−1E{[(P 1)−1x̃1 − (P 2)−1x̃2][·]′}
· ((P 1)−1 + (P 2)−1)−1

≥ 0.

V. ILLUSTRATIVE EXAMPLES

In the following, we compare the local estimation and the
fusion performance of the SCC, the OWLS, the CI and our
method (abbreviated as KL). The performance evaluation mea-
sures used are true MSE, fuser calculated MSE, noncredibility
index (NCI) [42] and inclination indicator (II) [42] over 5, 000
Monte Carlo runs.

Consider a two-sensor scalar case, where the MSE’s of the
local estimation along with the cross-correlation are described
as

P2 =

[

P 1 P 1,2

P 2,1 P 2

]

=

[

P 1 ρ
√
P 1P 2

ρ
√
P 1P 2 P 2

]

.

Here ρ is the correlation coefficient between local estimation
errors x̃1 of sensor 1 and x̃2 of sensor 2, and P 1 = 9.

To obtain NCI and II, it is assumed that both local
estimators are unbiased and the joint distribution of x̃1 and
x̃2 is

[ x̃1 x̃2 ]′ ∼ N (02,P2),

where 02 is the 2-dimensional zero column vector.

Suppose that P 2 < P 1, i.e., sensor 2 has better estimation
accuracy than sensor 1. Then the fuser calculated MSE of the
CI rule for this example is

P CI =
1

ω1

P 1 + ω2

P 2

=
P 1P 2

P 2ω1 + P 1ω2
=

P 1P 2

(P 1 − P 2)ω2 + P 2
,

where the property ω1 + ω2 = 1, ω1, ω2 ≥ 0 has been used.

Since P CI is a scalar, it does not matter whether the deter-
minant or trace is minimized to get ω1 and ω2. Furthermore,
from the above, it can be easily seen that

min
ω1,ω2

P CI, s.t. ω1 + ω2 = 1, ω1, ω2 ≥ 0

is equivalent to

max
ω2

(P 1 − P 2)ω2 + P 2, s.t. 1 ≥ ω2 ≥ 0.

It achieves the maximum at ω∗
2 = 1 because P 1 > P 2.

Therefore, the optimal ω1 and ω2 are

ω∗
1 = 0, ω∗

2 = 1.

That is, the CI fusion rule simply chooses the more accurate
local estimate (sensor 2) as the fused one.
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Figure 1. MSE of Case 1. Note that SCC true overlaps with KL true.

A. Case 1

In this case, the local MSE of sensor 2 is P 2 = 4, that is,
the two sensors have quite different estimation accuracy.

Fig. 1 shows the MSEs of the two local sensors and of all
four distributed fusers.

It can be easily seen that our new fuser is pessimistic semi-
definite in MSE [42] since the fuser calculated MSE is always
greater than or equal to its true MSE. Also, the true MSE is
a linearly increasing function of the correlation coefficient ρ.
The smaller ρ is, the greater the difference between the fuser
calculated MSE and the true MSE is. As ρ approaches 1, the
fuser calculated MSE gradually approaches the true MSE. In
terms of true MSE, our fuser is better than both local estimators
in most cases and it also performs very close to the OWLS
fuser, which is the best among all, in most cases.

It can be seen that the SCC fuser is neither optimistic nor
pessimistic semi-definite and it is not perfectly credible either,
though its calculated MSE is better than the MSE of any local
estimator. This is because there is no fixed relationship between
the fuser calculated MSE and the true MSE when the SCC
fuser is used. As can be seen from Fig. 1, in half of the cases,
the fuser calculated MSE is less than the true MSE and in the
other half cases, it is the opposite. It can thus be concluded
that compared with the SCC fuser, the amplification factor N
in our fuser contributes to make our fuser pessimistic semi-
definite.

It should be noted that the CI fuser for this case overlaps
with sensor 2 as explained above. Thus it is perfectly credible.
In terms of true MSE, it can be seen that only when ρ is
large, it performs between our fuser (also the SCC fuser) and
the OWLS fuser. Otherwise, it is the worst one of all fusers.

Figs. 2 and 3 show the credibility of the two local sensors
and of all four fusers in terms of NCI and II.

It can be seen that our fuser is pessimistic semi-definite in
MSE since its II is always negative. The SCC fuser is neither
optimistic nor pessimistic semi-definite since its II can be both
positive and negative, depending on ρ. And it is not perfectly
credible either. Using NCI and II, it can be seen that sensor
1, sensor 2 (also the CI fuser) and the OWLS fuser are all
perfectly credible.
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Figure 2. NCI of Case 1.
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Figure 3. II of Case 1.

B. Case 2

In this case, the local MSE of sensor 2 is P 2 = 8.5, that
is, the two sensors have quite close estimation accuracy.

Figs. 4 to 6 show the estimation performance of the two
local sensors and of all four fusers.

It can be easily seen that the trend for all measures is pretty
much the same as in Case 1. The main difference is that the
MSE of the OWLS fuser is very close to the true MSE of our
fuser (also the SCC fuser) for almost all ρ values. This further
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supports the use of our fuser since the OWLS fuser is the best
among all.

VI. CONCLUSIONS

This work considers the multi-sensor distributed estimation
fusion problem with unavailable/unknown cross-correlation of
local estimation errors across sensors. Our framework is the
same as the one used in most existing work for this problem:
set up an optimality criterion first and then optimize it over all
possible cross-correlation. However, a new objective function
using the minimum sum of statistical distances between the
fused density and the posterior densities from local sensors
is proposed. This is inspired by the least squares fitting
for parameter estimation and the fact that distance between
densities is a measure of their similarity. The fused density
is then the most similar one to the local posterior densities.
By choosing the KL divergence as the distance in the new
criterion and using Gaussian assumptions for the first two
moments, which are the only quantity used in point estimation,
it is shown that the new optimality criterion leads to a convex
optimization problem. Its unique globally optimal analytical
solution provides the same fused estimate as the simple convex
combination method does. However, its fused MSE is that
calculated by the simple convex combination method times the
number of sensors used. This helps guarantee the new fuser
to be pessimistic semi-definite. Numerical examples presented
have shown that the new fuser is advantageous over several
widely used fusers in terms of both estimation accuracy and
estimator credibility.

APPENDIX

For convenience, two properties of matrix algebra from
[43] are summarized below for easy reference:

1) If X ∈ R
m×m, A ∈ R

m×m and X = X ′, then
∂tr(AX)

∂X
= A + A′− diag(A), where diag(A) is the

diagonal matrix having the same diagonal elements
as A.

2) If X ∈ R
m×m, |X | > 0 and X = X ′, then

∂ ln |X|
∂X

=
2X−1− diag(X−1).
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