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Abstract—This work considers the problem of estimating the
parameters of an extended object based on noisy point observa-
tions from its boundary. The intention is to explore relationships
between common approaches by breaking them down into their
basic assumptions within the Bayesian framework. In doing so,
we find that distance-minimizing curve fitting algorithms can be
modeled by using a special Spatial Distribution Model, where
the source distribution is approximated by a greedy one-to-one
association of points to sources on the shape boundary. Based on
this insight, we explore the origin of the estimation bias, which is
a well-known issue of curve fitting algorithms. Furthermore, we
derive a general scheme to alleviate its effect for arbitrary shapes,
as well as for non-isotropic noise. This procedure is shown to be
a generalization of related special solutions.

Keywords—Bias reduction, shape fitting, Spatial Distribution
Model, Linear Regression Kalman Filter, non-isotropic noise.

I. INTRODUCTION

Estimating the pose and shape of an extended object based
on noisy point observations from its boundary is an essential
task of many tracking algorithms. Applications can be found in
fields related to robotics, industries, medicine, entertainment,
automotive, surveillance, and telepresence. Relevant sensors
include laser range finders, depth cameras, or radar devices.

Approaches to shape estimation can be generally distin-
guished in terms of the generative models they assume. Two
popular classes are given by Spatial Distribution Models and
implicit models, as used in curve fitting. Our intention is to
explore the relationship between both classes by investigating
how they associate the noisy points to their generating sources
on the shape and how this association affects the estimation
result.

The first class [1], [2] assumes that points are randomly
drawn from a known distribution along the boundary and
considers each source, in order to avoid explicit one-to-one
association. This class also includes the Random Matrices
[3], and, partially the Random Hypersurface Models [4]. The
implicit models from the second class do not depend on the
knowledge of a spatial distribution but greedily establish corre-
spondences from noisy points to sources on the shape boundary
whose distance then is minimized by the estimator. Relevant
expressions include the Euclidean distance [5], Mahalanobis
distance [6], radial distance [4], squared or signed distance
[2], [7], up to abstract algebraic expressions [8]. Work has
been done to compare various expressions for circles [9], [10]
and conics [5].

As a result of our investigations, we establish the non-
trivial relationship that the implicit models used in distance-
minimizing approaches can be interpreted as Spatial Distri-
bution Models with special assumptions. Furthermore, we

(a) Common estimator. (b) Proposed estimator.

Figure 1: Common distance-minimizing estimators (a) are
biased in the case of noise. This paper explores the bias and
proposes an alleviation scheme (b).

consider the problem of bias in the estimated parameters in
the presence of noise, which is a known drawback when
using these implicit models. Analyzing the origin of this bias
lets us conclude a general scheme to derive a bias-reduced
estimator for arbitrary shapes that works even in the case of
non-isotropic noise. This scheme is inspired by ideas from [11]
and intuitively motivated from a geometric point of view. There
are several related approaches that propose bias reduction for
specific shapes, e.g., circles [7], [10], ellipses [5], [6], [11], and
curve fitting [12]. General considerations on bias in recursive
filtering are presented in [13] and [14].

Summed up, in this work we 1) show that the implicit
models used in distance-minimizing approaches are a special
case of Spatial Distribution Models, and 2) derive a bias-
reduced estimator for arbitrary shapes that works even in the
case of non-isotropic noise. The improvement achieved by
this estimator is illustrated in Fig. 1 for a spherical shape.
Note that wider considerations specific to tracking, such as
motion models [15], or the treatment of clutter measurements
[1], [16], [17] are out of the scope of this paper. Another
important aspect, reserved for future work, are filled shapes
where measurements may originate from the inside of the
object.

II. PROBLEM STATEMENT

We consider the following specific instance of shape esti-
mation problem.

Given: A set of noisy point measurements Ẑ =
{ẑi| i = 1, . . . ,n} is observed from a static object, where the
points are from the domain Rd and d is usually two or three.
The object is characterized by a set of sources z̃i ∈ Z̃ that



(a) True generation. (b) Association problem.

Figure 2: Problem Statement: Find the object parameters that
most likely have generated the points (blue crosses). Red dots
mark source points on the object.

together form its boundary. We assume that each point ẑi is
an independent observation of a specific, but unknown source
z̃i according to

ẑi = z̃i + wi . (1)

The additive noise term wi is drawn from the Gaussian
distribution N (0,Cwi

) with known, sensor-specific covariance
matrix Cwi

. In general, the sources cannot be recovered from
the points, which is known as the association problem. Both
the generation process and association problem are illustrated
in Fig. 2.

Desired: Let the parameter vector x, also referred
to as the state, parameterize the set of sources Z̃x of the
desired object. The estimation task now is to find the specific
instance of parameters that most likely have generated the
measurements Ẑ . Besides position and orientation, x can
contain information related to scale, aspect ratio, and any other
parameter related to the appearance.

III. BAYESIAN SHAPE ESTIMATION

Usually, the relationship between object parameters x and
measurements Ẑ is expressed in terms of the likelihood
p(Ẑ|x). Approaches without prior knowledge of the param-
eters x usually calculate the instance of parameters xML that
yields the maximum likelihood

xML = argmax
x

p(Ẑ|x) .

In the Bayesian paradigm, a prior distribution p(x) on the pa-
rameters is incorporated in the estimator and yields a maximum
a posteriori estimate

xMAP = argmax
x

p(Ẑ|x) · p(x) .

Based on Bayes’ rule, we can also keep the posterior distribu-
tion of parameters

p(x|Ẑ) ∝ p(Ẑ|x) · p(x) ,
which allows for developing a recursive Bayesian estimator,
by using the posterior distribution as new prior. Note that all
these estimation techniques require the likelihood p(Ẑ|x) to
be defined. This likelihood can be derived as follows.

If we assume all points ẑi ∈ Ẑ to be measured indepen-
dently, it allows for separately considering each measurement
according to

p(Ẑ|x) =
∏
i

p(ẑi|x) . (2)

(a) Individual likelihoods.

(b) SDM. (c) GAM.

Figure 3: Different concepts to derive a likelihood p(ẑ|x)
from the individual p(ẑ|x, s) from (a). An SDM (b) assumes
a distribution over s. A GAM (c) exclusively selects one
individual likelihood.

Thus, we only need to derive the likelihood p(ẑi|x) for every
individual measurement ẑi and can use (2) for aggregation. The
additive noise model from (1) can be written as the convolution

p(ẑ|x) =
∫
Rd

p(ẑ|z) · p(z|x) dz (3)

of a sensor model p(ẑ|z) and a source model p(z|x). The
former model specifies the distribution of measurements for a
point z and is immediately given by the Gaussian distribution
p(ẑ|z) = N (ẑ − z,Cw). The latter model specifies the
distribution of points z to be measurement sources for a given
state x. Let s ∈ S be an index parameter that iterates through
all possible sources z̃x,s ∈ Z̃x for a given state x. Then, for
each s, an individual source model can be modeled by the
Dirac delta distribution p(z|x, s) = δ(z − z̃x,s).

Taking s into account, this source model and the Gaussian
sensor model can be plugged into (3). Then, applying the
sifting property of the Dirac delta distribution yields the
following individual likelihood for each s

p(ẑ|x, s) (3)
=

∫
Rd

p(ẑ|z) · p(z|x, s) dz

=

∫
Rd

N (ẑ − z,Cw) · δ(z − z̃x,s) dz

= N (ẑ − z̃x,s,Cw) . (4)

The meaning of these individual likelihoods is illustrated in
Fig. 3a. For each s ∈ S, the observed point ẑ is treated as
if it would exclusively originate from the particular source
z̃x,s. In other words, each s refers to an individual association
hypothesis. Next, in order to deal with these hypotheses, there
are two strategies: 1) Keeping all hypotheses and obtaining
a set of likelihoods and posterior distributions, or 2) Fusing
all hypotheses and obtaining a single likelihood and posterior
distribution. In this work, we exclusively focus on the second
strategy, which leads to Spatial Distribution Models.

A. Spatial Distribution Model (SDM)
A Spatial Distribution Model (SDM) assumes a distribution

p(s) over all hypotheses and uses marginalization over all (4)



to derive the single likelihood

p(ẑ|x) =
∫
S
p(ẑ|x, s) · p(s) ds (5)

(4)
=

∫
S
N (ẑ − z̃x,s,Cw) · p(s) ds .

Using SDMs is widely used in fitting [2] and tracking [1], [16],
[18] applications. As a short remark, modeling an ellipsoidal
extended object by means of Random Matrices [3] is also
related to the SDM, as sources are assumed to be Gaussian
distributed around the object center.

An interesting special case is shown in Fig. 3b, where a
uniform distribution U(S) over s ∈ S is assumed, which lets
us rewrite (5) to

p(ẑ|x) ∝
∫
S
p(ẑ|x, s) ds (6)

(4)
=

∫
S
N (ẑ − z̃x,s,Cw) ds .

This can be imagined as integrating a Gaussian with mean
ẑ and covariance Cw along the shape boundary. We will
show in the evaluation that estimation based on an SDM
is the method of choice, as long as the correct distribution
p(s) is used. However, in most real-life scenarios, p(s) is
not known in advance, and deriving it is a non-trivial task,
as it depends on factors as the sensor to object geometry, the
specific segmentation algorithm, and occlusions, among others.
This raises the need for a model that depends less on the source
distribution.

B. Greedy Association Model (GAM)
Let us assume z̃x,s′ would be the true source that has

generated the measurement ẑ. Based on this assumption,
we could specify p(s) as illustrated in Fig. 3c, where all
probability mass is exclusively assigned to s′ according to

p(s) = δ(s− s′) . (7)

Then, plugging (7) into the generic SDM from (5) lets us
eliminate all other association hypotheses

p(ẑ|x) (7)
=

∫
S
N (ẑ − z̃x,s,Cw) · δ(s− s′) ds (8)

= N (ẑ − z̃x,s′ ,Cw) .

Note that (8) imposes that z̃x,s′ must have generated the
measurement ẑ.

However, as the true source z̃x,s′ is usually unknown,
an appropriate approximation has to be found. A reasonable
choice would be selecting the “best” source, in the sense that
it yields the highest individual likelihood

z̃x,s′ := argmax
z̃x,s∈Z̃x

N (ẑ − z̃x,s,Cw) . (9)

In doing so, a greedy association is established between the
measurement ẑ and its most likely source z̃x,s′ . Based on these
considerations, we define a Greedy Association Model (GAM)
to be an SDM, where all probability is greedily assigned to the
single source z̃x,s′ that is selected according to (9). It is worth
mentioning that the greedy association becomes increasingly
more correct for decreasing noise. In the following, we show
that the GAM will directly lead us to the class of implicit
models used in distance-minimizing estimators.

(a) Euclidean. (b) Mahalanobis.

Figure 4: Projection for isotropic and non-isotropic noise.

(a) z̃x,s′ through iterating (9). (b) z̃x,s′ by projecting (11).

Figure 5: Finding the source z̃x,s′ for a point ẑ in a GAM-π.

C. Relation to Projections
As already mentioned in the previous section, using the

GAM from (8) and (9) builds the theoretical basis for common
distance-minimizing estimators. Let us now rearrange this
model in order to illustrate this relationship. As a consequence
of the Gaussian sensor model, finding the most likely source
z̃x,s′ in (9) is equivalent to finding the closest source to the
point ẑ in terms of the Mahalanobis distance.

Definition 1 (Projection Function)
Let ẑ be a point measurement with covariance Cw and let Z̃x

be a set of sources, specified by the parameter vector x. Then,
the projection π of the point ẑ onto Z̃x is defined to be the
closest source z̃x,s ∈ Z̃x in terms of the Mahalanobis distance

π(ẑ,x,Cw) := argmin
z̃x,s∈Z̃x

(
ẑ − z̃x,s

)T
C−1w

(
ẑ − z̃x,s

)
.(10)

Note that in case of isotropic noise, the projection coincides
with the Euclidean projection. In the case of multiple equiva-
lent projection candidates (with equal distance to ẑ), one has
to be chosen, e.g., randomly.

For the sake of readability, we define the abbreviation
πw(ẑ,x) := π(ẑ,x,Cw). An illustration of the projection is
shown in Fig. 4, where the measurement ẑ (blue cross) is
projected onto the line segment. Using the projection function
we can rewrite (9) to

z̃x,s′ = πw(ẑ,x) , (11)

and in consequence simplify likelihood (8)

p(ẑ|x) (8)
= N (ẑ − z̃x,s′ ,Cw) (12)
(11)
= N (ẑ − πw(ẑ,x),Cw) .

We will denote this model as GAM-π.
The motivation for projections is that there exist analytic

expressions for many shapes and, thus, iterating through all
sources can be avoided, as illustrated in Fig. 5. An estimator
that uses the GAM-π (12) will minimize the component-wise
difference between each measurement ẑ and its projection



πw(ẑ,x), while taking into account the specific characteristics
of the noise.

D. Relation to Distances
Minimizing the component-wise difference as in the GAM-

π is closely related to minimizing the distance. Thus, the
expression ẑ − πw(ẑ,x) is often approximated by a function
g that fulfills

g(x, ẑ) = 0⇔ ẑ ∈ Z̃x .

In literature, g is sometimes referred to as implicit shape
function, as it implicitly relates points in space ẑ to the shape.
By means of the shape function, the multivariate likelihood
(12) is approximated by the univariate

p(ẑ|x) = N (g(x, ẑ), Var{g(x∗, ẑ)}) , (13)

which we will denote as GAM-g. This approximation, how-
ever, also affects the covariance term by replacing it by a
variance term that unfortunately depends on the true, unknown
state parameters x∗. Hence, its calculation requires the approx-
imation of the true parameters and is discussed in Sec. V.

In a GAM-g, the function g implicitly establishes the
greedy one-to-one association between ẑ and a point on the
shape. This can be easily verified when assuming g to be the
Mahalanobis distance according to

g(x, ẑ) =

√
[ẑ − πw(ẑ,x)]

T
C−1w [ẑ − πw(ẑ,x)] . (14)

In this case, the greedily associated source for ẑ is given
by the Mahalanobis projection πw(ẑ,x). For the important
special case of isotropic noise, minimizing (14) is equivalent
to minimizing the Euclidean distance

g(x, ẑ) = ‖ẑ − π(ẑ,x, I)‖

from the points to their Euclidean projection π(ẑ,x, I).
Besides these common shape functions, related works

propose to use other expressions g with the advantage of
simplified equations. For example [4] estimate a star-convex
object by minimizing the squared radial distance and [10]
(among others) minimize an algebraic expression for fitting
circles.

IV. BIAS IN SHAPE ESTIMATION

The GAM-π, as well as the GAM-g establish a greedy
association of measurements ẑ to the shape in order to recover
the true source. This association, however, turns out to be a
rough approximation in the case of noise and introduces a bias
in the estimated parameters xe.

For an illustrative example see Fig. 6. According to a
uniform distribution p(s) = U(0, 1), sources were drawn along
a line segment of length 1 in 2D and then additively disturbed
according to (1) by isotropic Gaussian noise with covariance
Cw = σ2

w · I. Then, we found the most likely source for
each ẑ by applying (10) and calculated the histogram of these
recovered sources. It can be seen that for low noise in Fig. 6a,
the approximation is close to correct, while in the case of
increasing noise, too much probability mass is assigned to the
edges. In the following, we take a closer look at the effects of
this miss-assignment on the GAM-π, and the GAM-g. Based
on this investigation, we then propose a scheme to alleviate
the bias introduced by the misalignment.
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Figure 6: Approximation error of recovering the source dis-
tribution by the greedy association. The uniform distribution
(black) along a line segment cannot be recovered (red) from
measurements in the presence of noise.

(a) Line. (b) p(g(x∗, ẑ)) (c) p(g(xe, ẑ))

(d) Curve. (e) p(g(x∗, ẑ)) (f) p(g(xe, ẑ))

(g) Corner. (h) p(g(x∗, ẑ)) (i) p(g(xe, ẑ))

Figure 7: Origin of the bias in shape estimation.

A. Bias of GAM-g
Let us first explore the bias when using a GAM-g. The es-

timation algorithm will find an estimate xe that maximizes the
likelihood (13). Coincidentally, this estimate xe will minimize
g(xe, ẑ) and thus, will try to fulfill

E{g(xe, ẑ)}
!
= 0 . (15)

However, this estimate xe can easily be shown to be biased in
the presence of noise. The idea is to show that E{g(x∗, ẑ)}
does not necessarily equal zero for the true parameters x∗.
For simplicity, let the shape function be given by (14), and
Cw = I, such that g coincides with the Euclidean distance
‖ · ‖. Then,

E{g(x∗, ẑ)} = E{g(x∗, z̃ + w)}
(14)
= E{‖(z̃ + w)− πw(z̃ + w,x∗)‖}

holds for a measurement ẑ and its generating source z̃. Now,
let us conduct the following thought experiment. Fig. 7(a,d,g)
show three shape boundaries. The true shape in each figure
is marked in black, a source z̃ is drawn as a red dot, and the
isotropic uncertainty around it is schematically indicated by the
filled circle. Probability mass for expected measurements ẑ =
z̃+w from this source is schematically colored in blue (left of
the boundary) and gray (right of the boundary). For illustration,



let blue denote the regions with negative signed distance to
the shape, and gray the regions with positive signed distance,
respectively. The estimated shape that fulfills (15) is depicted
as dashed, orange line. In Fig. 7(c,f,i), this can be thought of
finding the shape that perfectly balances measurements on the
left and the right side.

Line Shape: For the line shape, the estimate coincides
with the true shape. This is due to the fact that the true ratio
between positive and negative distances is perfectly balanced
(see Fig. 7b), such that

E{g(x∗, ẑ)} = 0 = E{g(xe, ẑ)}

holds. In consequence, the algorithm will find the true param-
eters as they maximize the likelihood in (13).

Curve and Corner Shape: For the curve and corner shape,
the estimate does not coincide with the true shape. This is due
to the fact that the true ratio between positive and negative
distances is unbalanced, such that

E{g(x∗, ẑ)} 6= 0 = E{g(xe, ẑ)}

holds. In other words, for the true shape, there is more
probability mass for points on the right side of the boundary
than for points on the left side. In consequence, the algorithm
will find biased parameters, as it assumes a balanced ratio.

B. Bias of GAM-π
Looking at the GAM-π will provide further insights about

the bias. Similar to (15), the estimator based on (12) minimizes
the differences between ẑ and πw(ẑ,x). In consequence, for
the true parameters, their expected values should be equal.
According to (1), the first term is immediately given by

E{ẑ} (1)
= E{z̃}︸ ︷︷ ︸

=z̃

+E{w}︸ ︷︷ ︸
=0

, (16)

and the second term by

E{πw(ẑ,x∗)}
(1)
= E{πw((z̃ + w),x∗)} .

In Fig. 8, both terms are evaluated for entire shapes, and drawn
against each other. The true sources z̃ are drawn in black, and
the expected E{πw((z̃ + w),x∗)} in red, respectively. This
second term was calculated using random sampling of the
measurement noise. An important observation is that the true
sources do only coincide with the expected ones for straight
parts (Fig. 8e) along the shape or for vanishingly low noise
(Fig. 8a). The estimator, however, will try to find a biased
estimate xe where E{πw((z̃ + w),xe)} is closer to z̃. This
bias will depend on the level of noise and the true usually
unknown distribution of sources.

C. Bias Alleviation
In this section, a general scheme for reducing the bias in

GAMs is proposed, inspired by ideas from perturbation theory
[5], [11]. The idea is to slightly adjust p(ẑ|x) in order to ensure
that it takes its maximum for the true parameters. A reasonable
choice for a GAM-π is to replace (12) by

p(ẑ|x) = N (ẑ − πw(ẑ,x)− E{ẑ − πw(ẑ,x∗)} ,Cw) , (17)

where E{ẑ − πw(ẑ,x∗)} is a correction term that ensures that
the likelihood takes its maximum at xe = x∗. To verify this,
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Figure 8: Illustration of the bias. Groundtruth sources z̃ are
marked in black, E{πw((z̃ + w),x∗)} in red.

we can use the same technique as in Sec. IV-B. The estimator
based on (17) will try to minimize the differences between
ẑ and πw(ẑ,xe) + E{ẑ − πw(ẑ,x∗)}. In consequence, for the
true parameters, their expected values should be equal. For the
first term, E{ẑ} = z̃ is already given by (16). Then plugging
xe = x∗ into the second term yields

E{πw(ẑ,x∗) + E{ẑ − πw(ẑ,x∗)}} = E{ẑ}︸ ︷︷ ︸
=z̃

.

From this, we can conclude that (17) will be ideally unbiased,
as the differences will approach zero for the true parameters.
However, as the correction term E{ẑ − πw(ẑ,x∗)} depends
on the true parameters x∗, deriving it requires an appropriate
approximation. We propose to use a recursive Bayesian esti-
mator, to allow for approximating the true parameters x∗ by
the mean µ

x
from the prior distribution p(x), i.e., x∗ ≈ µx

. As
the uncertainty of p(x) usually decreases during the estimation
process, the quality of the approximation increases. For this
reason, the influence of p(x) on the bias vanishes and, thus, it
is excluded from our considerations. The correction term can
be calculated according to

E{ẑ − πw(ẑ,x∗)}
(1)
= z̃ − E{πw(z̃ + w,x∗)} (18)
(11)
= πw(ẑ,x∗)− E{πw(πw(ẑ,x∗) + w,x∗)}

≈ πw(ẑ,µx)− E
{
πw(πw(ẑ,µx) + w,µ

x
)
}

.

Note that the proposed alleviation scheme can be immedi-
ately applied to the GAM-g, and turns (13) into

p(ẑ|x) = N (g(x, ẑ)− E{g(x∗, ẑ)} , Var{g(x∗, ẑ)}) .(19)

The calculation of the correction term E{g(x∗, ẑ)} is analog
to (18).

Example: Circle
We found that a particular estimator for circular shapes [7]

is a special case of the proposed GAM-g (19) estimator with
bias alleviation.



Let us assume that the circle is centered on the origin, so
that the task is to estimate the radius x = r. Furthermore, let
the noise covariance Cw be isotropic. In [7], they implicitly
use an Euclidean projection of measurements ẑ onto the circle
according to

πw(ẑ,x) =
ẑ

‖ẑ‖
r .

As shape function g, they use the squared, signed radial
distance

g(x, ẑ) = ‖ẑ‖2 − ‖πw(ẑ,x)‖2

= ẑ2 − r2 .

Evaluating the likelihood (19) further requires the correction
term E{g(x∗, ẑ)} and the variance Var{g(x∗, ẑ)}. The deriva-
tion for both is given in the appendix. Finally, we arrive at the
GAM-g

p(ẑ|x) (19)
= N

(
ẑ2 − r2 − Tr(Cw), Tr(Cw)

2 + 2µ2
r Tr(Cw)

)
,

which exactly coincides with the result from [7].

V. IMPLEMENTATION

In this section, we give some general comments and
explicit instructions for implementing a Bayes update based
on a GAM. In doing so, we focus on the GAM-π. However,
all derivations apply to the GAM-g in a straightforward way.
In the following, we refer to a single measurement ẑ with
known noise covariance Cw. More measurements can be
processed sequentially according to (2). Prior knowledge on
the parameters is given by p(x) with µ

x
being selected as the

mean or representative mode of p(x).
Implementing a GAM-π requires 1) defining a projection

function πw(ẑ,x) according to (10) for the specific shape
and 2) calculating the correction term E{ẑ − πw(ẑ,x∗)} from
(18). Besides for simple shapes, E{ẑ − πw(ẑ,x∗)} cannot be
derived analytically and thus, requires an approximation by,
e.g., sampling techniques. Let {wl}Ll=1 be a representative
set of samples from the noise distribution N (0,Cw), drawn
randomly or deterministically according to [19], [20]. Then,
from these samples, the correction term (18) can be calculated
as the sample mean

E{ẑ − πw(ẑ,x∗)} ≈
1

L

L∑
l=1

πw(ẑ,µx)− E
{
πw(πw(ẑ,µx) + wl,µx)

}
.

As a short remark, for the GAM-g, the mean E{g(x∗, ẑ)}
and variance Var{g(x∗, ẑ)} can analogously be calculated
using sampling techniques.

Linear Regression Kalman Filter: For estimation using a
Linear Regression Kalman Filter (LRKF) [19], [20], a set of
samples {xj}Jj=1 from the state distribution p(x) is given. The
GAM-π measurement function then is

h(xj ,w, ẑ) := ẑ − πw(ẑ,xj)− E{ẑ − πw(ẑ,x∗)}+ w

= 0 , (20)

where w is an additive noise term with N (0,Cw). To the
estimator, zero acts as a constant pseudo-measurement, while
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Figure 9: Simulation Setup.

ẑ is modeled as a parameter. It is notable that the common
biased measurement function would simply be (20) without
the correction term.

VI. EVALUATION

In this section, we evaluate the proposed bias reduction
technique. More specifically, we will answer three evaluation
questions:

• Question 1: How does the proposed GAM-π with bias
reduction compare to the well-known SDM?

• Question 2: How does the proposed GAM-π with bias
reduction compare to common distance-minimizing
approaches, using a GAM-g?

• Question 3: How high is the improvement of the bias
reduction compared to the common GAM-π?

For this purpose, we defined the following estimation task.

A. Estimation Task
As evaluation object, we chose the example shape in

Fig. 9, known from the previous sections. From this shape,
500 measurements were generated according to the following
rule: Sources were uniformly drawn along 3

4 of the boundary
(red) and then disturbed by additive non-isotropic noise with
covariance matrix Cw = [1.5·10−2, 5·10−3; 5·10−3, 1.5·10−2]
(as indicated in blue). Parameters to be estimated consist of
the two dimensional position, the orientation angle, and the
scale. Technically, the shape is modeled by a polygon with 75
vertices.

GAM-π: We implemented an LRKF based on the GAM-
π measurement function (20) using 400 state samples. Note
that the Mahalanobis projection takes into account the specific
characteristics of the non-isotropic noise. The correction term
was calculated based on 40 samples. All samples were deter-
ministically drawn according to [19]. Further, we distinguish
between two instances of this estimator: one common biased
version and another with the proposed alleviation.

SDM: For the SDM, we implemented a particle filter [21]
based on the likelihood (6) that uses 500 particles and performs
numerical integration over s with 100 samples. Further, we
distinguish between two instances of this estimator. The first
“SDM correct” approach uses the correct distribution p(s),
i.e., it assumes that sources originate uniformly from 3

4 of the
boundary. The second “SDM wrong” approach uses a wrong
distribution p(s) that assumes that sources originate uniformly
from the entire boundary. Note that this second SDM is



commonly used, when no further knowledge is available about
the true distribution.

GAM-g: As a representative curve fitting approach, we
implemented an LRKF based on a GAM-g that uses 400 state
samples. This estimator was designed in the common fashion
and minimizes the Euclidean distance between measurements
and shape boundary. Furthermore, it does not take advantage
of the bias alleviation. The sample variance was calculated
based on 40 samples. All samples were deterministically drawn
according to [19].

B. Implementation Details
All estimators were initialized with random values drawn

from N (x∗, 10
−1 · I). The state distribution p(x) then was

sequentially updated with each of the 500 measurements, in
alternation with a prediction step using a random walk model
in the magnitude of N (0, 10−5 · I), to avoid getting stuck into
a local minimum.

C. Results
For the evaluation, we performed 100 runs for all esti-

mators in the estimation tasks. In Fig. 10, the average shape
as estimated by the proposed GAM-π approach is drawn
against the SDM approach(Fig. 10a), and the common GAM
approaches (Fig. 10b). The root mean squared error (RMSE)
for position, orientation angle, and scale over all runs is
summarized in Fig. 11 for all approaches. From this, we can
answer the three evaluation questions.

Question 1: From Fig. 11, it is easy to verify that the
SDM approach with correctly modeled distribution shows the
best performance in all parameters, in terms of the RMSE.
The proposed GAM-π approach with bias alleviation shows
a comparable estimation quality as the “SDM correct”. This
is remarkable, as the GAM-π approach is not given any
information about the source distribution. In contrast, the
“SDM wrong” using the uniform distribution along the en-
tire boundary performs significantly worse than the GAM-π
approach. In sum, the GAM-π approach is the better choice,
when the source distribution is not available.

Question 2: The distance-minimizing GAM-g approach
is heavily biased in all parameters. This is due to the non-
isotropic noise characteristics, as well as the complicated
shape. Thus, compared to standard curve fitting approaches, for
this scenario, the “GAM-π proposed” can reduce the RMSE
about 80% in terms of scaling and about 70% in terms of
orientation angle.

Question 3: The estimation performance of the “GAM-
π common” is quite similar to the bias alleviated “GAM-
π proposed”. Especially position (Fig. 11a) and orientation
(Fig. 11b) converge to the same values as the unbiased
SDM. However, the common approach estimates a biased
scale (Fig. 11c). In sum, for this scenario, applying the bias
alleviation in the GAM-π approach can reduce the scaling bias
about 50%.

VII. CONCLUSION

In this work, we presented an intuitive derivation of two
commonly used approaches for Bayesian shape estimation. The
first approach uses the well-known Spatial Distribution Model
(SDM) and the second uses an implicit model known from

curve fitting algorithms that minimize a distance-related ex-
pression. We found that these implicit models (GAM-g) can be
derived as an SDM with special (greedy) assumptions. Based
on this concept, we derived an estimator based on a Greedy
Association Model (GAM-π) that minimizes the differences
between measurements and their most likely sources on the
shape and can naturally deal with non-isotropic noise. For
this estimator (GAM-π), as well as for those using a GAM-g
we explored the well-known parameter bias in the presence
of noise. Inspired by ideas from related approaches, we then
proposed a general alleviation scheme for this bias that works
with non-isotropic noise, as well as with arbitrary shapes.
In addition, we showed that this scheme only requires the
subtraction of a correction term in a nonlinear measurement
function with additive noise.

From the evaluation, it can be concluded that in the pres-
ence of non-isotropic noise, and if the true spatial distribution
is unknown, the proposed estimator outperforms all standard
approaches, even the SDM. In numerical terms, by using the
GAM-π, we were able to reduce the orientation RMSE about
70% and the scaling RMSE about 80% compared to common
distance-minimizing approaches in the considered scenario.

APPENDIX
This section includes the proof that the proposed correction

term is equivalent to the one from [7] when considering a
circular shape. The expectation value evaluates to

E{g(x, ẑ)} ≈ E
{
g
(
µ
x
,πw(ẑ,µx) + w

)}
= E

{(
µr

‖ẑ‖
ẑ + w

)2

− µ2r

}

= E


µ2r
‖ẑ‖2

ẑ2︸ ︷︷ ︸
=µ2

r

+
2µr

‖ẑ‖
ẑTw︸ ︷︷ ︸

=0

+ w2︸︷︷︸
=Tr(Cw)

−µ2r


= Tr(Cw) ,

where µ
x
= µr is the mean of the prior distribution p(x).

Analogously, the variance evaluates to

Var{g(x∗, ẑ)} ≈ E
{
(g(µ

x
,πw(ẑ,µx) + w)− Tr(Cw))

2
}

= E


((

µr

‖ẑ‖
ẑ + w

)2

− µ2r − Tr(Cw)

)2


= E

{(
2µr

‖ẑ‖
ẑTw + w2 − Tr(Cw)

)2
}

= E
{
4µ2rw

2 + w4 +Tr(Cw)
2 − 2w2 Tr(Cw)

}
= 2r2 Tr(Cw) + 3Tr(Cw)

2 +Tr(Cw)
2 − 2Tr(Cw)

2

= Tr(Cw)
2 + 2µ2r Tr(Cw) .
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