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Abstract—In this paper, we introduce a new sample-based
Gaussian filter. In contrast to the popular Nonlinear Kalman
Filters, e.g., the UKF, we do not rely on linearizing the mea-
surement model. Instead, we take up the Gaussian progressive
filtering approach introduced by the PGF 42 but explicitly rely
on likelihood functions. Progression means, we incorporate the
information of a new measurement gradually into the state
estimate. The advantages of this filtering method are on the one
hand the avoidance of sample degeneration and on the other
hand an adaptive determination of the number of likelihood
evaluations required for each measurement update. By this
means, less informative measurements can be processed quickly,
whereas measurements containing much information automati-
cally receive more emphasis by the filter. These properties allow
the new filter to cope with the demanding problem of very narrow
likelihood functions in an efficient way.

Index Terms—Progressive Filtering, Bayesian Inference, Deter-
ministic Gaussian Sampling, Extended Object Tracking

I. INTRODUCTION

Estimating the hidden state of a stochastic dynamic system
based on noisy measurements is an important and demanding
process required in many fields of engineering and science such
as navigation, (extended) object and group tracking [1]–[5], and
robotics [6]. Due to the fact that we have to rely on imperfect
measurements and utilized models are a simplification of the
real world, only a probability distribution of the current system
state can be obtained.

For linear systems corrupted by additive, white, and state-
independent Gaussian noise, the well-known Kalman Filter
yields the optimal estimator in the sense of a Minimum Mean
Square Error (MMSE) [7], [8]. However, almost all systems of
interest are nonlinear and may suffer from non-additive noise.
Hence, other, preferably nonlinear estimators are required to
obtain adequate results. Moreover, maintaining the true, in
general multimodal, state probability distribution is intractable,
and thus, only suboptimal solutions can be obtained [2].

A widespread class of nonlinear estimators are the Particle
Filters (PFs) [2], [9], [10]. They represent their state estimate
as a set of weighted particles (or samples) and update it by
reweighting the particles using the measurement model in form
of the likelihood function and subsequently performing random
importance (re)sampling. The advantages of such filters are
their easy implementation as well as the ability to capture
arbitrary state distributions and multimodalities. However, they

become computational intractable when it comes to higher
state dimensions.

A reasonable simplification of the estimation problem is
the reduction to (or assumption of) a Gaussian distributed
state. Multimodal estimators, i.e., Gaussian mixture estimators,
can then be built on top of these filters [11]. The advantage
of Gaussian estimators is the compact and constant amount
of information describing their state estimates [12]. A special
Particle Filter that realizes a Gaussian estimator is the so-called
Gaussian Particle Filter (GPF) [9].

Another class of filters are the Nonlinear Kalman Filters.
These are Gaussian estimators that approximate the nonlinear
measurement relationships as a linear one. In so doing, they
do not need explicit likelihood functions, are easy to use,
and possess good runtime performance. Nevertheless, the
linearization can lead to a diminished estimation performance.
Explicit linearization techniques are used by the Extended
Kalman Filter (EKF) and its iterated versions (IEKF) [8]. In
contrast, Linear Regression Kalman Filters (LRKFs) rely on an
implicit statistical linearization. Examples are the Unscented
Kalman Filter (UKF) [12], the Cubature Kalman Filter (CKF)
[13], the Gaussian Filter (GF) [14], or the Smart Sampling
Kalman Filter (S2KF) [15].

In [16], a Gaussian estimator, called Progressive Gaussian
Filter 42 (PGF 42), was presented that avoids such linearization
and still does not need any explicit likelihood function. Hence,
this filter can directly be used as an replacement for an
LRKF. The key idea of the PGF 42 is to incorporate new
measurements gradually into the state estimate by using
progressive filtering in combination with deterministic Gaussian
sampling. Furthermore, an explicit likelihood is avoided by
additionally estimating the actual noise realizations for each
measurement update besides the actual system state, i.e.,
performing a state augmentation with the noise variables.
However, in case of many noise variables, e.g., when processing
many measurements at once, this state augmentation can be too
demanding for the estimator as the augmented state becomes
very large.

In order to overcome this issue and achieve better estimation
results, in this paper we take up the Gaussian progressive
filtering approach introduced by the PGF 42 but explicitly
rely on likelihood functions instead. That is, we give up the
approach of directly working with the generative measurement



model, and hence, avoid estimating the actual noise realizations.
In case of nonlinear measurement models corrupted by additive
Gaussian noise, the new filter is very similar to PGF 42 as in
such cases the PGF 42 does not have to estimate any noise
variables, too.

Moreover, the PGF 42 has three parameters: forced sam-
ple weight ratio, maximum allowed deviation between two
successive intermediate Gaussians, and number of samples
per recursion step. Based on a study of the progression
characteristics, we reduce the parameters required by the new
PGF to the number of samples per recursion step.

Other filters relying on the progressive approach are pre-
sented in [17], [18]. Here, the filters rely on solving partial
or ordinary differential equations in order to perform a
measurement update. In [19], an EKF using a progressive
update is presented. The authors of [20] also take up the
PGF 42 approach and adapt it to the estimation of angular
systems using nonlinear measurement models.

This paper is structured as follows. First, we formulate the
general problem of Bayesian inference and the difficulties of
sample degeneration when relying on sample-based approaches.
In Sec. III, we describe the approach of progressive likelihood
functions. Based on this, in Sec. IV, we introduce a new
Progressive Gaussian Filter that directly works with likelihoods.
An evaluation of the new filter against PFs is performed in
Sec. V. Finally, the conclusions are given in Sec. VI.

II. PROBLEM FORMULATION

We consider estimating the hidden state xk of a discrete-
time stochastic dynamic system based on noisy measurements1.
The relationship between xk and a received measurement ỹ

k
is described according to the nonlinear measurement model

y
k

= hk(xk,vk) , (1)

where the subscript k denotes the discrete time step, y
k

the
measurement random vector from which ỹ

k
originates, and vk

an arbitrary state-independent measurement noise process.
Our goal is to obtain a state estimate at time step k

after incorporating k received measurements ỹ
1
, ỹ

2
, . . . , ỹ

k
approximated as a conditional Gaussian distribution according
to

fek(xk) = f(xk | ỹk, ỹk−1
, . . . , ỹ

1
)

≈ N (xk; x̂ek,C
e
k) .

(2)

As we receive new measurements over time, a recursive
determination of (2) by exploiting Bayes’ rule is desired, i.e.,
a recursive estimator. That is, given a prior Gaussian state
estimate based on the last k − 1 measurements

fpk (xk) = f(xk | ỹk−1
, . . . , ỹ

1
)

≈ N (xk; x̂pk,C
p
k) ,

and assuming that a new measurement ỹ
k

is conditionally
independent of these previously received measurements given
this prior state estimate, the updated (or corrected) Gaussian

1Random variables are printed in bold face and vectors are underlined.

state estimate is
fek(xk) = ck · f(ỹ

k
|xk) · fpk (xk)

≈ N (xk; x̂ek,C
e
k) ,

(3)

where f(ỹ
k
|xk) is the likelihood function and ck only a

normalization constant.
Usually, only the generative measurement model (1) is at

hand and the likelihood function has to be obtained from it
according to

fLk (xk) := f(ỹ
k
|xk)

=

∫
δ(ỹ

k
− hk(xk, vk)) · fvk (vk) dvk ,

(4)

where δ(·) denotes the Dirac delta function and fvk (·) the
measurement noise probability density function.

However, even if the likelihood (4) is available in closed
form, it is almost always impossible to solve the Bayesian
update (3) analytically except for special cases such as linear
measurement models corrupted by additive Gaussian noise.
A naı̈ve approximative solution to this would be as follows.
First, sample the prior Gaussian in some way (randomly or
deterministically), that is, create a Dirac mixture approximation

fpk (xk) ≈
M∑
i=1

wi · δ(xk − xk,i) (5)

with sample positions xk,i and corresponding weights wi which
sum up to one. Second, plug this into (3) in order to obtain a
Dirac mixture approximation of the posterior state estimate

fek(xk) ≈ ck ·
M∑
i=1

wi · fLk (xk,i) · δ(xk − xk,i) . (6)

Finally, a subsequent moment matching is used to obtain a
posterior Gaussian distribution. As can be seen, this straight-
forward approach leaves the sample positions xk,i unchanged
and only reweights the samples according to the respective
likelihood values fLk (xk,i).

This approach is simple to implement and in theory solves the
Bayesian update problem. However, in practice it suffers from
the serious problem of sample degeneracy. If the intersection
of the likelihood support and a significant amount of the
probability mass of the prior state density is small, only a
few samples will remain with substantial weights contributing
to the posterior state density. In extreme cases, none or only
a single non-zero sample are left over, and thus, no valid
posterior Gaussian state density can be obtained. The solution
of increasing the number of samples is intractable in larger
state spaces due to the curse of dimensionality. Moreover, this
would worsen the problem that samples placed in irrelevant
regions of state space waste computational power and time
as they will not contribute to the posterior density. Particle
Filters try to improve this situation by using proper proposal
densities. Nevertheless, these are not easy to find and require an
individual, problem specific treatment [21], [22]. Consequently,
a more elaborate measurement update technique is required to
solve the Bayesian update problem satisfactorily.
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Figure 1: Naı̈ve Bayesian inference. Prior Gaussian state
estimate (red), likelihood (green), true posterior Gaussian
state estimate (blue), 50 reweighted samples (black arrows),
and sample-based posterior Gaussian (orange) with a too low
variance.

Fig. 1 illustrates these well-known problems in Bayesian
filtering in case of a one-dimensional system state and 50
samples. It should be noted that almost all samples are down-
weighted to (nearly) zero and only a couple of samples with
larger weights remain. Hence, only the rightmost samples
contribute to the posterior state estimate which, in turn, is of
too low variance.

III. PROGRESSIVE FILTERING

In this Section, we recapitulate the idea of the progressive
filtering approach [16], [23]. Here, the progressive likelihood
provides the basis for this filtering technique.

Definition III.1 (Progressive Likelihood) Let fL(x) be a
likelihood function2. Then, a function fL(x, γ) with progression
parameter γ ∈ [0, 1] is a progressive likelihood if it satisfies
for every x

fL(x, γ) =

{
1 , if γ = 0

fL(x) , if γ = 1 .

Using this definition, we can formulate a progressive
Bayesian inference

fe(x, γ) = c(γ) · fL(x, γ) · fp(x) ,

with normalization constant c(γ) and progression parameter
γ ∈ [0, 1]. This parameter controls how much information of
the received measurement ỹ will be used to correct the prior
state estimate fp(x). For the extreme case γ = 0

fe(x, 0) = fp(x)

holds, that is, no information of the received measurement
is processed yet, and thus, the posterior estimate equals the
prior. The other extreme is γ = 1. Here, due to the fact that
fL(x, 1) = fL(x), the entire information of the measurement
ỹ is processed and we have

fe(x, 1) = fe(x) ,

2For readability, we omit the time index k if its not needed.

which is equal to the unmodified Bayesian update (3).
Progressive Bayesian inference gives us the possibility to

include the information of a given measurement ỹ gradually into
the prior state estimate fp(x) by using a recursive algorithm.
Suppose we have a Bayesian progression with parameter γ

fe(x, γ) = c(γ) · fL(x, γ) · fp(x) , (7)

and one with parameter γ + ∆

fe(x, γ + ∆) = c(γ + ∆) · fL(x, γ + ∆) · fp(x) , (8)

where ∆ ≥ 0 and γ + ∆ ≤ 1. Based on (7) and (8), we can
derive the recursion

fe(x, γ + ∆) =
c(γ + ∆) · fL(x, γ + ∆)

c(γ) · fL(x, γ)
· fe(x, γ) , (9)

which transfers the Bayesian progression fe(x, γ) with step
size ∆ to the Bayesian progression fe(x, γ + ∆). Starting
with fe(x, 0), i.e., the prior state estimate fp(x), and proper
(not necessarily equal) step sizes ∆, we can recursively obtain
the desired final posterior state estimate fe(x) by recursively
exploiting Eq. (9). If each recursion step could be performed
analytically, we could solve the actual desired Bayesian update
(3) in closed-form, too. Unfortunately, this is in general not
the case, and hence, we have to rely on sample-based methods
again.

For that reason, we start the recursion by sampling the
prior Gaussian state estimate fp(x), i.e., computing the Dirac
mixture approximation (5). Together with an initial step size
∆0, we can approximate the first recursion step according to

fe(x,∆0) =
c(∆0) · fL(x,∆0)

fL(x, 0)
· fp(x)

≈ c(∆0) ·
M∑
i=1

wi · fL(xi,∆0) · δ(x− xi) .

Using this Dirac mixture approximation as basis for an
approximation of the second recursion step (with step size
∆1) we obtain

fe(x,∆1 + ∆0) =
c(∆1 + ∆0) · fL(x,∆1 + ∆0)

c(∆0) · fL(x,∆0)
· fe(x,∆0)

≈ c(∆1 + ∆0) ·
M∑
i=1

wi · fL(xi,∆1 + ∆0) · δ(x− xi) .

After performing n + 1 recursion steps in this way, where
∆0 + . . .+ ∆n = 1, the final Dirac mixture approximation of
the posterior state estimate becomes

fe(x) ≈ c ·
M∑
i=1

wi · fL(xi) · δ(x− xi) .

As one can see, this recursion procedure is equivalent to directly
reweighting the initial Dirac mixture weights wi with the final
likelihood values fL(xi) (see (6)), and hence, suffers from
the same problems described in Sec. II. Consequently, further
modifications are required as this recursion alone does not
yield any benefits for the Bayesian update problem.



IV. PROGRESSIVE GAUSSIAN FILTERING USING
EXPLICIT LIKELIHOODS

The presented recursive measurement update from Sec. III
still suffers from the problem of sample degeneration. This
is caused by the static sample positions xi. In order to avoid
sample degeneration, samples have to move in some way in
the state space during the recursion. Such sample movement
during a measurement update is also referred to as particle
flow [18]. A particle flow moves the utilized samples into the
proper regions of state space, i.e., to the overlapping supports
of prior state estimate and (progressive) likelihood.

For the introduced progressive recursion (9), the solution is
to perform some sort of resampling after each recursion step
in order to obtain a new set of equally weighted samples for
the next recursion step. That is, the sample reweighting from
one recursion step will be compensated by a movement of the
samples. This technique is the basis of all Particle Filters [2]
but, in contrast to these, we perform resampling multiple times
during each measurement update.

We take up the resampling approach from the PGF 42
introduced in [16], which only considers measurement models
suffering from additive Gaussian noise, and extend it to the
case of explicit likelihoods (4). As we already force the
posterior state estimate to be Gaussian and sampling therefore
is relatively simple, the idea of the proposed approach is
to approximate each intermediate state estimate fe(x, γ) as
Gaussian, too. Consequently, the basis of each recursion step
is a set of new, equally weighted, samples representing the
intermediate Gaussian fe(x, γ).

A. Gaussian-Based Recursion

From now on, we utilize the specific progressive likelihood
defined as

fL(x, γ) := [fL(x)]γ .

Based on this, we can simplify the recursion (9) to

fe(x, γ + ∆) =
c(γ + ∆)

c(γ)
· [fL(x)]∆ · fe(x, γ) . (10)

Performing one recursion step based on intermediate Gaussians
is split into three parts. First, we compute a Dirac mixture
approximation with M equally weighted samples of the current
intermediate Gaussian

fe(x, γ) ≈ N (x; x̂(γ),C(γ)) ≈ 1

M

M∑
i=1

δ(x− x(γ)
i ) . (11)

Second, by plugging this into (10), we obtain a Dirac mixture
approximation of the next intermediate posterior state estimate

fe(x, γ + ∆) ≈
M∑
i=1

c(γ + ∆)

c(γ) ·M
· [fL(x

(γ)
i )]∆︸ ︷︷ ︸

:= w̃i(γ+∆)

· δ(x− x(γ)
i )

=

M∑
i=1

w̃i
(γ+∆) · δ(x− x(γ)

i ) .

After normalizing the weights w̃i(γ+∆) according to

w
(γ+∆)
i :=

w̃i
(γ+∆)∑M

j=1 w̃j
(γ+∆)

=
[fL(x

(γ)
i )]∆∑M

j=1[fL(x
(γ)
j )]∆

, (12)

we can compute the sample mean

x̂(γ+∆) =

M∑
i=1

w
(γ+∆)
i · x(γ)

i

as well as the sample covariance

C(γ+∆) =

M∑
i=1

w
(γ+∆)
i · (x(γ)

i − x̂
(γ+∆))(x

(γ)
i − x̂

(γ+∆))T

of the next intermediate posterior fe(x, γ + ∆). Finally, we
approximate the next intermediate posterior with the Gaussian

fe(x, γ + ∆) :≈ N (x; x̂(γ+∆),C(γ+∆)) . (13)

By starting the recursion with the prior Gaussian state estimate
fp(x), i.e., setting fe(x, 0) = fp(x), we can recursively
compute several intermediate Gaussians (13) until the desired
Gaussian approximation of the posterior fe(x) is reached.

On the one hand, this approach introduces further density
approximations as each, in general, non-Gaussian intermediate
state estimate fe(x, γ) gets approximated as such. That is,
the final posterior state estimate is the result of consecutive
Gaussian approximations. Hence, these approximation errors
will accumulate to the final posterior state estimate. On the other
hand, when using an adequate Gaussian sampling technique and
selecting proper step sizes, this approach solves the problem
of sample degeneration in an elegant and efficient way.

B. Gaussian Sampling

Performing a recursion step requires sampling of a multi-
variate normal distribution. Besides simple random sampling,
there exist several ways to compute deterministic Gaussian
Dirac mixture approximations, such as the sampling methods
used by the UKF, the GF, or the CKF. However, we rely
on a deterministic sampling approach based on the so-called
Localized Cumulative Distribution (LCD) proposed in [24],
[25], which is also successfully used in the S2KF. It allows
computing a Dirac mixture approximation of a normal distribu-
tion with an arbitrary number of samples placed in the entire
state space. This is achieved by turning the approximation
problem into an optimization problem. Fig. 2 shows such a
Dirac mixture approximation with 15 samples using the LCD
approach. We use the LCD approach to compute standard
normal approximations offline and only transform them online,
using the Mahalanobis transformation [26], to any normal
distribution. By doing so, no significant overhead is caused by
the Gaussian sampling (11) during filter execution.

C. Step Size Control

After solving the problem of sample degeneration by using
deterministic Gaussian resampling, the remaining issue is to
determine the number of recursion steps and their respective
step sizes ∆ for one measurement update. On the one hand, the



larger the step sizes, the smaller the total number of intermedi-
ate Gaussian approximations is, and thus, less approximation
errors accumulate until the final posterior Gaussian is reached.
On the other hand, a larger step size will result in a larger error
caused by one intermediate Gaussian approximation, which
in turn negatively affects the overall approximation error of
the measurement update. Consequently, we have to make a
tradeoff such that each recursion step is as large as possible
but as small as necessary to keep the overall approximation
error of a measurement update small.

In theory, this boils down to finding an individual and optimal
sequence of recursion steps for each measurement update that
minimizes the deviation between true posterior state estimate
(3) and the estimate obtained by the recursion introduced
in Sec. IV-A. Unfortunately, such approach is intractable,
as the true posterior state estimate is not at hand (this is
what we actually pursue). As a consequence, we have to
rely on a suboptimal approach. One solution would be to
rely on many small recursion steps. However, this may lead
to superfluous intermediate Gaussian approximations for less
informative measurements, and as a result, to an unnecessarily
large accumulated error and high computation time. Another
option would be to use few large steps with the result of a too
slight emphasis for measurements containing much information,
which can lead to a very diminished estimation quality. Hence,
none of these extreme cases should be used.

In order to put more emphasis on measurements containing
much information and process less informative measurements
quickly, a variable amount of recursion steps with individual
step sizes for each recursion step is required. As with the
PGF 42, we achieve this by using an automatic step size
determination for each recursion step based on the most down-
weighted sample weight

w(γ+∆)
s := min {w(γ+∆)

i | ∀ 1 ≤ i ≤M ∧ w(γ+∆)
i > 0}

and most up-weighted sample weight

w
(γ+∆)
l := max {w(γ+∆)

i | ∀ 1 ≤ i ≤M ∧ w(γ+∆)
i > 0} .

By forcing the ratio between them to be

R
!
=
w

(γ+∆)
s

w
(γ+∆)
l

=
[fL(x

(γ)
s )]∆

[fL(x
(γ)
l )]∆

,

with ratio R ∈ (0, 1), the step size ∆ is determined by

∆ =
log(R)

log(fL(x
(γ)
s ))− log(fL(x

(γ)
l ))

. (14)

The smaller the forced ratio R, the large will be the step size ∆.
A value of R = 1 would imply that all samples are equally
weighted, and hence, the recursion step would not continue
the progression. The other extreme, a value of R = 0 which
implies w(γ+∆)

s = 0, would prohibit any useful value for ∆,
and thus, we have to ensure a positive w(γ+∆)

s . However, unlike
the PGF 42, we have to deal with a general likelihood, and
hence, zero sample weights might occur as well. We solve this

−2 −1 0 1 2

−2

−1

0

1

2

x1 →

x
2
→

Figure 2: Sampling of a 2D standard normal distribution using
the LCD approach with 15 samples (blue dots) [15].

issue by excluding all zero sample weights from the set of
possible weight extremes.

Solving Eq. (14) only requires the smallest and largest log-
likelihood value. For reasons of numerical stability, working
with log-likelihoods is preferred anyway, and thus, does not
result in any problem here.

After determining ∆, the actual progressive likelihood
evaluations can be obtained according to[

fL(x
(γ)
i )

]∆

= exp(log(fL(x
(γ)
i )) ·∆) ∀ 1 ≤ i ≤M

in order to compute the required normalized sample weights
using (12).

The PGF 42 treated the ratio R as a freely configurable filter
parameter. However, it was pointed out that increasing the used
number of samples while leaving the forced ratio R constant
leads to worse estimation results. This is an unintuitive behavior,
as one should expect that using more samples would lead to
better estimation results. This phenomenon is caused by the fact
that more samples (with constant R) let the recursion require
more steps, and thus, induces more intermediate approximation
errors. This fact implies that a ratio has to be selected in such
a way that it works well with the employed number of samples.
Evaluations showed that a heuristic, where the forced sample
weight ratio is set to

R :=
1

M
,

works very well. A positive side effect of setting R in this way
is that the number of samples M used per recursion step is the
only remaining filter parameter, which simplifies filter usage.

Besides the approach forcing a sample weight ratio, the
PGF 42 additionally relies on a so-called forward-backward
mechanism to determine the step size ∆. Here, the idea is that
the deviation between two successive intermediate Gaussian
approximations has to be small [16]. Unfortunately, this may
result in many recursion steps with small step sizes, and thus,
exacerbates the problem that many small errors can lead to a
large approximation error in total. Consequently, we dropped
this approach here and only rely on a step size determination
based on the forced sample weight ratio R.
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(a) Recursion start (γ = 0).
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(b) After 4 recursion steps (γ = 0.1).

−4 −3 −2 −1 0 1 2
0

0.2

0.4

0.6

0.8

1

x →

fL
(x
,γ

)
/
f
e
(x
,γ

)
→

(c) After 9 recursion steps (γ = 1).

Figure 3: Example measurement update conducted by the new filter. Progressive likelihoods (green), true posterior Gaussian
state estimate (blue), intermediate Gaussian approximations (orange), and reweighted Gaussian samples (black arrows).

D. The New Progressive Gaussian Filter

Algorithm 1 summarizes the measurement update procedure
of the new Progressive Gaussian Filter (PGF) that works with
explicit likelihood functions. It encompasses the introduced
recursion based on progressive likelihoods with intermediate
Gaussian approximations, Gaussian resampling using the LCD
approach, and the proposed step size control with automatic
selection of the forced weight ratio R. As a result, the new
PGF only has one easy to use tuning parameter, namely the
number of samples M used per recursion step.

Finally, we reconsider the measurement update example
from Sec. II (see Fig. 1). The estimation result produced by
the new PGF, when using only 5 samples per recursion step, is
depicted in Fig. 3. One should note that the final posterior state
estimate (Fig. 3c) is much closer to the true posterior state
estimate than the result obtained by the naı̈ve sample-based
approach, while using only 9× 5 = 45 samples.

Algorithm 1 Progressive Gaussian Filter (PGF)

1: Set x̂ = x̂pk,C = Cp
k, γ = 0

2: while γ < 1 do
3: Compute samples {xi}i=1,...,M using LCD(x̂,C)

4: li = log(fLk (xi)) ∀ 1 ≤ i ≤M
5: lmin = min {li | ∀ 1 ≤ i ≤M ∧ li > −∞}
6: lmax = max {li | ∀ 1 ≤ i ≤M ∧ li > −∞}
7: ∆ = − log(M) / (lmin − lmax)

8: if γ + ∆ > 1 then
9: ∆ = 1− γ

10: end if
11: fLk (xi)

∆ = exp(li ·∆) ∀ 1 ≤ i ≤M
12: wi = fLk (xi)

∆ /
∑M
j=1 f

L
k (xj)

∆ ∀ 1 ≤ i ≤M
13: x̂ =

∑M
i=1 wi · xi

14: C =
∑M
i=1 wi · (xi − x̂) · (xi − x̂)T

15: γ = γ + ∆

16: end while
17: Set x̂ek = x̂,Ce

k = C

V. EVALUATION

We evaluate the new PGF against the PGF 42 and two
Particle Filters using extended object tracking. For that purpose,
we consider estimating length and position of a stick target
over time. The 2D system state is modeled as xk = [lk,pk]T,
where lk denotes the stick length and pk the stick position
(see Fig. 4). We model the relation between state and noisy
measurements originating from the stick as a spatial distribution
according to

yk = h(xk,v, r) = lk · v + pk + r ,

with state-independent additive noise r ∼ N (0, 0.152) and
multiplicative noise v ∼ U(−1, 1) [27], [28].

pk

lk

Figure 4: Stick target with extent lk and position pk.

It is important to note that Nonlinear Kalman Filters are
not capable of handling this measurement model without
modifications [27], and hence, nonlinear estimators, such as
the new PGF, are required for estimating the state xk correctly.
The corresponding likelihood function is given as

fLk (xk) =

∫
fr(ỹk − (lk · v + pk)) · fv(v) dv ,

where fr(·) and fv(·) denote the probability density functions
of r and v, respectively. In order to allow system changes
over time, we employ a simple identity system model, i.e., a
random walk

xk = a(xk−1,w) = xk−1 + w ,

with state-independent white noise w ∼ N (0,diag(0.5, 0.1)).
We compare the following estimators:
• The new PGF using 10 samples per progression step.
• The PGF 42 using 250 samples per progression step, a

ratio R = 0.1, and a maximum allowed deviation of 0.5.
• The Gaussian Particle Filter (GPF) [9] using 500 particles

with prior state estimate as proposal density.
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(a) Averaged estimated length. The new PGF can follow the length jumps very quickly.
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(b) Averaged estimated position. The Particle Filters are incapable of following the fast changes.
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(c) Minimum, maximum, and average number of recursion steps required by the new PGF.

Figure 5: Stick tracking evaluation results using 50 measurements per update. Stick target ground truth (black solid lines), the
new PGF (blue dashed lines), the PGF 42 (magenta dashed lines), SIR-PF (green dash-dotted lines), and GPF (red dotted lines).

• The Sequential Importance Resampling Particle Filter
(SIR-PF) [2] also using 500 particles.

All filters are initialized with mean x̂e0 = [1, 1]T and covariance
Ce

0 = I2. We simulate the true target state over 50 time steps,
where the target moves back and forth in a sinusoidal way and
changes its length several times (see black lines in Fig. 5a and
5b). On each time step, we process 50 noisy measurements
at once resulting, together with the relatively small additive
noise r, in a very narrow likelihood. As a consequence, the
need for a progressive filtering method becomes more evident
as sample degeneration is even more present in such a case.

The evaluation results of 100 Monte Carlo runs are depicted
in Fig. 5. Regarding the target length, the new PGF estimates
the length over all time steps very well. It can follow the
straight jumps at time steps 11, 21, and 31 quickly. In contrast,
the PGF 42 is not capable of estimating the target length as
its estimate is always too small. The GPF needs much time
to converge to the correct lengths, especially at the beginning
and at time step 11. The reason is sample degeneration. In
these cases, there is only a small intersection of the likelihood

support and a significant amount of the probability mass
of the prior state estimate, and hence, not enough samples
remain to compute a proper posterior state covariance matrix.
Consequently, the state estimate has to be left unchanged.
The SIR-PF copes better with this problem, as one non-zero
reweighted sample is enough for a valid posterior state estimate.
Nevertheless, both Particle Filters have problems estimating the
length correctly and drift away from the true length regularly.

The stick position estimates are very similar to the length
estimates. After the first time step, the new PGF is very close to
true target position, whereas both Particle Filters, and especially
the GPF, need some more time steps for convergence. In general,
the new PGF can follow the quick target position changes very
well. The Particle Filters behave much differently. They are
incapable of following the quick changes, in particular on
time steps 10-13 and 30-33. Also the PGF 42 has problems
estimating the position apart from time steps 30 to 43.

When looking at the number of progression steps required by
the new PGF, one should note that the number highly depends
on the changes of true target state, that is, how much new



information is given by the measurements received from the
target. The most progression steps are required at time step
11. Here, the target length changes rapidly which causes a
likelihood support far away from the prior state mean (very
informative measurements). Averaged over all 50 time steps,
the new PGF only needs 11 progression steps. As 10 samples
are used per step, only 11× 10 = 110 likelihood evaluations
are required on average per measurement update. In contrast,
both Particle Filters constantly need 500 evaluations and their
estimation results are much worse than that of the new PGF.
The PGF 42 requires on average over 300 progression steps,
which causes very long runtimes and emphasizes the advantages
of the new PGF.

VI. CONCLUSIONS

In this paper, we presented a new sample-based Gaussian
filter as a variant of the PGF 42. Instead of linearizing the
measurement model, the new filter relies on a progressive
filtering technique using explicit likelihood functions. After
describing the problem of nonlinear state estimation and
sample degeneration as main motivation for the new filter,
we recapitulated the idea of progressive filtering. Based on this,
we took up the approach of the PGF 42 to formulate a recursive
progression with intermediate Gaussian approximations that
works with explicit likelihood functions. Together with an
automatic step size determination, we define the measurement
update algorithm of the new PGF. Compared to the PGF 42,
the number of utilized samples is the only filter parameter,
which allows quick and intuitive adjustments in order to achieve
high-quality estimation results or short runtimes.

The evaluation using extended object tracking emphasizes
the advantages of the new PGF over the PGF 42 in case of
non-additive noise and when processing multiple measurements
per update. Additionally, the new PGF also outperformed
established Particle Filters. As the new PGF only requires a
log-likelihood, it can directly replace PFs whenever unimodal
state estimates are sufficient. Moreover, there is no need
for demanding optimizations such as finding good proposal
densities.
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