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Abstract—We consider closed-loop feedback (CLF) stochastic
model predictive control of nonlinear time-invariant systems with
imperfect state information. In this class of control problems,
future information feedback is considered in the decision making
process, and thus, the effect of the control influencing the state
uncertainty is taken into account. The main challenge in the
solution is to find a good approximation to the arising stochastic
dynamic programming problem, which is computationally not
tractable. In this work, future information is considered in the
form of conditional state probability densities. Thus, the objective
is it to optimize the state and its uncertainty as a combined
problem. We propose to discretize the state space by a novel
scenario generation approach based on deterministic sampling.
A distance based threshold determines the narrowness of the
discretization. The dynamic programming problem is formulated
such that the approximate cumulative control cost function can
be explicitly evaluated offline. The online calculation consists of
a one-step prediction and the interpolation of the explicit cost
function in order to calculate the control input. The effectiveness
of this novel method is presented by means of a simulation.

I. INTRODUCTION
The main target of stochastic model predictive control is

to optimize the behavior of a system based on a stochas-
tic model by minimizing a cost function. In particular, this
work addresses closed-loop feedback (CLF) stochastic model
predictive control, where the controller calculates a control
policy that incorporates information about all possible future
feedback information. In the considered stochastic framework,
we assume no perfect state information, but feedback is
only provided through disturbed measurements of the system
state. In literature, this is referred to as the imperfect state
information [1] or partial observability [2]. In CLF control,
state estimation is integrated into the control problem, where
an optimal control policy implicitly optimizes the state and
its uncertainty together. This problem formulation leads to the
optimization of functions, in order to calculate the optimal
policy [1]. CLF control is solvable exactly only for special
cases, such as the linear-quadratic-Gaussian (LQG) control
problem or systems with a finite number of states and inputs.
We consider general nonlinear systems, where in most cases
control has dual effect. This means that in addition to the
system state, the control also affects the state uncertainty and
thus, the state estimation [3]. While in cases ignoring the
uncertainty and assuming certainty equivalence (CE) yields a
good approximation of the optimal CLF controller, in others
a CE controller might be not capable of controlling a system
due to insufficient information gain. Approaches to solving the
problem of insufficient measurement information range from

application of sophisticated and possibly expensive sensors
(e.g., estimation of tire-road friction coefficient [4]) to using
human-in-the-loop approaches in unfavorable sensing environ-
ments (e.g., control of irrigation canals [5]). On the other
hand, constrains on production cost and technical restrictions
motivate novel control approaches capable of handling the dual
effect. In the following, we give a quick overview over the
current literature in this area.

Explicit dual control uses a modification of the cost
function. The original control objective is calculated by a
point estimate and extended by adding a cost penalizing the
uncertainty explicitly. Not considering uncertainty as part of
the control objective may lead to an inappropriate weighting
of the uncertainty, since it is not considered in the environment
of the original control objective [6].

Assuming only discrete finite sets of inputs and measure-
ments, the optimal closed-loop policy can be calculated by
generating a search tree by means of all combinations of inputs
and measurements over the control horizon. This approach has
an exponential growth over the control horizon and thus, is
limited to a short horizon [7].

This work is also inspired by random scenario generation
used in control optimization [8], [9], [10]. This approach has
gained much attention in the recent years, since bounds on
the number of required samples for a guaranteed quality have
been established [8]. Unfortunately these approaches assume
systems with direct accessibility of the state, and thus cannot
be used for the considered system class. In order to reduce the
amount of resulting scenarios offline, the Wasserstein distance
can be utilized to delete the scenario most likely to be covered
by other scenarios. This can be repeated until a desired amount
of scenarios has been deleted [11]. A different approach is to
use vector quantization, where the scenarios are represented as
part of a code book. Reduction is achieved by consolidation
of state probability densities in Voronoi cells [12].

Originally considering discrete state spaces, and thus, his-
torically differently motivated, POMDPs (partially observable
Markov decision processes) have been extended to continuous
state spaces in recent years [2], [13], [14]. In this field of
research, the space of estimated states is called belief space and
the cost function is explicitly computed offline by reinforce-
ment learning methods. The belief space can be discretized by
Monte Carlo exploration [15] or discretization of parametric
density representations [13], [14]. Furthermore, Monte Carlo
methods used in the online estimation and parametric densities
representations of the belief space can be combined using the
Kullback-Leibler divergence [16].



A. Contributions
The calculation of a CLF policy involves the evaluation

of a cumulative cost function. The key idea of the presented
work is to apply deterministic scenario generation in contrast to
Monte Carlo approaches. This ensures a good coverage of the
reachable state space. Utilization of a deterministic sampling
procedure allows for the consideration of arbitrary probability
densities underlying the system. A pruning approach based
on the Wasserstein distance, preserves only scenarios with
sufficient dissimilarity and thereby, considerably reduces the
complexity and renders the problem tractable. Besides using
the same distance as in [11], the presented work utilizes
pruning during the scenario generation, instead of reducing the
number of scenarios afterwards. As a complement to the new
scenario generation approach, we introduce a novel calculation
procedure for the online system control. The optimization is
performed by the minimization of approximated cost, in terms
of a one-step prediction and interpolation of predicted states
picked offline by the scenario generation.

B. Outline of this Paper
The remainder of this work is structured in a top down fash-

ion. First, in the following section, the problem is stated for-
mally by introducing the considered system class, the closed-
loop control problem, and assumptions made. In Sec. III, we
formulate the online optimization of the closed-loop optimal
control input by means of the optimization of a one-step
prediction. This can only be computed given the cumulative
cost function for the future cost is known, which gives rise to
Sec. IV. Here, we present a method for the approximation of
future cost evaluated for a finite set of predicted states. Sec. V
introduces the scenario generation approach and give details on
the offline calculation of the cumulative cost function. Finally,
in Sec. VI, the presented approach is evaluated and Sec. VII
concludes this work.

II. PROBLEM FORMULATION
In this section, the formal problem is stated in three

parts. First, the considered system class of nonlinear stochastic
discrete-time measurement feedback systems is introduced.
Second, the general closed-loop stochastic model predictive
problem is stated. Finally third, the general problem is relaxed
by assuming that information used by the controller can
be sufficiently represented by a conditional state probability
density.

A. Considered System
Let us denote k as the current time step of a discrete-time

setup. We consider stochastic nonlinear systems of the form

xk+1 = a(xk, uk,wk) , (1)

where the continuous-valued random vector xk ∈ X is the
system state characterized by the probability density fxk (xk).
The probability density fx0 (x0) characterizing the initial state
x0 is assumed to be known. The also continuous-valued
control input vector uk ∈ U is chosen from the bounded set
[umink , umaxk ]. The state is propagated over time by the system
function a : X × U ×W → X and is affected by i.i.d. noise
wk ∈ W , with wk ∼ fwk (wk).

The system state xk is not directly accessible, but can be
measured by the nonlinear measurement function

y
k

= h(xk,vk) , (2)
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Fig. 1. Visualization of the considered example system. The figure shows
the actual system state (red), its corresponding state estimate (green), and a
distance measurement (blue).

where y
k
∈ Y is the measurement output characterized by

fyk (y
k
) and h : X × V → Y denotes the measurement

function. The measurement itself is disturbed by the arbitrary
white noise vk ∈ V , with vk ∼ fvk (vk), which is also state-
independent.

Example System: Autonomous Vehicle in a Tunnel
Let us visualize this system class by a simple example. We
assume an autonomous car driving through a straight tunnel
with constant speed. We are only interested in the cars position
relative to the walls; thus, we can describe the system by the
two-dimensional model

xk+1 =

[
xk+1

φk+1

]
=

[
xk + sin(φk + uk)

φk + uk

]
+

[
wx
k

wφ
k

]
,

where the system state xk = [xk,φk]
T is composed of the

position, which is given relative to the center of the tunnel
profile, and the orientation. The two-dimensional noise vector
is additively disturbing the translational and the rotatory part of
the state, respectively. The control input uk is the steering input,
changing the orientation. The car is equipped with a distance
sensor measuring the closest distance to an obstacle, i.e., one
of the two tunnel walls. The sensor model given by

yk = xwall − |xk|+ vk

where xwall denotes the distance of the walls relative to the
center of the tunnel profile and vk is an additive noise term. This
example system is depicted in Fig. 1.

B. Closed-Loop Control
We consider closed-loop control policies, which take into

account that future decisions will be based on more available
information. This generally leads to the optimization of func-
tions mapping information to control inputs. Let us denote the
available information at time step k as

I0 = {fx0 } ,
Ik ={fx0 , y1

, y
2
, . . . , y

k
, u0, u1, . . . , uk−1} ,

for k = 1, 2, . . ., where Ik is called the information set.
An admissible policy π consists of a sequence of functions



π = {µ0, µ1, . . .}, where each function µk maps the available
information Ik to a system input uk. The objective is to find an
optimal policy π∗, which minimizes the expected cumulative
cost function

Jπ = IE
x0,wk,vk

k=0,...,N−1

{
γN g̃(xN ) +

N−1∑
k=0

γkg(xk, µk(Ik))

}
,

(3)
where g : X × U → R+ denotes the application-specific one-
step cost mapping every state-input pair to a real number and
g̃ : X → R is the terminal cost. The control horizon is denoted
by N and γ ∈ (0, 1] is the step-discounting factor. If the
horizon N is chosen as N →∞, the discounting factor should
be γ < 1. Thus, we are looking for π∗ such that,

Jπ
∗

= min
π∈Π

Jπ ,

where Π is the set of all admissible policies.
Using Bellman’s principle of optimality, the minimal cost

Jπ
∗

and consequently the closed-loop optimal input sequence
U∗ = (u∗0, u

∗
1, . . . u

∗
N−1), can be obtained by

Jπ
∗

= min
u0

IE

{
g(x0, u0) + γmin

u1

IE
{
g(x1, u1) + γ2 min

u2

. . .

. . .+ γN−1 min
uN−1

IE{g(xN−1, uN−1) + γN g̃(xN )|IN−1} . . .

. . . |I2
}
|I1
}
|I0
}
,

which are nested optimization problems minimizing the ex-
pected cost conditioned on available information at each time
step. Thus, the problem can only be solved by starting the cal-
culation from the innermost expectation. This can be restated
in the backward-recursive formulation based on the concept of
dynamic programming, given by

Jπ
∗

N−1(IN−1) = min
uN−1

IE
{
g(xN−1, uN−1) + γg̃(xN )|IN−1

}
,

Jπ
∗

k (Ik) = min
uk

IE
{
gk(xk, uk) + γJπ

∗

k+1(Ik+1)|Ik
}
.

(4)
In favor of a better readability, we have omitted the random
variables x0,wk,vk in the expectation operators above. By
performing this calculation, we get the optimal policy, and
thus, can generate the closed-loop optimal control inputs. Let
us elaborate the explanation why closed-loop optimal control
is so important on the introduced example.

Example System: Autonomous Vehicle in a Tunnel
The control problem is to keep the car safe from crashing into a
wall. Hence, the cost function is minimal if the vehicle is farthest
from the walls (i.e., closest the center of the tunnel profile). In
this scenario, the one-step cost function is given by the quadratic
cost

g(xk, uk) = xTkQxk + uTkRuk ,

where xk = [xk, φk]
T is the state, uk denotes the control input

as given in the previous section, and Q and R are weighting
matrices.

Having established the objective in terms of the cost
function, it is easy to see that the cost optimal position for one
step is xk = [0, 0]T . In order to see, why this is not the optimal
position to actually hold onto, we need to examine the sensor
model, which has been illustrated in Fig. 2. The sensor model
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Fig. 2. Illustration of the observability problems in the considered example
scenario. Positioning the mean of the state estimate on the cost minimal tunnel
center results in no information update of the mean (left). Controlling the state
estimate slightly off the center brings about a change of this situation (right).

is a function symmetric around the center of the tunnel profile,
i.e., the previously established cost optimal position. Thus,
having an information update showing a deviation from the
tunnel center (i.e., y 6= xwall), we have no information about
the direction of the deviation. Thus, the information update is
equally probably on both sides and the mean of the estimation
stays unchanged. This problem can be avoided by holding a
position off the center, which brings about the optimal control
policy.

C. Structural Assumption
In general, the information set grows over time, as more

and more information becomes available. In this work, we
assume that the controller has no direct access to the mea-
surement feedback y

k
. A decision can only by based on the

conditional state probability density xek ∼ fxk (xk|Ik), as a
representation of the information set. The assumed system
structure is illustrated in Fig. 3. We label the random-vector
by the superscript e as in estimated state. The density is
recursively calculated using Bayes’ law according to

fxk (xk|Ik) =
fLk (ŷ

k
|xk) · fxk (xk|Ik−1, uk−1)∫

fLk (ŷ
k
|xk) · fxk (xk|Ik−1, uk−1) dxk

,

system sensor delay

Bayesian estimatorstochastic controller

Fig. 3. The system structure considered in this work. The controller has
not direct access to the measurement feedback, but has to compute decisions
based on the conditional state probability density.



where fLk (ŷ
k
|xk) is the likelihood function for a given mea-

surement ŷ
k
. It is derived from the conditional probability

density

fyk (y
k
|xk) =

∫
δ(y

k
− h(xk, vk)) · fvk (vk) dvk ,

which characterizes the probability of occurrence for all pos-
sible measurements y

k
given the measurement model (2) and

the prior xpk ∼ fxk (xk|Ik−1, uk−1). We marked the prior by
the superscript p as in predicted state. The probability density
fxk (xk|Ik−1, uk−1) is calculated by the Chapman-Kolmogorov
equation according to

fxk (xk|Ik−1, uk−1) =

∫
fTk (xk|xk−1) · fxk (xk−1|Ik−1) dxk ,

where fTk (xk|xk−1) is the state transition density for the
system model (1), given by

fTk (xk|xk−1) =∫
δ(xk − a(xk−1, uk−1, wk−1)) · fwk−1(wk−1) dwk−1 .

The assumption that the information set can be represented
by a conditional state probability density implies a priori
separation of state estimation and control. Although an implicit
consideration of the estimation cost in the control loop is pre-
served, we would like to emphasize that this is a special case
of closed-loop optimal feedback control, where the calculation
of the cost function (4) can be formulated as

Jπ
∗

k (Ik) = Jπ
∗

k (xek) . (5)

This formulation is only optimal under the assumption that the
state estimate is a sufficient statistic for the information set.

III. SEPARATION OF PREDICTION AND ESTIMATION
COSTS

For the considered time-invariant models (1) and (2), the
time-invariant cost function (3), and the sufficiency assump-
tion (5), the optimal admissible policy can be reduced to a
stationary policy of the form π∗ = {µ∗, µ∗, . . .}, where µ∗

is now mapping estimated states to the optimal system input,
i.e., µ∗(xek) = u∗k. Consequently, we denote the time-invariant
optimal cost as Jπ

∗
(xk).

In order to specify the function µ∗(xek), we first subdivide
Jπ
∗
(xek) into two parts. For now, let us consider the cost of

predicted states xpk. Since, we cannot assume any information
about the measurement, the expected cost for xpk is calculated
over the expectation of all possible measurements by

Jπ
∗
(xpk) = IE

y
k

{
Jπ
∗
(xek)|xpk

}
. (6)

Using this formulation, we can now calculate the cost of an
estimated state Jπ

∗
(xek) recursively, subject to the predicted

future state, by

Jπ
∗
(xek) = min

uk

IE
xe

k

{
g(xek, uk) + γJπ

∗
(xpk+1)|xek, uk

}
. (7)

In principle, this means that if we know the future cost for
all reachable predicted states of a given estimated state, we
can calculate the closed-loop optimal system input uk by
optimizing over a one-step prediction evaluating (7). Thus,
knowledge of future measurements is unnecessary as long

as we can evaluate the cost function (6). We will exploit
this fact, by an explicit representation of (6), which can
be calculated offline and compute the optimal state-to-input
mapping function by

µ∗(xek) = arg min
uk

IE
xe

k

{
g(xek, uk) + γJπ

∗
(xpk+1)|xek, uk

}
,

(8)
where the main assumption is that Jπ

∗
(xpk+1) is known.

IV. APPROXIMATION OF FUTURE COST
The evaluation of µ∗(xek), as introduced in the previous

section, is unfortunately computationally not tractable. Al-
though, the estimated state, in theory, captures all information
relevant to the controller accumulated up to every time step k
for many systems, this calculation can only be performed in
special cases. In general, the resulting state densities can take
arbitrary shapes and therefore, are not easily represented. In
recent years, many filtering techniques have been developed
in order to cope with this problem and render the filtering
problem tractable through different approximations. In general,
arbitrary probability densities can be meaningfully approxi-
mated by Dirac mixture densities of the form

f(x) =

L∑
j=1

ω(j) · δ
(
x− x(j)

)
,

where x(j), for j = 1, ..., L, denotes the position of the jth
Dirac component with the corresponding positive weight ω(j),
with

∑L
j=1 ω

(j) = 1. In this work, we assume the weight
to be equal for every Dirac and thus, ω(j) = 1/L. This is
a widely used representation for probability density functions
and is utilized in many different Bayesian filter approaches,
to name the least: The Unscented Kalman Filter (UKF) uses
Diracs (or sigma points, as they are often called in this context)
for statistical linearization [17]. A similar approach is taken by
the Smart Sampling Kalman Filter (S2KF), which uses more
Diracs for approximation and thus achieves a better quality
[18]. The Progressive Gaussian Filter 42 (PGF42) uses a
progressive approach to update sample positions and performs
well with strong nonlinearities [19]. Finally, the particle filter
is a good approach for multi-modal densities, but needs a large
number of samples [20].

Besides the calculation of the estimated state, assumptions
about the cumulative cost function have to be satisfied. For a
continuous-valued state space X with noise wk affecting the
state and a continuous-valued system input uk ∈ U , there are
infinitely many reachable predicted states xpk+1. Furthermore,
Jπ
∗
(xpk+1) has to be evaluated for infinitely many future

possible measurements in order to calculate the expected cost.
Thus, the assumption that Jπ

∗
(xpk+1) cannot be satisfied in

this general formulation.
In the first instance, let us assume that Jπ

∗
(xpk+1) is

not given everywhere, but only its value at a finite set of
representative predicted states to be known. We introduce an
approximation J̃(xpk+1) ≈ Jπ

∗
(xpk+1), where we use known

values close to the predicted xpk+1. We propose to use the
Wasserstein distance, which we only consider for the here
relevant Dirac mixture densities.

Definition 1 (Wasserstein distance) [21] Let us consider two
random variables xs and xt characterized by the equally



weighted Dirac mixture densities fs(xs) =
∑M
i=1

1
M δ(x− si)

and ft(xt) =
∑M
j=1

1
M δ(x − tj), respectively, where the

positions of the Dirac components are given by the two sets
S = {s1, . . . , sM} and T = {t1, . . . , tM}. The Wasserstein
distance for Dirac mixture densities is calculated by

D(xs,xt) =

(
1

M
inf

λ∈ΛM

(
M∑
i=1

d
(
si, tλ(i)

)q))1/q

, (9)

where the infimum is computed over all permutations ΛM of
the set {1, . . . ,M}. The notation tλ(i) is the i-th element of
the permutation λ of T .

The computation of the optimal permutation can be efficiently
implemented using the Hungarian algorithm [22]. In this work,
we use the 2nd order Wasserstein distance and the Euclidean
distance as metric d(·, ·).

Having established the distance between two Dirac mix-
ture densities, we evaluate J̃(xpk+1) by finding the k-nearest
neighbor of xpk+1, where the cost function is known. We
will use n neighbors, which will be denoted by xp,1, . . .xp,n

and their calculated Wasserstein distances to xpk+1 will be
denoted by d1, . . . dn, respectively. The approximation can be
calculated by a weighted sum of pre-calculated values of the
cost function, i.e.,

J̃(xpk+1) ≈
n∑
i=1

ωi · Jπ
∗
(xp,i), (10)

where ωi are the weights consisting of the normalized distances
ωi = di/

∑n
i=1 d1 + . . .+dn. With this approximation we can

calculate the state-to-input function (8) and thus, approximate
the optimal policy.

V. EXPLICIT CALCULATION OF THE COST FUNCTION
Until now, we have assumed that we already have an

explicitly calculated cost function Jπ
∗
(xpk+1), comprising the

cumulative cost of all future time steps. In this section, we
want to concentrate on the discretization of this cost function
by a finite set of densities and the computation of their
corresponding cost.

A. Deterministic Scenario Generation
In order to discretize the cost function, we use a novel

scenario generation approach based on a deterministic ap-
proximation of the noise probability density distributions. The
computational cost is highly dependent on the amount of real-
izations. Thus, we want to approximate the original distribution
as roughly as possible, while still maintaining a representative
set of samples. This is done by minimizing a distance measure
called Localized Cumulative Distribution (LCD) distance [23],
which is a kernel based distance for arbitrary probability
densities with equal means. In the original work, box kernels
are used [23]. Later works consider Gaussian type kernels
[24], [25]. Computing an equal weighted Dirac mixture density
as an approximation of an arbitrary probability density we
minimize the distance between both densities by means of
the optimal position of the Dirac components. This gives rise
to a deterministic discrete approximation, where the number
of Diracs can be chosen arbitrarily. For approximations of
Gaussian densities, the gradient of the distance used in the
optimization, can be calculated in closed form [25].

... ... ...

pruning

pruning

pruning

pruning

Fig. 4. Illustration of the deterministic scenario generation approach, which
exploits the similarity between states and thereby, implementing an effective
pruning method.

Having sampled the noise, we finally choose a finite set
of possible starting positions and use a discrete set of inputs
to emulate the system. The emulation is done for both, the
actual system and the estimation, just like the actual system
illustrated by Fig. 3. Later although, only the probability
densities, resulting from the estimation, have to be saved.
The emulation of the system serves for the generation of
meaningful measurements for the estimation. The emulation
can be either performed until the complete state space has been
covered, or for an arbitrary but sufficiently long time horizon.

B. Effective Pruning for Scenario Generation
Branching several possible outcomes each time step in

every path of the presented scenario generation approach,
leads to a computationally highly demanding problem. An
exhaustive calculation implicates a tree structure, where the
amount of calculations is growing exponentially. Hence, the
presented approach relies on an effective pruning algorithm,
which allows the scenario generation to cover the relevant
state space consistently, and at the same time prevent an
excessive calculation. The main idea is to define a saturation
value, which indicates a sufficiently dense coverage of the
state space. For this saturation value, we define a threshold θ,
which indicates the minimal distance between two explicitly
calculated predicted states of the cost function. We again use
the Wasserstein distance (9) and thus, we require

D(xp,i,xp,j) > θ , (11)

for all i 6= j. In the following, we will describe a pruning
procedure exploiting θ, in the sense that the possibly largest
amount of paths are preserved, and paths close in state space,
i.e, violating requirement (11), are combined by discarding
states.



Let us denote X = {xp,1,xp,2 . . .} as the set of predicted
states saved for the approximation of the cost function (10). For
each possible pair of elements of X the requirement (11) holds.
We predict one step of every path using the scenario generation
described in the previous section. This can be interpreted as
a breadth-first approach in the tree-structure, which leads to a
new set of predicted states X̃ = {x̃p,1, x̃p,2 . . .} potentially to
be integrated into X . The optimal procedure, as stated above,
is to find a subset of X̃ with the largest amount of elements.

First, we discard all elements of X̃ , which violate (11)
with at least one element of X . Second, for the remaining
elements, we calculate the distance between each other. Finally,
we add the largest subset of states xp,i to X̃ that satisfy (11).
This can be interpreted as a graph problem, where elements
are nodes that are connected, if they are mutually exclusive.
Thus, we want to disconnect a graph by deleting nodes, while
maintaining as many nodes as possible. This is equivalent
to the deletion of the minimal vertex cover of the graph,
which to find is NP-complete [26]. As approximation to the
optimal solution, we propose to use a small modification of
the factor two greedy approximation, where successively an
edge is chosen and both nodes connected are deleted. Instead
of choosing an arbitrary edge and deleting both nodes, we first
choose the node with the highest connectivity (i.e., the most
connecting edges). Then we choose from its connected nodes
again the one with the highest connectivity. If this partner
has a larger connectivity than one (i.e., is connect still with
other nodes), we delete both nodes, otherwise we delete only
the first. This is done successively, until the graph is fully
disconnected. The residual nodes are the new states to be
subjoined to X .

Starting with only the newly added states, the next step of
the scenario generation is performed. Paths of discarded states
are therefore pruned from the scenario generation procedure.
We have illustrated this procedure in Fig. 4 and show an
exemplary outcome of the scenario generation in Fig. 5.

C. Calculation of the Cost
Having determined a finite set X of probability density

functions representing the system state, and an approximation
procedure for other states, we finally need the explicit evalua-
tion of the value function. In other words, we need to compute
the approximation of the actual cost values J̃(xp,i) for all
xp,i ∈ X . We use a standard value iteration approach for this
calculation. In the following, we refrain from the index i to
provide a better readability.

First, we initialize J̃(xp) for every xp by the expected
position cost, ignoring the prediction assuming that a null
input vector u0 = 0 generates no (or the lowest) input cost.
Resulting from the separation of prediction and estimation
cost, we first need to evaluate the expected cost over all
possible measurements

J̃(xp)← IE
y

{
J̃(xe)|xp,i

}
, (12)

where xe is the posterior of xp. Since it is not possible to
evaluate this for all y, we exploit the discrete representation of
vk, and perform the calculation by a finite set of representative
measurements. We do not want to maintain an explicit cost
function for estimated states xe and predicted states xp, but
only the second. This makes it necessary to evaluate J̃(xe) for

Fig. 5. Illustration of the scenario generation approach by means of an
exemplary evaluation of the example system. In favor of the visualization
we have only displayed the means of each probability density, with the start
position (red), active branches (blue), densities added to X (gray), and finally
the resulting X (green).

every chosen representative measurement. Ignoring the predic-
tion, thus only evaluating the position cost, the calculation of
the inner cost term is given by

J̃(xe) = IE
xp

{
g(xe, u0)|y, u0,xp

}
,

where y is one representative measurement.
After the initialization phase we iteratively update J(·)

for every xp. Equation (12) is therefore repeatedly calculated,
where the inner cost term is now evaluated completely by

J̃(xe) = min
u

IE
xe

{
g(xe, u) + γJ̃(xp

′
)|xe, u

}
, (13)

where J̃(xp
′
) is the cost function evaluated by the approxima-

tion procedure given by equation (10) using the current state
of the cost function J̃(·). Repetitive calculation leads to an
approximation of the optimal value function.

For large state spaces, it is convenient to use a finely
discretized set of inputs. Since the states do not change in
the cost calculation procedure, the k-nearest neighbor pairs
are also fixed for a given system input. Hence, the distances
have to be computed only once and the optimization (13) can
be calculated very effectively.

VI. EVALUATION
In order to illustrate the effectiveness of the proposed

MPC controller based on deterministic scenario generation, we
have implemented the example system introduced in Sec. II.
The considered system can apply inputs uk ∈ [−0.2, 0.2],
controlling the rotation of the vehicle. The start position is
given by x0 = [0.5, 0]T . The state estimation is initialized by
x0 ∼ N (x̂0,C0), where

x̂0 =

[
0.5
0

]
, C0 =

[
0.01 0

0 0.03

]
.

The system noise wk ∼ N (0,Cw
k ) and vk ∼ N (0,Cv

k) are
Gaussian, zero mean, and characterized by covariance matrices

Cw
k =

[
0.03 0

0 0.001

]
, Cv

k = [0.05] .

State estimation is performed by the UKF [17]. The weighting
matrices Q and R of the control cost function are both given
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Fig. 6. One exemplary evaluation of the example system for the proposed
approach (green), a CLF approach for discrete control inputs (blue), and an
approach based on linearization (green). (a) shows the behavior of the actual
system over 100 time steps. (b) shows the state estimation, where the solid
line is the mean and the dashed line indicates the uncertainty showing the
σ = 3 bound.

by the identity matrix. The tunnel width, which constrains the
state space, is given by two units, i.e., xwall = 1.

We have implemented the deterministic scenario generation
with the distance threshold θ = 0.01 and the finite set of con-
trol inputs Ud = {−0.2,−0.1, 0, 0.1, 0.2}. The system noise
wk is discretized by L = 5 Diracs and the measurement noise
vk is discretized using L = 3 Diracs. The step-discounting
factor is chosen by γ = 0.9. Since we have not focused on
chance constrains in this work, we treated them by allowing
one sample to be outside the state space in the scenario
generation, though evaluation of the cost yields c = ∞.
This allows for the identification of infeasable states over the
control horizon, which can be discarded before the online
calculation. The offline calculation yields |X| = 217 states,
of which as little as 73 states are feasible (i.e., J̃(xp) < ∞)
after the computation of the cumulative cost function over 15
iteration steps and 2-nearest neighbors. The online controller is
implemented as stated before with continuous control inputs.
First, the optimum is roughly approached by discrete inputs,
followed by a gradient descent method based on the Matlab
build-in constrained optimization function fmincon.

We compare the proposed control approach to the CLF
controller for stochastic nonlinear systems with imperfect state
information and finite sets of control inputs introduced in
[7]. Here, we use the same finite set Ud and use the control

TABLE I. SIMULATION RESULTS

Method ø cost # crashed into wall

Proposed MPC Controller 16.87 0
Discrete Input CLF 18.75 0
Linearized LQG 56.75 40

optimization horizon N = 3. Furthermore, we compare both
CLF controller to an LQG-based approach, where the system
is linearized locally around the nominal estimate IE{xek}. Since
this approach uses an LQG setting, the CLF-optimal policy of
the linearized system is equal to the deterministic policy, i.e.,
the system assumes certainty equivalence (CE), which does
not hold for the original nonlinear system.

In Tab. I the simulation results of 100 Monte-Carlo simula-
tion runs are summarized. Both approaches considering future
feedback information are able to control the system without
crashing. Since the proposed approach considers an infinite
horizon and uses continuous system inputs, the results yield
a slightly better performance compared to the short control
horizon N = 3 and the roughly discretized system inputs. The
linearization approach based on LQG and CE on the other
hand leads a poor performance and frequent crashes.

In order to illustrate the control behavior, we have depicted
the actual system behavior of an exemplary result for each
of the three applied control approaches in Fig. 6 (a) and
the state estimate, which is the actual information available
to the controller, for the same runs are depicted in Fig. 6
(b), respectively. In red the linearization approach assuming
CE completely loses track of the control objective, while
the expected value of the estimate perfectly holds the zero
line, where no observability is given. In blue, the discretized
approach yields a good result. Some oversteering, brought
about by the rough discretization, results in changing the
side from time to time, where the controller tries to avoid
the center just enough to ensure good state estimation but
simultaneously minimizes the distance. A very similar result,
but a bit more precisely due to the continuous-valued control
input set, is shown by the proposed approach in green. The
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0.001

0.000

det(C)
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Proposed MPC Controller
Discrete Input CLF
Linearized LQG

Fig. 7. Visualization of estimation quality performed during the control. The
Bayesian filtering was performed for all methods by the UKF [17]. The plot
shows the development of the covariance matrix over time, by means of its
determinant averaged over all 100 runs. The evaluation has been performed
for proposed control approach (green), a CLF approach for discrete control
inputs (blue), and an approach based on linearization and the LQG controller
(green).



resulting control policy is to stay in the range of 0.4 to 0.5 in
order to minimize the cost, while keeping the state uncertainty
low, and thus, minimizing the expected cost over the state
estimate in total.

Both approaches considering the dual effect show a good
coverage of estimated state and the real system behavior.
This is also emphasized by Fig. 7, where we plotted the
average determinant of the state estimate over 100 Monte-
Carlo simulation runs. In contrast, the control policy of the
CE approach is to stay at a point, where no detectability is
given and thus, the uncertainty rises after few steps beyond
the range of the plot.

VII. CONCLUSION
In this paper, a novel approach for closed-loop feedback

stochastic model predictive control of time-invariant systems
with continuous state space and continuous control inputs is
presented. By means of an example system the challenge of
controlling systems with dual effect of control is demonstrated.
Thereby, it is elaborated why simultaneous estimation and
control is essential to this class of control problems.

The challenge of solving the emerging stochastic dynamic
programming problem is met by discretization of the cumula-
tive cost function. A systematic scenario generation approach
is introduced together with a pruning procedure, to reduce the
exponential calculation load an exhaustive scenario generation
would bring about. The effectiveness of the pruning, achieved
by utilization of the Wasserstein distance eliminating similar
states, is shown in an exemplary evaluation. The deterministic
scenario generation approach guarantees the coverage of all
relevant stochastic scenarios, but needs to be parametrized
by the number of Diracs used in the density approximation
procedure and the distance threshold that defines the minimal
dissimilarity between states. Both parameters trade computa-
tional complexity against precision.

The discretized cumulative cost function enables the CLF
control optimization to be calculated in terms of a one-step
state prediction. We would like to emphasize that one major
advantage of the presented work is that the online calculation
does not need to hypothesize future measurement explicitly.
These have already been considered in the offline calculation.
The presented approach takes the dual effect of control into
account and is able to control the introduced example system.
This is demonstrated by means of a simulation.
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