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Abstract—We propose a novel measurement update procedure
for orientation estimation algorithms that are based on directional
statistics. This involves consideration of two scenarios, orientation
estimation in the 2D plane and orientation estimation in three-
dimensional space. We make use of the von Mises distribution
and the Bingham distribution in these scenarios. In the derivation,
we discuss directional counterparts to the extended Kalman filter
and a statistical-linearization-based filter. The newly proposed
algorithm makes use of deterministic sampling and can be
thought of as a directional variant of the measurement update
that is used in well-known sample-based algorithms such as the
unscented Kalman filter.

Keywords—Bingham distribution, von Mises distribution, deter-
ministic sampling, stochastic filtering, directional statistics.

I. INTRODUCTION

This paper contributes to the development of stochastic filtering
algorithms for estimation of orientation from noisy measure-
ments. The nature and uncertainty levels of these measurements
may differ depending on the application and the functionality
and quality of the underlying measurement devices, among
which may be inertial measurement units (that involve a
gyroscope, an accelerometer, and a magnetometer) or cameras.
One of the special aspects that needs to be considered for
orientation estimation is the fact that the domain of orientations
is nonlinear and involves periodicity. For the planar case, the
domain of orientations can be represented by the unit circle.
Orientations in 3D-space may be represented as points on the
4-dimensional unit sphere.

Estimation techniques that assume a linear state space
can only be used if the underlying uncertainties are small
enough because adaptation of such techniques to the orientation
estimation problem make use of local linearity of the underlying
domains. Some of these approaches are discussed in [1], [2], [3],
[4]. Handling of scenarios that involve high noise level requires
consideration of the geometry of the underlying domain within
the probability distribution. A simple approach to address this
scenario would be the use of grid-based filters. However, these
filters suffer from the curse of dimensionality and may require
very dense (or at least adaptive) grids when the algorithm needs

to be capable of handling changing noise levels (e.g., in order
to account for changing sensing modalities). This results in
potentially computationally burdensome filtering techniques
that might be not suitable for practical applications.

Filtering approaches that are capable of handling different
noise levels and consider the geometric structure of the under-
lying domain are typically based on directional statistics [5],
[6], which is a subfield of statistics that investigates uncertain
quantities defined on nonlinear manifolds (typically, the circle or
the hypersphere). Filters that are based on directional statistics
and applicable to orientation estimation were proposed in [7],
[8], [9], [10]. They consider different types of system models
and different underlying domains. However, all of them have in
common that they assume a simple direct measurement model.
This model is at most capable of considering the fact that the
noisy measurement may be displaced by a fixed shift.

In linear state spaces, nonlinearities of system and mea-
surement models can be addressed by a number of different
techniques. Linearization is used within the extended Kalman
filter (EKF) [11], which linearizes the system and measurement
function around the current estimate. The statistical linearization
filter [12] (that is also known as quasi-linear filter [13]) choses
a linearization method that takes the uncertainty of the system
state into account. Finally, implicit linearization is used in
sample-based linear regression Kalman filters (LRKFs) [14],
such as the unscented Kalman filter (UKF) [15] or the smart
sampling Kalman filter (S2KF) [16].

The main contribution of this paper is adapting some ideas
of the measurement update within these filters to directional-
statistics-based orientation estimation algorithms. Thus, a novel
approximate measurement update procedure is proposed that is
capable of handling models that are not merely assuming noisy
direct measurements or a shifted variant of these. The algorithm
is designed for a more general class of measurement functions
that can be thought of as an orientation equivalent to nonlinear
measurement models with additive noise in linear state-spaces.
Consideration of these functions is achieved by explicitly
approximating them by a simpler shift-based measurement
model that gives rise to a closed-form update procedure. For



estimating planar orientations, a procedure considering similar
measurement models was proposed in [17]. It is based on a
progressive measurement update scheme as presented in [18].
For the case of orientations in 3D space, this work presents the
first approach that makes handling of this type of measurement
models possible. The proposed procedure has a conceptual
similarity to deterministic sampling-based nonlinear Kalman
filters, such as the UKF or the S2KF. The resulting measurement
update has a computational complexity that is comparable to
the corresponding prediction step.

The remainder of this paper is structured as follows. In
the next section, we revisit stochastic filtering algorithms
that are based on the von Mises distribution (for planar
orientation estimation) and the Bingham distribution (for
estimating orientations in the three-dimensional case). The
newly proposed measurement update algorithm is derived in
Sec. III and its relation to comparable algorithms in linear
state-spaces is discussed. An evaluation of the newly proposed
algorithm is presented in Sec. IV where it is compared to a
state-of-the-art approach. A discussion of the contribution and
an outlook to future work is given in Sec. V.

II. STOCHASTIC FILTERING FOR ORIENTATION
ESTIMATION

In the filtering approaches considered in this work, it is assumed
that the orientation evolves according to the model

xt+1 = a(xt)⊕ wt , (1)

where xt denotes the system state, wt denotes the system noise,
a(·) denotes the transition function, and ⊕ is a suitable shift
operation, i.e., a group operation that accounts for rotations.
Orientations in the plane can be represented by points on
the unit circle S1 whereas orientations in 3D space can be
represented as points on the 4D unit hypersphere S3 by
using unit quaternions [19]. Furthermore, S1, S3 are the only
hyperspheres that admit a topological group structure [20].
This is used for the definition of ⊕, and thus, the considered
system model is not generalizable to other dimensions. The
general course of action within the filtering algorithms discussed
here is assuming the system state xt and the noise wt to
be described by a certain family of distributions. It is not
guaranteed that the transformation a(xt) or the operation ⊕
preserve this distribution family. Therefore, an approximate
method is used to compute the predicted state xpt+1 from the
updated estimate xet .

So far, most directional filtering algorithms (e.g., [10],
[7], [21]) assume noisy direct measurements. That is, the
measurement model is given by

zt = xt ⊕ vt , (2)

where vt represents the measurement noise. A suitable choice
of the distribution families of xt and vt makes a closed-form
measurement update possible. For a fixed c, consideration of
the more general case

zt = xt ⊕ c⊕ vt (3)

is also possible by choosing a suitable (directional) mean of
the noise term vt.

A. Orientation Estimation in the Plane

For the planar case, we will parametrize the unit circle S1
as the set [0, 2π), and thus, the system state can be represented
by a scalar value. The operator ⊕ is used to represent rotations
in the plane. It is defined as

⊕ : S1 × S1 → S1 : (a, b) 7→ (a+ b) mod 2π ,

which gives rise to an Abelian group structure.

In this work, the von Mises distribution is used for
representing uncertain quantities on the circle [22]. Its density
is given by

f(x) =
1

2π I0(κ)
exp(κ cos(x− µ)) ,

where I0 denotes the modified Bessel function (see [23,
Sec. 10.25]) of order 0, κ ∈ R+ is a concentration parameter
and µ ∈ [0, 2π) is the location parameter. The notation
x ∼ VM(µ, κ) is used to indicate that a random variable x is
distributed according to this density. The product of two von
Mises densities is again a (rescaled) von Mises density, which
is a useful property that makes a closed-form measurement
update possible.

Furthermore, deterministic sampling schemes are used for
approximating the von Mises distribution by a discrete distri-
bution. They are based on matching trigonometric moments,
which are defined by

mk = E(eikx) .

An approach that uses three samples to match the first
trigonometric moment was proposed in [9]. It is directly
applicable to approximating the von Mises distribution even
though it was originally developed for approximating the
wrapped normal distribution [24]. Later, an approach that uses
five samples in order to match the first two circular moments
was proposed in [25]. Both sampling schemes can be thought of
as a circular counterpart to the deterministic sampling scheme
within the UKF. An example, together with a corresponding
von Mises distribution, is shown in Fig. 1.

The current estimate before prediction is given by a
VM(µet , κ

e
t ) distribution and the noise term is assumed to follow

a VM(µw, κw) distribution. The prediction step is based on
using deterministic sampling in order to approximately compute
the first trigonometric moment and then obtaining the von Mises
distribution parameters µpt+1, κpt+1. This requires the use of a
numerical procedure because the first trigonometric moment
of a VM(µ, κ) distribution is given by

m1 =
I1(κ)

I0(κ)
eiµ .

For the wrapped normal case, the entire prediction procedure
is discussed in more detail in [9].

Use of the von Mises distribution within a measurement
update was originally proposed in [7]. This makes a closed-
form measurement update possible when the observation model
is given by (2). The entire update step is then carried out as
follows. After obtaining a new measurement z, prior parameters
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Figure 1: Example for deterministic Sampling of the von Mises
distribution.

µpt , κpt and noise parameters µv , κv are used to obtain the new
estimate according to [7] as

µ̃v := (zt − µv) ,
C := κpt cos(µ

p
t ) + κv cos(µ̃v) ,

S := κpt sin(µ
p
t ) + κv sin(µ̃v) ,

µet := atan2(S,C) ,

κet :=
√
C2 + S2 .

B. Orientation Estimation in 3D Space

The entire picture looks similar for the three-dimensional
case. The hypersphere S3 is represented as unit vectors in R4,
i.e., the set {x ∈ R4 | ||x|| = 1} which corresponds to unit
quaternions. The corresponding shift operation ⊕ is given by
quaternion multiplication that is also known as the Hamilton
product. It is defined [19, Sec. 3] asa1a2a3

a4

⊕
b1b2b3
b4

 :=

a1b1 − a2b2 − a3b3 − a4b4a1b2 + a2b1 + a3b4 − a4b3
a1b3 − a2b4 + a3b1 + a4b2
a1b4 + a2b3 − a3b2 + a4b1

 .

Furthermore, a probability distribution is required that
accounts for the fact that the quaternions q and −q represent
the same orientation. This is achieved by using the Bingham
distribution [26] which is antipodally symmetric and defined
on arbitrary-dimensional hyperspheres. Its p.d.f. is given by

f(x) =
1

N(Z)
exp(x>MZM>x) , ||x|| = 1 ,

where ||x|| = 1, N(Z) is the normalization constant, M is
an orthonormal matrix that can be thought of as a location
parameter (because it describes the position of the modes and
the location of the axes), and Z is a diagonal matrix that can be
thought of as a concentration parameter. A filter that is based
on the Bingham distribution and assumes an identity system
model was proposed in [10], [21], [27].

A sampling scheme of the Bingham distribution was
proposed in [28]. It is based on matching the second moment
E(xx>) of a Bingham distributed random vector x. This is
achieved by generating a set of 4n − 2 samples to approx-
imate a Bingham distribution in Rn. There is no intuitive
visualization of the Bingham distribution for the 4-dimensional
case. Therefore, the sampling scheme was visualized for the
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Figure 2: Example for deterministic sampling of the Bingham
distribution.

two-dimensional and three-dimensional cases together with the
corresponding Bingham densities in Fig. 2.

Once again, the sampling scheme can be used to handle the
system model (1). The general course of action is similar to
the circular filters. That is, the system state is represented by a
Bingham(Me

t ,Z
e
t ) distribution. Analogously, the noise is as-

sumed to be distributed according to Bingham(Mw,Zw). The
predicted Bingham(Mp

t+1,Z
p
t+1) is obtained by deterministic

sampling, subsequent propagation, and matching of the second
moment. This entire procedure is described in [28].

The measurement update step, when the observation model
(2) is assumed, is also similar to the von Mises-based approach.
After obtaining measurement z, the parameters Mp

t , Zpt of the
prior and the parameters Mv, Zv of the measurement noise
are used to obtain the parameters of the posterior from the
eigendecomposition of

(zt ⊕Mv)Zv (zt ⊕Mv)> +Mp
t Z

p
t (M

p
t )
> ,

where (zt ⊕ Mv) denotes quaternion multiplication of zt
with each column of Mv. This yields eigenvectors αi and
eigenvalues ei. This yields Zet = diag(α1, ..., α4) and Me

t =
(e1, ..., e4).

III. NEW MEASUREMENT UPDATE FOR ORIENTATION
ESTIMATION

This chapter aims to overcome the limitations of the
measurement model that is used in the filters presented in the
previous section. Our goal is to develop approximate techniques
for handling the model

zt = h(xt)⊕ vt , (4)

where we assume zt and vt to be defined on the same domain
as the system state. The development of the proposed algorithm
can be subdivided in three steps. First, this measurement
model is approximated by a fixed shift c that depends on
the current estimate. In the second step, this shift is chosen
under consideration of the true uncertainty of the system state.
This can be thought of as a statistical shift. Finally, this
approximation is refined by updating the parameters of the
noise term in order to account for the error that is made by
implicitly assuming the measurement model to be (2). All of
these approaches are motivated by linear counterparts where a
complicated nonlinear function is (either explicitly or implicitly)
approximated by a linear function which makes a closed-form
measurement update possible. The following presentation will



be given in general terms. That is, it is applicable to both cases,
orientation estimation in the plane and in 3D space.

The notation x̂pt and x̂et will be used for representing the
predicted system state and its updated estimate. In the planar
case this is given by the angular mean µpt and µet of the von
Mises distributions involved. For the Bingham case, this is given
by the eigenvector of Mp

t Z
p
t (M

p
t )
> that corresponds to the

largest eigenvalue (and analogously for the updated estimate).
This does not require yet another numerical procedure, because
the location parameter M of a Bingham distribution is an
orthonormal matrix, and thus, the mode is obtained as the
column of M that corresponds to the largest value of Z. The
densities that correspond to the estimates and the noise terms
will be denoted by fpt , fet , fw, and fv .

In the following algorithms, 	 will be used to denote the
application of an inverse shift. For the circular case, this is
given by

a	 b = a⊕ (−b) = (a− b) mod 2π .

It is important to note that inversion with respect to both group
structures presented above preserves the distribution family.
That is, the (multiplicative) quaternion inverse of a Bingham
distributed random vector is itself a Bingham distributed random
vector. This holds analogously for the von Mises case.

A. Approximation by a Shift

Approximating the measurement model by a shift is simply
carried out by reformulating

zt = h(xt)⊕ vt ≈ xt ⊕ c⊕ vt .

After computing c, the measurement update can be performed
as presented in the preceding section. A first naı̈ve approach
of obtaining c is based on adapting the idea of the extended
Kalman filter (EKF) [11] to the directional setting. That is, c
is chosen according to

c = h(xpt+1)	 x
p
t+1 .

The entire resulting filtering algorithm is visualized in Algo-
rithm 1. There (and in the following algorithms), the function
UPDATEIDENTITY(fpt , f̃

v, z) is used to denote the identity
measurement update step that assumes (2).

Algorithm 1 Shift-based Approximation

procedure MEASUREMENTUPDATE(x̂pt , fv , z, h(·))
c← h(x̂pt )	 x̂

p
t ;

fet ← UPDATEIDENTITY(fpt , f
v, z 	 c);

return fet
end procedure

So far, the algorithm is expected to yield good performance
whenever the measurement model resembles a shift based
model locally. Due to the relationship with the EKF, this
approach also suffers from similar drawbacks. That is, the
linearized approximation of the true function of the EKF purely
depends on the current point-estimate. Similarly, c depends
on x̂tp and not on the uncertainty of this estimate. Thus, the
approximation may yield poor results in cases of higher noise
or strong nonlinearities.

B. Approximation by a Statistical Shift

In this step, the goal is to improve the quality of the
estimate by choosing c in a better way. The idea is to develop a
directional analogue to the statistical linearization filter [12]. For
the circular case, this is done by matching the first trigonometric
moment. That is, finding a c ∈ [0, 2π) such that

E(exp(i(h(xt)	 xt))) = exp(i c) .

For the quaternion case, an analogous procedure is carried
out that matches the second moment (which in that case
is identical with the covariance matrix). Computing this
expectation numerically in each filter step might be burdensome.
Thus, we use a sample-based approach that approximates the
expected values involved.

Algorithm 2 Statistical Shift

procedure MEASUREMENTUPDATE(fpt , fv , z, h(·))
(sx,i, px,i)i=1,...,L ← DETSAMPLING(fpt );
for all i ∈ {1, ..., L} do

sd,i ← h(sx,i)	 sx,i;
end for
c← GETDIRECTIONALMEAN((sd,i, px,i)i);
fet ← UPDATEIDENTITY(fpt , f

v, z 	 c);
return fet

end procedure

The entire resulting algorithm is visualized in Algorithm 2.
There, the procedure GETDIRECTIONALMEAN((sd,i, px,i)i)
denotes a dimension-dependent mean computation. For the
circular case, we make use of [6, Sec. 1.3.1] and obtain c as

c = atan2
( L∑
i=1

pd,i sin(h(sd,i)− sd,i),

L∑
i=1

pd,i cos(h(sd,i)− sd,i)
)
.

For the quaternion case, the mean orientation c is obtained as
the eigenvector corresponding to the largest eigenvalue of

L∑
i=1

px,i · sd,i · s>d,i ,

which corresponds to the mode computation of the Bingham
distribution.

The statistical shift is better at capturing local behavior of
the true measurement function for the choice of c. Thus, it
promises to yield better results. However, in this approach the
measurement update itself does not account for the fact that
the measurement function h(·) might impact the uncertainty
of xt. That is, the noise parameters of vt remain unchanged.

C. Correction of Noise Term

So far, vt was used to represent the measurement noise.
In this final step, our goal is to update the parameters of the
noise term in order to account for the additional uncertainty
that stems from the fact that the approximate measurement
model differs from the real measurement model. Our approach
was inspired by the LRKF in which the additional uncertainty



that stems from linearization errors is accounted for by the
covariance of the deviations between the nonlinear function
and its implicitly linearized counterpart (see [14, Sec. IV]).
This idea is adapted to the directional case by approximating
the entire measurement model (4) as follows

zt = h(xt)⊕ v ≈ xt ⊕ ṽ ,

where ṽ belongs to the same distribution family as v and
has different noise parameters, which can also account for a
shift within the location parameter. Thus, this approximation
generalizes the previous approach. Once again, deterministic
sampling is used in order to estimate the parameters of ṽ.

The measurement update is carried out as follows. De-
terministic sampling of the predicted state density fpt and
the noise density fv is used in order to obtain a sample-
based approximation of h(xt)⊕ vt 	 xt. Then, these samples
are used in a moment-matching based density estimation
procedure to obtain the density f̃v of ṽ. Finally, once again
the measurement update is performed under the assumption of
(2) as the measurement model.

The entire resulting procedure is visualized in Algorithm 3.
There, the function ESTIMATEDENSITY((sd,i, pd,i)i=1,...,L·M )
performs density estimation from weighted samples which is
discussed in more detail in papers on sample based directional
filtering, i.e., in [9] and [28].

Algorithm 3 Noise correction.

procedure MEASUREMENTUPDATE(fpt , fv , ẑ, h(·))
(sx,i, px,i)i=1,...,L ← DETSAMPLING(fpt );
(sv,i, pv,i)i=1,...,M ← DETSAMPLING(fv);
k ← 1;
for all i ∈ {1, ..., L} do

for all j ∈ {1, ...,M} do
sd,k ← h(sx,i)⊕ sv,j 	 sx,i;
pd,k ← px,i · pv,j ;
k ← k + 1;

end for
end for
f̃vt ← ESTIMATEDENSITY((sd,i, pd,i)i=1,...,L·M );
fet ← UPDATEIDENTITY(fpt , f̃

v
t , z);

return fet
end procedure

Once again, this algorithm promises better results compared
to the approach that uses an intelligent way to compute the shift
term c. However, it still involves the implicit approximation
of the true noise model by a simpler model, and thus, may
significantly differ from the possibly computationally intractable
Bayesian estimator that does not involve any approximation.

IV. EVALUATION

The evaluation is carried out by performing measurement update
steps rather than by simulating the entire filter run. This avoids
the introduction of approximation errors within the prediction
step, and thus, gives a better picture of the properties of the
newly proposed algorithm. Furthermore, for better visualization
and more intuitive interpretation, all simulations were performed
for the planar orientation estimation case, i.e., the considered
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π
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Figure 3: Measurement model ha(θ) for a = 0.5 (red), a = 5
(green), and the shifted model (blue).

state space is S1. This is justified by the fact that the quaternion-
based filtering algorithm has a similar structure, and thus, the
big picture is expected to look similar.

The comparison uses two types of measurement models.
First, we consider a somewhat complicated function that is
given by

ha(θ) = π ·
(
sin

(
sign(θ − π)

2
· |θ − π|

a

πa−1

)
+ 1

)
for θ ∈ [0, 2π), a ∈ R+. Here, a serves as a shape parameter.
Second, we consider shifted noisy measurements. In particular,
we use h(xt) = xt⊕π which corresponds to (2) with a suitably
chosen mean of the noise term vt. All considered measurement
models are visualized in Fig. 3.

The simulation is carried out as follows. First, we generate a
sample x that represents the system state by sampling randomly
from VM(µ, κp). Then, this sample is propagated through the
considered measurement function and a noise sample v is
generated from VM(0, κv). Then, a measurement is obtained
according to z = h(x) ⊕ v. This measurement is used to
perform an update step using different the algorithms discussed
above and additionally the progressive algorithm from [17]. In
this update step the prior estimate is given by the VM(µ, κp)
distribution. Finally, the error is computed as the angle between
the true state and the updated estimate, i.e., the error measure
is given by

e(θ1, θ2) = min(|θ1 − θ2|, 2π − |θ1 − θ2|) .

The simulation itself is carried out for different values of µ.
For the concentration of the measurement noise, we assumed
κv = 5. Two cases were considered for the concentration of
the prior, κp = 1 and κp = 10. The angular error measure
was averaged over 2000 runs which results in a mean angular
error (MAE) that is used as a quality measure. The results are
visualized in Fig. 4.

The results do not show one single approach to be superior
in all cases, which is not surprising because the considered
scenarios involve all types of extreme cases that may give
certain approaches an advantage. The general picture, however,
is that the progressive update algorithm yields the best results as
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Figure 4: Results of the simulation run using the approaches based on a shift approximation (blue), a statistical shift (green), the
noise correction approach (orange), and the progressive approach from [17] (red).

long as the measurement is close to the true system state. It may
become very poor when the measurement is far away which
is seen in the example in which shifted direct measurements
are used. There, all three algorithms that were discussed in
this paper yield an equivalently correct result. Furthermore,
the progressive algorithm is the most expensive from a
computational viewpoint due to repeated reapproximations. The
noise correcting algorithm usually outperforms the approaches
based on a shift or a statistical shift, but it also suffers from a
higher computational demand than these two naı̈ve approaches.

V. DISCUSSION AND OUTLOOK

This work proposed a new algorithm for the measurement
update in orientation estimation algorithms that are based
on directional statistics. The key idea of the newly proposed
algorithms was adapting certain concepts that are well-known
for the case of estimating linear quantities to the directional
setting. In particular, it can be thought of as a directional
equivalent of filters based on statistical linearization. Thus, the
advantages and drawbacks of the newly proposed approach are
similar to its linear counterparts. On the one hand, it suffers
from implicitly assuming the measurement model to be an
identity model which can at most account for a shift. On the
other hand, it benefits from avoiding problems of other sample-
based approaches, such as, particle degeneration or possibly
costly repeated resampling within one single measurement
update step. Thus, the newly proposed approach offers a good
tradeoff between accuracy and computational complexity.

There are several interesting directions for possible future
work. First, it is of some interest to investigate measurement
models that assume the measurement noise or even the

measurement itself to be defined on an entirely different domain
as the system state. Second, it is of interest to investigate prob-
ability distributions that are capable of representing multiple
uncertain orientations and their respective dependencies for the
development of more general filtering approaches. Finally, it is
of some interest to adapt the ideas presented in this work for the
development of a filter that considers position and orientation
simultaneously and involves possibly complicated measurement
models.
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