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Abstract—In this paper, we address the problem of
probability mass computation of a multivariate Gaus-
sian contained within a polytope. This computation
requires an evaluation of a multivariate definite integral
of the Gaussian, whose solution is not tractable for
higher dimensions in a reasonable amount of time.
Thus, research concentrates on the derivation of ap-
proximate but sufficiently fast computation methods.
We propose a novel approach that approximates the
underlying integration domain, namely the polytope,
using disjoint sectors such that the probability mass
contained within the sectors is maximized. In order to
derive our main algorithm, we first propose an approach
to approximate volume computation of a polytope using
disjoint sectors. This solution is then extended to the
computation of the probability mass of a Gaussian
contained within the polytope. The presented solution
provides a lower bound on the true probability mass
contained within the polytope. Because the initial op-
timization problem is highly nonlinear, we propose a
greedy algorithm that splits the sectors with the highest
probability mass.

Keywords—Polytope volume, nonlinear optimization,
chance constraints, spherical coordinates.

I. Introduction
Many practical application such as optimization with

chance constraints [1], [2], [3], chance-constrained con-
trol [4], [5], [6], or evaluation of the non-centered orthant
probability [7], i.e., the probability that all elements
of a random vector have positive coordinates, require
computation of the probability mass of a multivariate
Gaussian probability density function (pdf) over a compact
domain. Numerical evaluation of the corresponding integral
is usually computationally intense [8], [9]. Thus, it is not
suitable for real-time applications because the computation
of the probability mass is often embedded into an iterative
optimization procedure, which requires the evaluation of
the integral at each iteration step. Therefore, research
concentrates on development of approximate but fast
integration methods.

One of the simplest approximation methods is to
compute the largest ellipsoid that fits into the polytope. The
position and the orientation of this ellipsoid are determined
by the position and the covariance of the Gaussian. This
method and its application to chance-constrained control of
linear stochastic systems was presented, e.g., in [10], [11].
The main advantage of this method is that it is extremely

Figure 1: Sector of a 3D-sphere [12].

fast. However, it is very conservative, i.e., the computed
lower bound on the real probability mass contained within
the polytope is not tight.

Another conservative approximation method consists in
the application of Boole’s inequality. Using this inequality, it
is possible to separate the polytopic integration domain into
multiple integrations over individual half spaces determined
by the linear constraints that define the polytope [1], [2],
[13].

In contrast to deterministic conservative approxima-
tions, methods based on random sampling approximate
the Gaussian using samples also referred to as particles.
By doing so, the evaluation of the integral of the Gaussian
over the polytopic domain reduces to the summation of the
weights of the samples that fall into the polytope [3], [14].
However, because the sampling is random, the approxima-
tion is also non-deterministic. An important contribution
was made in [15] and [16] by deriving the required number
of samples in order to provide a specified confidence level.

The contributions of this paper are the following. We
propose a new method to compute a lower bound on the
probability mass of a multivariate Gaussian over a polytopic
domain. The tightness of the bound is a design parameter
that can be traded for computation time. Obtaining a lower
bound is of interest for, e.g., chance-constrained control



and optimization. However, with minor modifications, the
proposed approach can also be used to compute an upper
bound on the true result. This modification can be used in
order to define a stopping criterion for our algorithm that
yields tight bounds. In contrast to available methods that
approximate the probability density, our approach approxi-
mates the domain, namely the polytope. Before addressing
this problem, we first derive an algorithm to approximate
the polytope from the inside using disjoint n-spherical
sectors. This method is then extended to computation of
the probability mass of the standard Gaussian contained
within the polytope. To approximate the probability mass
of arbitrary Gaussians, we propose to convert them into
standard Gaussian using a linear transformation and to
apply the presented algorithm afterwards. The derived
algorithm converts the numerical integration problem into
an optimization problem. Thus, it can be solved using
standard optimization algorithms.

Outline. The paper is organized as follows. In the next
section, we formulate the considered problem. Before solv-
ing this problem, we first address the inner approximation
of a polytope using disjoint sectors in Sec. III. Results from
Sec. III are extended to the computation of the probability
mass of a Gaussian in Sec. IV. A numerical example is
presented in Sec. V and Sec. VI concludes the paper.

Notation. In this paper, we use the following notation.
Vector-valued quantities are underlined (x), while matrices
are in bold capital letters (A). Random variables are in
bold letters a,x. The notation x ∼ f(x) denotes that
the random variable x is distributed according to the
probability density function (pdf) f(·). The identity matrix
is denoted by I and the zero-vector by 0. We abbreviate
the sequences a1, a2, . . . , an as a1:n.

II. Problem Formulation

We consider the following problem. Given a multivariate
Gaussian N

(
µ,C

)
with pdf defined according to

f(x) = 1
(2π det(C))

n
2

exp
(
−1

2(x− µ)>C−1(x− µ)
)

with mean µ ∈ Rn and positive definite covariance ma-
trix C ∈ Rn×n, n ∈ N, we seek to compute the probability
mass of N

(
µ,C

)
contained within a given polytope P , i.e.,

the probability

P(x ∈ P) =
∫
x∈P

f(x) dx (1)

that a sample x of the random variable x ∼ N
(
µ,C

)
lies

within the polytope P. The polytope is given either as a
set of vertices V or in terms of linear constraints

P = {x ∈ Rn : Ax ≤ b} ,

where A ∈ Rm×n and b ∈ Rm, m ∈ N. The interior of
the polytope P is not empty. We will assume that the
polytope is represented in terms of linear constraints. The
representation in terms of vertices can be converted into
the latter by computing the convex hull of the vertices.
Furthermore, the following assumption is required to hold.
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Figure 2: Two-dimensional illustration of the vector ξ
(see (2)) that defines a sector.
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Figure 3: Two-dimensional illustration of the sector arc
satisfying and violating linear constraints Ax ≤ b.

Assumption 1: The mean of the considered Gaussian
N
(
µ,C

)
is contained within the polytope P, i.e., it holds

Aµ ≤ b.

Because an exact evaluation of (1) is computationally
intense, we will derive an algorithm that computes the
lower bound

P̃ (x ∈ P) ≤ P(x ∈ P)

in the remainder of the paper. At this point, we also
note that it is sufficient to consider the standard Gaus-
sian N (0, I) because introducing the substitution

z = T−1 (x− µ) ,
where T = C 1

2 is the Cholesky decomposition of C, we can
convert every Gaussian into the standard Gaussian. Appli-
cation of this transformation to P yields the transformed
polytope

P∗ = {x : ATx ≤ b−Aµ} .



III. Sector-based Approximation of Polytopes
In this section, we describe an approach to approximate

volume computation of the polytope P using disjoint sectors
that are fitted into the polytope from the inside. For the
three-dimensional case such a sector is depicted in Fig. 1.
The sectors are determined by the following vector

ξ
i

= [R φ1 φ2 . . . φn−1 δ1 δ2 . . . δn−1] , (2)

where [R φ1 φ2 . . . φn−1] are the n-spherical coordi-
nates (see Appendix A) of the main sector axis with R > 0,
φ1:n−2 ∈ [0;π), φn−1 ∈ [0; 2π), and [δ1 δ2 . . . δn−1]
are the opening angles that correspond to φ1:n−1 with
δ1:n−2 ∈ [0;π), δn−1 ∈ [0; 2π). Fig. 2 shows the components
of ξ in 2D.

The point from which the sectors originate must lie
within the polytope. We assume the origin to be this point.
If this is not the case, perform the coordinate transform

z = x− ŷ ,

where ŷ is an arbitrary interior point of the polytope, i.e.,
it holds Aŷ ≤ b.

The approximation of the polytope is performed such
that the volume V contained within the sectors is maximized
under the constraints that each sector is contained within
the polytope and that the sectors do not overlap. This
optimization problem for a fixed number of sectors s ∈ N+
is formalized in Problem 1.

Problem 1: The inner sector approximation of the non-
empty polytope P = {x : Ax ≤ b}, with A ∈ Rm×n and
b ∈ Rm, m ∈ N that contains the origin, i.e., 0 ≤ b, with
s ∈ N+ disjoint sectors is the solution of the optimization
problem

max
ξ

i

s∑
i=1

Vi

s.t. Si ∈ P ,∀i ,
Si ∩ Sj = ∅, for i 6= j ∀i, j ,
ξi,1 > 0 , ξi,2:n−1 ∈ [0;π) , ξi,n ∈ [0; 2π) ∀i ,
ξi,n+1:2n−2 ∈ [0;π), ξi,2n−1 ∈ [0; 2π) ∀i ,

(3)

where Vi denotes the volume contained within sector Si.
The formula for the volume Vi is given in the following

theorem.
Theorem 1: The volume of a single sector Si is given

by

Vi = 1
n
Rnδn−1

n−2∏
i=1

[γi(δn−i−1)− γi(0)] , (4)

where for even n, γn(α) is defined according to

γn(α) = α

n−2
2∏
j=0

n− 2j − 1
n− 2j

+
n−2

2∑
i=0

i−1∏
j=0

n− 2j − 1
n− 2j

(
− 1
n− 2i

)
sinn−2i−1(α) cos(α) ,

h

Figure 4: Ellipsis that specifies the opening angle for
evaluation of constraint violation by the sector arc.

and for odd n according to

γn(α) =
n−1

2∑
i=0

i−1∏
j=0

n− 2j − 1
n− 2j

(
− 1
n− 2i

)
sinn−2i−1(α) cos(α).

Proof: The proof is given in Appendix B.
In what follows, we discuss how to check the constraints

in (3).
In order to check, if the sector Si is inside the polytope,

we propose a two-level approach. In the first step, we check
if the sector vertices vi,j for j = 1, . . . , 2n in Cartesian
coordinates satisfy

Avi,j ≤ b . (5)
For an n-dimensional sector, the vertices can be calculated
according to
vi,j =[Ri φi,1 . . . φi,n−1]+[0 c1δ1 . . . cn−1δn−1] ,

where all 2n combinations of cj ∈ {0, 1} are considered.
The conversion from spherical into Cartesian coordinates
can be performed according to Appendix A.

If any of the vertices vi,j does not satisfy (5), the sector
is not inside the polytope. On the other hand, if the vertices
are within the polytope, we need to check if the sector arc
is also inside the polytope. To illustrate this issue, consider
the two-dimensional scenario depicted in Fig. 3. In this
figure, it can be seen that the arc satisfies the constraint
a and does not satisfy the constraint b. Constraint a is
satisfied because the angle βa between the normal of the
constraint and the central sector axis h with

h =
[
Ri φi,1 + δi,1

2 φi,2 + δi,2
2 . . . φi,n−1 + δi,n−1

2

]
is larger than the opening angle α. However, this is not
the case for constraint b. Generalization of this scenario to
higher dimensions is depicted in Fig. 4. In these dimensions,
the opening angle α is specified by an ellipsoid through
the sector vertices. Because direct evaluation is difficult,
we propose to transform the ellipsoid into a hypersphere.
This transformation is given by

M =
(

R 1
2

)−1
,

where R is the empirical covariance of the sector vertices
with

R = 1
2n

2n∑
i=1

(vi − h) (vi − h)> .



Its square root can be obtained using the Cholesky de-
composition. If we apply the described transformation,
we only have to guarantee that the angle between the
transformed central axis h̃ and any of the transformed
vertices ṽi,j remains larger than the angle between h̃ and
the transformed normal ñ of the considered constraint in
order to satisfy the constraint that the sector arc must be
inside the polytope.

To guarantee that the sectors are disjoint, i.e., that
Si ∩ Sj = ∅, for i 6= j holds, we propose to check if any
of the vertices of sector Si lies within the pyramid with
infinite height determined by the origin and the vertices of
sector Sj .

Problem 1 has two significant disadvantages: (i) the
number of sectors is fixed a priori and (ii) the optimization
problem is highly nonlinear. Thus, we propose to implement
the sector approximation as a greedy algorithm given in
Algorithm 1.

Algorithm 1: Greedy sector approximation.
Input: Constraints A, b, termination condition ε
Output: List of sectors S
S = ∅;
S1 ← largest n-sphere that fits into the polytope;
S ← S ∪ S1;
while NOT ε do

j ← arg maxj Vj ;
S ← S \ Sj ;
Sj,1,Sj,2 ← Split Sj ;
S ← S ∪ {Sj,1,Sj,2};

end

Remark 1: There are many different possibilities how
to design the termination condition ε in Algorithm 1.
The simplest one is to fix the number of sectors that
approximate the polytope. This condition is directly related
to the number of splits and recovers the initial optimization
problem (3). Another possible termination condition is to
fix the minimum difference between the volume contained
within the sectors before splitting and after the splitting.

The main step of the greedy procedure described in
Algorithm 1 is the splitting of the sector with the largest
volume into two new sectors. Splitting into more than two
new sectors is possible and the generalization to this case
is trivial. As the initial guesses, we use Si,1 with

ξ
i,1 = [Ri φi,1 + e1δi,1 . . . φi,n−1 + en−1δi,n−1

(1− e1)δ1 . . . (1− en−1)δn−1] ,

and Si,2 with

ξ
i,2 = [Ri φi,1 . . . φi,n−1

(1− e1)δ1 . . . (1− en−1)δn−1] ,

where e is a vector with one element being 0.5 and all
others being 0. The element ej = 0.5 of e specifies in
which direction we split the initial vector. In our current
implementation, we choose e randomly. Another possibility

Algorithm 2: Sector splitting.
Input: Sector Si, S \ Si, constraints A, b
Output: Sectors Si,1 and Si,2
Set initial guesses to Si,1 and Si,2;
Add constraint Si,j ∩ {S \ Si} = ∅, j ∈ {1, 2} to (3);
Solve the modified version of (3) for s=2;

is to split in the direction of the largest sector extension.
The splitting procedure is given in Algorithm 2.

Remark 2: It can happen that the new sectors do
not expand into non-covered regions of the polytope in
the direction where the sector Si already touches the
constraints. Thus, we suggest to slightly reduce the radii of
the initial guesses Si,1 and Si,2. Simulations indicate that
a reduction by 20% usually suffices.

Having derived the sector approximation method, we
generalize it to the computation of the probability mass
within a polytope in the next section.

IV. Sector-Based Probability Mass
Approximation

In what follows, we first address the approximation
of the probability mass of a standard Gaussian N (0, I)
contained in a polytope. To compute this probability
mass, we extend the inner sector approximation derived
in Sec. III from the approximation that maximizes the
volume to approximation that maximizes the probability
mass contained within the sectors. This maximization
is performed under the constraints that each sector is
contained within the polytope and that the sectors do not
overlap. Problem 2 formalizes the described optimization
problem.

Problem 2: The conservative approximation of the
probability mass of the standard Gaussian N (0, I) con-
tained within the non-empty polytope P = {x : Ax ≤ b},
where A ∈ Rm×n and b ∈ Rm, m ∈ N that contains the
origin, i.e., 0 ≤ b, using s, s ∈ N+ disjoint sectors is the
solution of the optimization problem

max
ξ

i

s∑
i=1

P(x ∈ Si)

s.t. Si ∈ P ,∀i ,
Si ∩ Sj = ∅, for i 6= j ∀i, j ,
ξi,1 > 0 , ξi,2:n−1 ∈ [0;π) , ξi,n ∈ [0; 2π) ∀i ,
ξi,n+1:2n−2 ∈ [0;π), ξi,2n−1 ∈ [0; 2π) ∀i .

(6)

The probability mass P(x ∈ Si) is given in Theorem 2.
Theorem 2: The probability mass of a standard Gaus-

sian N (0, I) contained within a single sector Si is given
by

P(x ∈ Si) = 1
2π n

2
δn−1

n−2∏
i=1

[γi(δn−i−1)− γi(0)]

×
[
Γ
(n

2

)
− Γ

(
n

2 ,
R2

2

)]
,

(7)
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Figure 5: Visualization of the approximation of P1 and P2 after 100 splittings.

where Γ(·) is the Gamma function and Γ(·, ·) is the
incomplete Gamma function

Γ(x, y) =
∫ ∞
y

tx−1 exp(−t) dt .

Proof: In order to calculate the probability mass
contained within the sector Si, we need to evaluate the
following integral

P(x ∈ Si) = 1
(2π) n

2

∫ R

0

∫ δ1

0
. . .

∫ δn−1

0
exp

(
−r

2

2

)
dV ,

where we exploited the spherical symmetry of the standard
Gaussian by changing the angular integration interval
from [φj ;φj + δj ] to [0; δj ], j = 1, . . . , n− 1. Because the
sectors are axis-aligned, we can calculate the integrals w.r.t.
the individual variables independently. For the integration
w.r.t. the radius, it holds [17]∫ R

0
rn−1 exp

(
−r2

)
dr = 2

n−2
2

(
Γ
(n

2

)
− Γ

(
n

2 ,
R2

2

))
.

Integration w.r.t. the angles φ1:n−1 is performed according
to the proof of Theorem 1. Combining the individual results
concludes the proof.

In order to compute the probability mass of the standard
Gaussian contained within the polytope P, we can use
Algorithms 1 and 2 with the following modifications.

1) In Algorithm 1, replace the computation of the
sector with the highest volume (j ← arg minj Vj)
by j ← arg maxj P(x ∈ Sj).

2) In Algorithm 2, modify problem (6) instead of (3).

Remark 3: The provided algorithm approximates the
polytope with disjoint sectors from the inside. It is possible
to derive an algorithm that approximates the polytope from
the outside. For this purpose, it is necessary to replace the

constraint in Algorithm 1 that the sectors must be within
the polytope by the constraint that the polytope must be
within the sectors. Furthermore, the volume (probability
mass) contained within the sectors must be minimized.
With these changes, it is possible to design a stopping
criterion for Algorithm 1 that is based on the difference
between the volume (probability mass) computed using the
inner and the outer approximation.

In the next section, we provide a numerical example of
the proposed probability mass computation algorithm.

V. Numerical Example

To demonstrate the presented algorithm, we compute
the probability mass of the standard Gaussian N (0, I)
within the polytopes P1 and P2 with

A1 =
[
−1 0 −2 4
−0.5 −1 1 1

]>
, b1 = [1.2 0.8 2 3]> ,

A2 =
[
0 1 1 0 −1 −1 1 −1
1 1 −1 −1 −1 1 0 0

]>
,

b2 = [0.6 0.8 0.8 0.6 0.8 0.8 0.6 0.6]>

for different numbers of splittings.

We analyzed the behavior of the approximation error
during progressive probability mass computation. The
results are depicted in Figs. 5 and 6. In Fig. 6, it can be seen
how the approximation error reduces for a growing number
of splittings. As a baseline method, we used the ellipsoidal
approximation approach proposed by van Hessem et. al.
in [10]. The true probability mass was computed using
stochastic sampling with 1 e 8 samples. A visual illustration
of the approximation of the polytope P1 after different
numbers of splittings is depicted in Fig. 7.
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Figure 6: Probability mass computation approximation error over number of splittings for P1 and P2.
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Figure 7: Demonstration of sector approximation of the polytope P1 after several splittings.



VI. Conclusion

In this paper, we presented a novel approach to (approxi-
mate) computation of the probability mass of a multivariate
Gaussian over a polytopic domain. The proposed method
relies on the approximation of the underlying domain,
i.e., the polytope, in contrast to other algorithms that
approximate the probability density itself. The main idea
of our approach consists in conversion of the numerical
integration into an optimization problem that progressively
approximates the polytope from the inside using axis-
aligned n-spherical sectors. The probability mass contained
in these sectors can then be evaluated using a closed-form
formula. As an intermediate result, we derived an algorithm
for computation of the volume of the polytope using disjoint
axis-aligned sectors.

Our future work will concentrate on the evaluation of
the presented algorithm with regard to both approximation
quality and speed compared to state-of-the-art methods
such as MCMC. For this purpose, we will implement it
efficiently in Matlab and C/C++.

Appendix A
Converting Spherical Coordinates into Cartesian

Given an n-dimensional vector ξ with

ξ = [r φ1 φ2 . . . φn−1] ,

in spherical coordinates, its representation in Cartesian
coordinates

x = [x1 x2 . . . xn]>

can be calculated according to

x1 = r cos(φ1) ,
x2 = r sin(φ1) cos(φ2) ,
x3 = r sin(φ1) sin(φ2) cos(φ3) ,

...
xn−1 = r sin(φ1) . . . sin(φn−2) cos(φn−1) ,
xn = r sin(φ1) . . . sin(φn−2) sin(φn−1) .

Appendix B
Proof of Theorem 1

The volume contained within the sector Si is the solution
of the integral

Vi =
∫ R

0

∫ δ1

0
. . .

∫ δn−1

0
dV ,

where we exploited symmetry of the sphere defined by Si by
changing the angular integration interval from [φj ;φj + δj ]
to [0; δj ], j = 1, . . . , n− 1. The volume element for an n-
sphere is given by

dV = rn−1 sinn−2(φ1) sinn−3(φ2) · · · sin(φn−2)
× dr dφ1 dφ2 · · · dφn−2 dφn−1 .

Since the sectors are axis-aligned, integration w.r.t. ev-
ery individual variable can be performed independently.
Integration w.r.t. the radius yields∫ R

0
rn−1dr = 1

n
Rn .

For the integration w.r.t. φ1, . . . , φn−2, we make use of the
following recursion [17]∫

sinn(x)dx = − 1
n

sinn−1(x) cos(x) + n− 1
n

∫
sinn−2(x)dx .

By rewriting this recursion as a sum, we obtain the function
γn(·) given in Theorem 2. Consequently, we obtain the
following expression∫ δ1

0

∫ δ2

0
. . .

∫ δn−2

0
sinn−2(φ1) sinn−3(φ2) · · · sin(φn−2)

× dφ1 dφ2 · · · dφn−2

=
∫ δ1

0
sinn−2(φ1)dφ1

∫ δ2

0
sinn−3(φ2)dφ2 . . .

×
∫ δn−2

0
sin(φn−2)dφn−2

= [γ1(δn−2)− γ1(0)] [γ2(δn−3)− γ2(0)] · · ·
× [γn−2(δ1)− γn−2(0)]

=
n−2∏
i=1

[γi(δn−i−1)− γi(0)]

Finally, integration w.r.t. φn−1 yields∫ δn−1

0
dφn−1 = δn−1 .

Combination of these intermediate results yields (4).

Acknowledgment

This work was supported by the German Research
Foundation (DFG) within the Research Training Group
RTG 1194 “Self-organizing Sensor-Actuator-Networks”.

References
[1] A. Prékopa, “The Use of Discrete Moment Bounds in Proba-

bilistic Constrained Stochastic Programming Models,” Annals
of Operations Research, vol. 85, pp. 21–38, 1999.

[2] A. Nemirovski and A. Shapiro, “Convex Approximations of
Chance Constrained Programs,” SIAM Journal of Optimization,
vol. 17, pp. 969–996, 2006.

[3] A. Nemirovski, “On Safe Tractable Approximations of Chance
Constraints,” European Journal of Operational Research, vol.
219, no. 3, pp. 707 – 718, 2012.

[4] L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams,
“A Probabilistic Particle-control Approximation of Chance-
constrained Stochastic Predictive Control,” IEEE Transactions
on Robotics, vol. 26, no. 3, pp. 502–517, Jun. 2010.

[5] G. Calafiore and L. Fagiano, “Robust model predictive control
via random convex programming,” in Proceedings of the 50th
IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC 2011), Dec 2011, pp. 1910–1915.

[6] ——, “Robust Model Predictive Control via Scenario Optimiza-
tion,” IEEE Transactions on Automatic Control, vol. 58, no. 1,
pp. 219–224, Jan 2013.



[7] N. Nomura, “Computation of Multivariate Normal Probabil-
ities with Polar Coordinate Systems,” Journal of Statistical
Computation and Simulation, vol. 84, no. 3, pp. 491–512, 2014.

[8] A. Genz and K.-S. Kwong, “Numerical Evaluation of Singu-
lar Multivariate Normal Distributions,” Journal of Statistical
Computation and Simulation, vol. 68, pp. 1–21, 1999.

[9] J. P. Cunningham, P. Hennig, and S. Lacoste-Julien, “Gaussian
Probabilities and Expectation Propagation,” arXiv.org, vol.
stat/1111.6832, 2013.

[10] D. van Hessem and O. Bosgra, “Closed-loop Stochastic Dynamic
Process Optimization under Input and State Constraints,” in
Proceedings of the 2002 American Control Conference (ACC
2002), 2002.

[11] ——, “A Conic Reformulation of Model Predictive Control
including Bounded and Stochastic Disturbances under State and
Input Constraints,” in Proceedings of the 41st IEEE Conference
on Decision and Control (CDC 2002), Dec 2002.

[12] “Sphere wireframe,” 2008, modified. [Online]. Available:
http://commons.wikimedia.org

[13] L. Blackmore and M. Ono, “Convex Chance Constrained
Predictive Control without Sampling,” Proceedings of the AIAA
Guidance, Navigation and Control Conference, 2009.

[14] A. Nemirovski and A. Shapiro, “Scenario Approximations of
Chance Constraints,” in Probabilistic and Randomized Methods
for Design under Uncertainty, G. Calafiore and F. Dabbene,
Eds. London: Springer, 2006.

[15] G. Calafiore and M. Campi, “Uncertain Convex Programs:
Randomized Solutions and Confidence Levels,” Mathematical
Programming, vol. 102, no. 1, pp. 25–46, 2005.

[16] ——, “Sampled Convex Programs and Probabilistically Robust
Design.” in Probabilistic and Randomized Methods for Design
under Uncertainty, G. Calafiore and F. Dabbene, Eds. London:
Springer, 2006.

[17] M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathemati-
cal Functions with Formulas, Graphs, and Mathematical Tables,
10th ed., ser. Applied Mathematics Series - 55. Washington,
D.C.: U. S. Government Printing Office, 1972.


