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Abstract—When tracking an extended object, traditional ap-
proaches exploit information only from measurements that are
assumed to stem from the target, and discard observations
assumed to have been generated elsewhere. However, the fact that
these observations were received contains valuable information
about where the target is not. This information, which is usually
treated as clutter with little value, can also be exploited in order to
improve estimation results. This becomes particularly important
in situations with low measurement quality or occlusions, where
positive observations from the target may be scarce. In these
cases, negative observations, which show where the target cannot
be, become highly valuable. In this paper, we introduce Silhouette
Models, which are able to incorporate information from both
types of observations. The benefits of this approach, which include
more robust results and resistance to occlusion, are confirmed in
the evaluation.

Keywords—Extended object tracking, negative observations,
negative information, shape models, shape estimation, silhouettes.

I. INTRODUCTION

The traditional approach to track an object is by assuming
that measurements are generated by a single point source.
However, the increasing resolution of modern sensors requires
the consideration of measurements that originate from different
points on the target’s boundary. In these situations, more robust
results can be obtained by considering the shape of the target
in addition to its pose. These approaches are part of the field
known as extended object tracking. A critical part of these
estimators is the probabilistic treatment of the shape parameters.
On the one hand, they can be categorized by the representation
used, such as lines [1], ellipses [2], [3], polynomials [4] or
extended Gaussian images [5]. On the other hand, they can
be described through their source models. Some assume a
probability distribution over sources [1], [3], [6], others consider
only a single source in the form of a projection [7]–[9], and
some model sources as the result of drawing from a random
variable [2], [10].

Most of these works have in common that they only take
into account positive observations, i.e., measurements that are
assumed to be generated from the target. However, sensors
typically not only obtain information about where the target
is, but also about where the target is not. For example, radars
using MTI or RGBD cameras inevitably produce negative
observations that are known, with high certainty, not to belong
to the target object. This valuable information, which can
help produce a more reliable and robust estimate, is usually
discarded as clutter without much consideration. Fig. 1 shows
a motivating example.

(a) Motivating scenario. (b) Positive and negative observations.

Figure 1: In the left figure, a target (brown rectangle) is
moving along a path (black), but a region is being unexpectedly
occluded (white stripe) and all measurements from there are
unavailable. To the right, the tracker fails to recognize the
rotation as the incorrect estimate (orange) covers all positive
observations (red). Exploiting negative observations (blue)
would lead to a more robust result.

To address this issue, we will derive an estimator capable of
incorporating both positive and negative observations. In order
to achieve this, we will model how both kinds of measurements
are generated and use these concepts to derive a likelihood
function. The resulting approach is called Silhouette Models,
as we will determine probabilistically which regions in space
are occupied by the target shape and which ones are not. The
derived likelihood can then be used in a Bayesian estimator.

Related work can be divided into three categories. The first
category is extended object tracking, a topic which includes the
works previously mentioned [1]–[10]. The second category is
’negative’ information, as treated in [11]–[13]. Note, however,
that in this paper we do not deal with absent measurements,
but instead with measurements that do not belong to the target.
Finally, some of the ideas presented in this paper are related
to the category of constraint information from projections or
silhouettes, also handled in [14]–[16].

The structure of this paper is as follows. First, the problem
formulation is specified in Sec. II. Then, some traditional
models to describe extended objects with positive observations
are described in Sec. III. This is followed by the introduction of
our Silhouette Models in Sec. IV. An example implementation
is described in Sec. V and evaluated in Sec. VI. We conclude
the paper with Sec. VII.



II. PROBLEM FORMULATION

The task explored in this paper is estimating the parameters
x of an extended target, such as its shape and pose, based
on incoming point measurements. The shape of the extended
target is denoted as the set of points Zx, and generates
measurements both from its boundary and its interior. The
incoming measurements are collected in Y = {y

0
, · · · , y

l
},

where each measurement y ∈ Y is described by its components

y =
[
yt, yp

]
.

The component yp represents a position in Cartesian coordinates
drawn from Rd, where usually d ∈ {1, 2, 3}. The value yt

represents the measurement type, which belongs to

� :=
{
�+,�−

}
.

This value can be interpreted in the following way. If yt = �+,
we say that y is a positive observation, i.e., we assume it was
generated by the target. However, if yt = �−, we say that
y is a negative observation, or in other words, we assume
it was not generated by the target. Each measurement y is
seen as having been generated using the following two steps
(Fig. 2). In the first step, a source point zp is selected from
Rd. The corresponding observation type zt is determined as
�+ if zp belongs to Zx, or �− if it does not (Fig. 2a). This
yields the source z =

[
zt, zp

]
. We model this process using

the probability density p(z|x). In the second step, the source z
is corrupted by noise according to the sensor model, the result
of which is the measurement y. This noise has two aspects.
On the one hand, the position yp is assumed to be corrupted
by additive zero-mean Gaussian noise with known covariance
matrix Cv (Fig. 2b), resulting in

p(yp|zp) = N
(
yp − zp; 0,Cv

)
, (1)

where Cv may be different for each measurement. On the other
hand, sensor noise may also cause a misinterpretation of the
observation type, causing it to flip from �+ to �−, or viceversa,
illustrated in Fig. 2c. Note that we use the expression ”sensor
noise” as an umbrella term, as these errors can also originate
from segmentation algorithms, classification approaches, or
other uncertainties in the underlying sensor model.

Probabilistically, the generation of the measurement y can
be described using the likelihood p(y|x), i.e., p(yt, yp|x). We
assume the noise terms are independent from each other. Thus,
for the set of received measurements Y , the corresponding
likelihood p(Y|x) can be written as

p(Y|x) =
∏
y∈Y

p(yt, yp|x) , (2)

so that each individual p(y|x) can be treated separately. For
simplicity, we will focus on the case where d = 2, i.e.,
source and measurement positions are in R2. Note, however,
that the presented concepts can be easily extended into other
dimensions.

Finally, measurements may be received at different discrete
time steps, during which the state may also evolve according to
a dynamic model. We denote the time step using the subindex
k, i.e., the state at the time step k is xk and the measurements
at that point have the form y

i,k
. However, as most of the

(a) Selecting sources. (b) Noise on position. (c) Noise on type.

Figure 2: Generative model. First, sources are selected from
R2, and their types are set as positive (red) if inside the target
(brown), or negative (blue) otherwise. Then, sensor noise is
applied that disturbs the positions and observation types.

discussions are related to the shape model, we will drop the
subindex k for legibility unless needed.

III. TRADITIONAL MODELS

As a first step, we would like to review traditional extended
object models that only use positive measurements. In other
words, these models assume that the measurements and their
sources always originate from the target Zx. Thus, when
considering a measurement y or a source z, we do not take the
observation type into account, and instead, we only consider
their positions yp and zp. In the following, we will discuss
Spatial Distribution Models (SDMs) and Greedy Association
Models (GAMs), including a kernel extension for the latter.
In particular, we will elaborate on a critical issue that affects
GAMs. These models will serve as a basis for Sec. IV.

A. Spatial Distribution Models

A Spatial Distribution Model [1] assumes that p(zp|x)
is known a priori. This allows us to obtain a likelihood by
combining (1) with p(zp|x) and marginalizing zp, leading to

p(y|x) = p(yp|x) =

∫
R2

p(yp|zp) · p(zp|x) dzp . (3)

For illustration, an example of this model follows (Fig. 3a). For
a given shape Zx, a common assumption is that all sources
are equally likely to be selected [1], [3]. This leads to

p(zp|x) =
1

|Zx| ·
{

1, if zp ∈ Zx

0, otherwise, (4)

=
1

|Zx| · 1Zx(zp) ,

where |Zx| represents the area of the shape Zx, and 1Zx(·) is
the indicator function of the shape. Next, the source is corrupted
using Gaussian noise as described in (1). Finally, plugging (4)
and (1) in (3) leads to

p(yp|x) =
1

|Zx| ·
∫
Zx

N
(
yp − zp; 0,Cv

)
dzp . (5)

These likelihoods generally have two issues. On the one hand,
integrating over the set Zx may be intractable for general
shapes such as non-convex filled shapes. On the other hand, it
might be difficult to know p(zp|x) a priori. This is a problem
in real-life scenarios, where due to unexpected occlusions or
related artifacts it becomes impossible to tell which sources
are visible, and a uniform distribution may not be assumed.



(a) SDM. (b) GAM. (c) Kernel GAM.

Figure 3: Comparison of shape models.

B. Greedy Association Models

A different approach, used when p(zp|x) is unknown, is to
model the generating source explicitly. For this, we use a pro-
jection function πx(yp), which calculates the point in Zx that
minimizes some distance measurement or optimality criterion
(e.g., the Euclidian distance) related to yp. Probabilistically, we
say that the only possible source is the projection πx(yp), i.e.,

p(zp|x) ≈ δ
(
zp − πx(yp)

)
, (6)

where δ(·) represents the Dirac-delta distribution. Then, we
plug (1) and (6) into (3), yielding

p(yp|x) =

∫
R2

N
(
yp − zp; 0,Cv

)
· δ
(
zp − πx(yp)

)
dzp

= N
(
yp − πx(yp); 0,Cv

)
. (7)

We denote approaches like this, which can be seen as a
probabilistic interpretation of distance minization techniques
[1], as Greedy Association Models (Fig. 3b).

C. Kernel GAMs

In situations with low measurement quality or unexpected
occlusions, using complex shape models may become detri-
mental as they are prone to artifacts such as overfitting. In
these cases, simpler shapes such as line segments or ellipses
are preferred as they allow for more robust results, even if
measurements are geometrically in a higher dimension, e.g. in
R3. However, this simplified model cannot fully represent the
sources present in the target shape. In order to compensate
for this, the extent of the shape may be modeled by means of
random variables. This approach is widely used in literature,
for example as multiplicative noise [10], random matrices [6],
or as a random transformation of a boundary [2].

A simple implementation can be obtained by applying a
Gaussian kernel onto the shape, in the form of a convolution.
Fig. 3c shows an example where a Gaussian kernel was
applied on the line segment Zx. Probabilistically, the kernel
can be interpreted in a similar way as additive Gaussian noise.
Thus, generating a source zp can be seen as, first, selecting
a source from Zx, and then distorting it with additive zero-
mean Gaussian noise of covariance matrix CK

x . This source
is subsequently distorted again with sensor noise to obtain
the measurement yp. An advantage of this approach is that
the kernel parameters can be easily estimated from incoming
measurements as part of the state x, and interpreted as part of
the target extent. To show the simplicity of this approach, we

will now extend GAMs to use Gaussian kernels. The source
selection can be modeled by modifying (6) as

p(zp|x) ≈ N
(
zp − πx(yp); 0,CK

x

)
, (8)

or in other words, the kernel is applied directly onto the
projection. When plugged into (3), this yields the likelihood

p(yp|x) =

∫
R2

N
(
yp − zp; 0,Cv

)
· N

(
zp − πx(yp); 0,CK

x

)
dzp

= N
(
yp − πx(yp); 0,CK

x + Cv
)

, (9)

i.e., the likelihood interprets the kernel as nothing more than
additional noise. We denote these models as Kernel GAMs.

D. Discussion of GAMs and SDMs

We observe that the derivations of GAMs and SDMs are
very similar. However, they stand in contrast to each other
in the following ways. On the one hand, GAMs and Kernel
GAMs only associate the measurement with the ”closest” source
πx(yp). On the other hand, SDMs associate the measurement
with all possible sources, which requires explicitly modeling
p(z|x) beforehand. Thus, the likelihood for GAMs is much
simpler and easier to implement. This comes with the caveat,
however, that the projection is assumed to be a good approx-
imation of the true source. Under high noise levels, πx(yp)
cannot approximate the true source appropriately, which then
leads to high estimation bias [9]. Another difference between
both models is that, unlike SDMs, GAMs have a problem with
overestimating the extent of the shape. This issue is described
in detail in III-E.

E. GAMs and Extent Penalties

In general, we are only interested in the smallest shape that
covers the received measurements. However, a problem present
in GAMs and Kernel GAMs, as discussed in [1], appears when
different possible states produce the same measurements. This
issue is illustrated in Fig. 4, where the scalar state x of a line
(brown) determines its length. In Fig. 4a, the estimator can
reduce the distance to the rightmost positive observation by
increasing the length. However, if the length is estimated too
large, there is nothing to correct it to its shorter form, as this
incorrect state also has a minimal distance to all measurements
(Fig. 4b). This stands in contrast to SDMs as seen in (4), where
dividing by the area penalizes larger extents automatically.

(a) Positive observations. (b) Extent problem. (c) Negative observations.

Figure 4: Positive observations that tell us where the shape is,
but this leaves large extents unpenalized. In contrast, negative
observations tell us where the shape is not.

We propose to address this by also incorporating negative
observations (Fig. 4c), which tell the estimator to adjust
the state so as not to cover them. The length issue can be
visualized by plotting the likelihood (7) of a measurement y



in terms of the line length x. The idea is as follows. If y is a
positive observation (red), the estimator rewards line lengths that
contain it, but larger lengths are still not discouraged (Fig. 5a).
However, if the measurement is a negative observation (blue),
the estimator will assume the opposite, i.e., states that cover
the measurement are penalized and shorter lines are preferred
(Fig. 5b). Thus, once all likelihoods are multiplied in (2), we
can obtain a better idea of what the true extent is (Fig. 5c).
This idea is elaborated in detail in Sec. IV.
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(a) Likelihood (positive).

x
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(b) Likelihood (negative).

x

p
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x
)

(c) Likelihood product.

Figure 5: Idea sketch. We want positive observations to reward
states that produce shapes near them, and negative observations
to penalize them. The likelihood product reveals the true length.

IV. SILHOUETTE MODELS

In this section, we aim to develop a probabilistic model
for taking into account both positive and negative observations,
which we denote as Silhouette Models. This will help us to
not only exploit more information for SDMs, but also to work
with GAMs without needing to worry about length issues.
Dealing with the likelihood p(yt, yp|x) requires considering
its two aspects, i.e., p(�+, yp|x) for positive observations,
and p(�−, yp|x) for negative observations. As mentioned in
[11], [13], this requires in turn some refinements in the shape
and sensor models in order to accomodate for both likelihoods.
Thus, in this section we will discuss both steps of the generative
model, i.e., the source selection and the sensor noise. Finally,
we will extend SDMs and Kernel GAMs to allow them to
incorporate negative observations.

A. Selecting the Source

The source selection is determined by the probability density
p(z|x), which can be rewritten as

p(z|x) = p(zt, zp|x) (10)
= p(zp|x) · p(zt|zp,x) ,

where p(zp|x) represents the probability of the position zp

being selected, and p(zt|zp,x) denotes the discrete probability
that the observation in the given position zp has the type
zt. For simplicity, we make the assumption that all positions
are equally likely to be observed. We believe that this is a
reasonable assumption, as devices such as time-of-flight sensors
or depth cameras sample all positions available (e.g., pixels or
grid cells). Thus, information about the target is not encoded
in the measurement positions, but in the measurement types
instead. We denote the set of all possible source positions as
the observed space S ⊂ R2. It follows that

p(zp|x) =
1

|S|︸︷︷︸
:=cS

·
{

1, if zp ∈ S
0, otherwise, (11)

where the term |S| is the area of the observed region. As seen
later, in most cases it is not necessary to model S explicitly,
but we assume it to be finite. Then, by plugging (11) in (10),
it follows for zp ∈ S that

p(z|x) = cS · p(zt|zp,x) . (12)

We note that, in order to describe a shape, we only need
to concern us with modeling the distribution p(�+|zp,x). We
denote this term as the silhouette function, an example of which
can be seen in Fig. 6a. As p(zt|zp,x) is a discrete distribution,
the remaining probability for �− can be obtained from

p(�−|zp,x) = 1− p(�+|zp,x) .

B. Sensor Noise

The obtained source is then distorted with sensor noise,
modeled by p(y|z). This term can be subdivided into the noise
term that affects the observation type, described by p(yt|zt),
and the term which corrupts the position, specified by p(yp|zp).
We model both terms to be independent from each other, so
that it holds

p(y|z) = p(yt|zt) · p(yp|zp) . (13)

In this paper, we will assume that the sensor does not directly
corrupt the observation type, i.e., yt = zt. However, we will
still obtain positive observations outside of the shape, and
negative observations inside of it, as a consequence of the
displacement by the position noise. Thus, we simplify (13) as

p(y|z) = p(yp|zp) . (14)

Furthermore, as the observation principle is similar, we make
the assumption that we can model p(yp|x) in the same way
as p(zp|x). Hence, we extend (11) and say that p(yp|x) = cS
for yp ∈ S. Thus, we see that, by marginalizing yt out of
p(yt, yp|x), we obtain

p(�−, yp|x) + p(�+, yp|x) = p(yp|x) = cS ,

In consequence, we only need to concern us with p(�+, yp|x),
as the other likelihood for �− follows from

p(�−, yp|x) = cS − p(�+, yp|x) , (15)

and both likelihoods are 0 if yp /∈ S.
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(a) Silhouette function p(�+|zp,x).
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(b) Auxiliary term L+x (yp).

Figure 6: Left figure is the silhouette function for the shape in
Fig. 2. Brown indicates a probability of 1 to obtain a positive
observation at a given position, and white a probability of 0.
To the right is the auxiliary term L+

x (yp), which can be seen
as the result of applying position noise on Fig. 6a.



C. Deriving a Likelihood

In a similar fashion as (3), we obtain a likelihood for a
received measurement y by marginalizing zp, i.e.,

p(y|x) = p(yt, yp|x) =

∫
R2

p(y|z) · p(z|x) dzp .

We will focus on the case for yt = �+. Using the simplified
source probability (12) and noise probability (14), we obtain

p(�+, yp|x) = cS ·
∫
S

p(yp|zp) · p(�+|zp,x) dzp

As an intermediate step, we introduce the auxiliary term

L+
x (yp) :=

∫
S

p(yp|zp) · p(�+|zp,x) dzp . (16)

Finally, using (15), we obtain the likelihood in terms of L+
x (yp),

p(yt, yp|x) =


0, if yp /∈ S
cS · L+

x (yp) if yt = �+

cS ·
(
1− L+

x (yp)
)

if yt = �−.
(17)

We observe that cS is state-independent and always appears as
a coefficient. Thus, an estimator can safely ignore it, so that the
observed space S does not need to be modeled explicitly. To
summarize, we see that in order to obtain a likelihood we need
three steps. First, we need a silhouette function p(�+|zp,x)
that describes the shape. Then, we apply sensor noise on it to
produce L+

x (yp) . Finally, we plug this term into (17) to obtain
the desired likelihood. In the following sections, we will derive
the likelihoods for SDMs and Kernel GAMs.

D. SDMs for Silhouette Models

We are now concerned with reinterpreting the source
selection probabilities from Sec. III-A in the framework of
silhouette models. We observe that those terms work under
the assumption that observations are always positive. Thus, for
instance, the source selection from the traditional SDM in (4)
can be rewritten in terms of Silhouette Models as

p(zp|�+,x) =
1

|Zx| · 1Zx(zp) .

We can obtain a silhouette function for this SDM by applying
Bayes’ rule, in the form of

p(�+|zp,x) =
p(�+|x)

p(zp|x)
· p(zp|�+,x) (18)

= p(�+|x) · |S|︸ ︷︷ ︸
:=A

· p(zp|�+,x) .

As p(�+|x) is the ratio of positive sources observable in S,
multiplying it by the area of S yields the area covered by the
positive sources. Thus, it follows that A = |Zx|, so that

p(�+|zp,x) = 1Zx(zp) , (19)

which can be intuitively seen in Fig. 6a. In essence, the only
change is the removal of the normalization factor. Finally, the
auxiliary term from (16) has the form

L+
x (yp) =

∫
Zx

N
(
yp − zp; 0,Cv

)
dzp ,

which then leads to the likelihood using (17). It can be seen
that the requirement to obtain a silhouette function like (19) is
that the area of the shape is non-zero. Thus, lower-dimensional
embedded shapes, for example lines and points in R2, cannot
be directly described using this model. In particular, this
is problematic because we cannot use simple GAMs from
Sec. III-B, as they assume a single source point. However, we
can still take advantage of the Kernel GAMs from Sec. III-C.

E. Kernel GAMs for Silhouette Models

As in Sec. IV-D, obtaining a silhouette function from Kernel
GAMs is straightforward. Thus, (8) can be rewritten as

p(zp|�+,x) = N
(
zp − πx(yp); 0,CK

x

)
, (20)

In order to apply (18) we need to obtain the area term A
for the considered kernel. A simple solution is by noting that
the projection πx(yp) belongs to Zx, and in consequence, we
expect p(�+|zp,x) to be equal to 1 at zp = πx(yp). Thus,
from (18) and (20) we obtain

1 = A · N
(
πx(yp)− πx(yp); 0,CK

x

)
,

which leads to the kernel area of

A =
1

N (0; 0,CK
x )

=
(2π)

2
2

∣∣CK
x

∣∣
exp(0)

= 2π
∣∣CK

x

∣∣ ,

where |·| denotes the determinant. Finally, we obtain

p(�+|zp,x) = 2π
∣∣CK

x

∣∣ · N (zp − πx(yp); 0,CK
x

)
.

Obtaining the auxilary term from (16) consists of a simple
addition of the noise covariance matrices, in a similar fashion
as (9), yielding

L+
x (yp) = 2π

∣∣CK
x

∣∣ · N (yp − πx(yp); 0,CK
x + Cv

)
.

For this expression, the maximum value is |CK
x |

|CK
x +Cv| ≤ 1 and

thus, (17) is guaranteed to be non-negative.

V. IMPLEMENTATION

In this section, we will describe the model implementation
used in the evaluation. But first, we will present a short
motivation. Assuming that only positive observations are
available, SDMs generally produces excellent results [1] as they
fully exploit the available information about p(z|x) (assuming it
is known a priori). Thus, SDMs present an appropriate standard
against which to compare the proposed models. Keeping this
in mind, we will implement three approaches for tracking
a rectangular shape as in Fig. 1. The first is a traditional
rectangle SDM as explained in the example in Sec. III-A.
The second is a line segment Kernel-GAM which implements
Silhouette Models (S-GAM) as described in Sec. IV-E. Finally,
the third is a rectangle SDM with Silhouette Models (S-SDM),
as explained in Sec. IV-D. Thus, we want the evaluation to
answer two questions. On the one hand, we want to know how
the simple and easy-to-implement S-GAM fares against the
more complex but accurate SDMs. And on the other hand,
we want to find out how the S-SDM deals with occlusions
given the additional information of negative observations. The
advantage of a rectangle is that, in the special case of isotropic
noise where Cv = σ2

v · I2, and where positive sources are



uniformly distributed on the (possibly occluded) shape, we can
obtain a closed-form definite integral.

In this section, we will discuss four aspects of the imple-
mentation. First, we will define the shape to be estimated and
its corresponding state. Second, we will obtain a solution for
the SDM integral over the rectangle. Third, we need to define
the projection function πx(yp) used by the S-GAM. Finally,
we describe the Bayesian estimator used in the evaluation.

A. Defining the State

At the time step k, the state x has the form

xk = [ ck,αk, lk,hk, νk,ωk ]
T

,

where ck is the center, αk the orientation angle, and lk the
length of the shape. The term hk represents the lateral extent
of the shape. For SDMs, it is interpreted as the height of the
rectangle. For the Kernel GAM, hk is the kernel size, so that
the kernel covariance matrix has the form CK

x = h2k · I2. As
the target can be moving, we also estimate the translational
speed νk and the rotational velocity ωk. The direction of the
movement is assumed to be αk. We define the orientation
matrix R(·) as

R(αk) :=

(
cos(αk) − sin(αk)
sin(αk) cos(αk)

)
.

B. Integral over a Rectangle

In order to describe the integral over a rectangle, first we
define the function G(η0, η1,µ,σ), which calculates the definite
integral of N (η;µ;σ2) in the range [η0, η1], i.e.,

G(η0, η1,µ,σ) :=
1

2

(
erf

(
η1 − µ√

2σ

)
− erf

(
η0 − µ√

2σ

))
.

Furthermore, we define

η =
[
η(0), η(1)

]T
:= R(αk)−1 · (yp − ck) .

Finally, based on the results of [1], the auxiliary term L+
x (yp)

for the Silhouette SDM becomes

L+
x (yp) = G

(
− lk

2
,
lk
2

, η(0),σv

)
·G
(
−hk

2
,
hk
2

, η(1),σv

)
which together with (17) yields its likelihood. In turn, the
likelihood for the traditional SDM (5) becomes

p(y|x) =
1

A
· L+

x (yp) ,

where A = lk · hk.

C. The Projection Function

The projection function πx(yp) is the Euclidian projection
onto the line segment, which is determined by its end points

ak := ck −R(αk) ·
[
1
2 lk, 0

]T
, and

bk := ck + R(αk) ·
[
1
2 lk, 0

]T
.

The Euclidian projection can be obtained in closed-form as

πx(yp) = ak + clamp(u∗) · (bk − ak) ,

where clamp(·) := max(0, min(·, 1)), and

u∗ :=
(yp − ak)T (bk − ak)

(lk)2
.

D. Gaussian Bayesian Estimator

A Gaussian Bayesian estimator consists of two steps which
alternate between updating and predicting the state. At the time
step k, the uncertainty of the state is described by the prior
fpk (xk), assumed to be a Gaussian distribution in the form of
fpk (xk) = N (xk; x̂k,Cx

k). In the first step, after receiving the
set of measurements Yk, the state is updated using Bayes’ rule,
described by

fek(xk) = cB · p(Yk|xk) · fpk (xk) , (21)

where p(Yk|xk) is derived from (2), and cB is a normalization
constant. In the second step, the state at the next time step
k + 1 is predicted by

xk+1 = a(xk) + rk , (22)

where rk is the Gaussian distributed process noise rk ∼
N (0,Qk). The function a(·) models how the state evolves
in time, and for the evaluation it has the form

a(xk) =

ckαk

...

+

R(αk) · [∆tk · νk, 0]
T

∆tk · ωk

04×1

 ,

where ∆tk is the elapsed time. In other words, a(xk) moves the
shape with speed νk in the direction αk, while rotating it with
angular velocity ωk. The other parameters remain intact. As
neither the posterior (21) nor the prediction (22) are in general
Gaussian distributed, in particular considering that a(xk) is
non-linear, we will use the Progressive Gaussian Filter (PGF)
[17] in order to obtain suitable Gaussian approximations.
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(b) With occlusion zone (white stripe).

Figure 7: Shape (light brown) and measurements (positive in
red, negative in blue) of the static experiment. Note that, due
to sensor noise, some positive observations end up outside of
the shape, and some negative observations inside.

VI. EVALUATION

In this section we will evaluate the three approaches
presented in Sec. V. We will realize two experiments based
on synthethic data, the first using a static target and the
second using a moving target, and considering two cases,
without and with occlusions. The target is a rectangle of size
0.2 m× 0.8 m, seen in (7). The measurement generation is as
follows. First, 10 sources are generated from inside the target,
and 20 sources from outside. We believe this ratio is reasonable,
as sensors typically scan a large space and can produce very
large amounts of negative observations. The negative sources are
drawn uniformly from a rectangular envelope of 0.4 m× 1.2 m,
centered on the target and with the same orientation. Second,
the positions of these sources are corrupted with noise according



to (1), where Cv = σ2
v · I2 and σv = 0.1 m. Finally, all

measurements inside occlusion zones (e.g., the white stripe
in Fig. 7b) are dropped. Note that we differentiate between
negative observations, which tell us where the target is not,
and occluded regions, where there are no measurements.

A. Static Target

First, we will realize a simple experiment where the target
is static, as seen in Fig. 7. The initial state estimate is fpk (x0) =
N (x0; x̂0,Cx

0). For x̂0, the center is c0 = [−1, 0], the angle
is α0 = 0, the length is l0 = 0.2, and the height parameter
is h0 = 0.1. The remaining parameters are 0. Finally, Cx

0 =
10−3 · I7. At each time step, we assume a process noise of
Qk = 10−2 · I7. The occlusion zone, when active, drops all
measurements inside the rectangle [0, 0.5]× [−1.5, 1.5]. Note
that a small part of the target remains visible to the right of
the occlusion zone.
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(a) No occlusion zones, k = 20.
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(b) With occlusion zone, k = 100.

Figure 8: Results of the static experiment. SDM in blue, S-GAM
in dark brown, and S-SDM in orange.

Fig. 8 shows the average result at the given time step
after 100 runs. The dotted line around the S-GAM line
serves simply to illustrate the kernel size, and contains all
points whose distance to the line is hk. For the case without
occlusions (Fig. 8a), all approaches quickly found the target
by time step k = 20. Both SDMs, as expected, had no
trouble describing the rectangle. In addition, we confirm that
the S-GAM, unlike traditional GAMs, has no trouble with
overestimating the extent. The S-GAM was able to determine
the center and the orientation, but we note that the length is
slighty lower than the ground truth. For the case with occlusions
(Fig. 8b), the expected distribution of sources ceases to be
valid. In consequence, the traditional SDM is still stuck in
an incorrect position by k = 100. The S-GAM has the right
position, but is slightly biased in the angle, and the length
is noticeably shorter. The S-SDM, however, had no trouble
finding the ground truth, even considering the large occlusion.
This reflects the fundamental difference in how both SDMs
interpret the observations. The traditional SDM inteprets a lack
of observations as the object not being there, while the S-SDM
does not make any assumption from the lack of observations.

B. Moving Target

A more detailed evaluation follows from the tracking of a
moving target. In this case, the ground truth rectangle starts
in a vertical position at [0, 0], and moves along the black path
in Fig. 9a, so that its orientation is always tangential to the
path. The target moves 0.02 m each time step, and the path
has a length of 3.5 m, for a total of 178 time steps. If active,
two rectangular occlusion zones appear on the path (Fig. 9b) at

[−0.25, 0.25] × [0.25, 2.25] and [0.5, 1.5] × [1.75, 2.25]. The
initial state uncertainty is fpk (x0) = N (x0; x̂0,Cx

0). For
x̂0, the centers, angles, and velocities were initialized with
the correct values, as we are more interested in how the
estimator keeps up with the target. The length is set to
l0 = 0.2, and the height parameter is h0 = 0.1. Finally,
Cx

0 = 10−3 · I7. At each time step, we assume a process
noise of Qk = diag(0, 0, 0, 10−4, 10−4, 10−5, 10−2).

For the case without occlusions, the results are very similar
for the three models, both in the center error (Fig. 10a) and
angle error (Fig. 10b). We see that all could keep up with the
target mostly without any problem. Thus, we can validate that
the S-GAM can track the pose of a target in a comparable
way to traditional SDMs, even if the extent is slightly biased.
However, the situation changes for the case with occlusions,
as the occlusion zones block most of the positive observations.
The results for four representative time steps can be seen in
Fig. 11. On the one hand, the traditional SDM becomes unstable
while the target is occluded, as can be seen from the RMSE
(Fig. 12) after 100 runs. On the other hand, the Silhouette
Models produce similar results to the unoccluded scenario.
This indicates that S-GAM and S-SDM can track the target
even they receive little to no positive observations. In other
words, they can navigate blindly yet successfully using only
information of where the target is not.
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Figure 9: Path traversed by the moving target (black), with
occlusion zones (gray) and representative measurements.
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Figure 10: Results for the moving target without occlusion.

VII. CONCLUSION

When tracking extended objects, we usually receive several
measurements of which we know, with a given certainty,
that they do not belong to the target. Traditionally, these
measurements are discarded, although they contain valuable
information about where the target is not. In this paper, we
introduced Silhouette Models, that aim to exploit this additional
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Figure 11: Target estimates. Visible parts of the shape in light brown, SDM in blue, S-GAM in dark brown, and S-SDM in orange.
Parts the target within the occlusion zones (white rectangles) are hidden from view and do not produce any measurements.
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Figure 12: Root Mean Square Errors for the center, angle, length and width.

information. First, we presented two traditional models that
work only with positive observations. On the one hand, SDMs
exploit information about the source distribution, but their
likelihoods are usually difficult to evaluate, and do not work
well under occlusions. On the other hand, GAMs are easy
to implement and fast to evaluate, but they have problems
with estimating the extent. In order to see whether negative
observations could solve their weaknesses, we extended both
approaches with Silhouette Models. We were left with two
questions. On the one hand, we wanted to know how the ex-
tended GAMs fared against SDMs. We saw that the accuracy in
pose estimation was very similar, and that negative observations
solved the extent issue, making the extended GAM a versatile
yet extremely fast tracking approach. On the other hand, we
wanted to find out whether extending an SDM allows it to deal
better with occlusions. In this aspect, we showed that both
Silhouette Models could easily track a target even with almost
no positive observations, by using only information of where
the target is not.
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