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Abstract—We propose a novel progressive Gaussian filter for
nonlinear stochastic systems. A Gaussian approximation of the
posterior is computed without an explicit assumption of a linear
relation between the system state and the measurement. This
allows for better quality of the estimation compared to Kalman
filters for nonlinear problems like the EKF or UKF. In this
work, we use the progressive filter framework, which gradually
incorporates information of a measurement into the state estimate
by considering a flow of probability mass from the prior to the
posterior state estimate. We propose a novel particle flow by
utilizing a simple linear model. This model predicts the movement
of single particles over the course of the filter progression.
The predicted trajectory is corrected using importance sampling
and moment matching. The proposed method is evaluated in
comparison with other state-of-the-art nonlinear Bayesian filters.

Keywords—Gaussian filter, nonlinear Bayesian state estimation,
nonlinear filtering, importance sampling, progressive filtering, par-
ticle flow, homotopy continuation

I. INTRODUCTION
In this work, we consider the problem of estimating the

state of a discrete-time nonlinear dynamic system on the basis
of disturbed sensor measurements. State estimation is essential
in many applications, like the control of stochastic systems
with imperfect state information, where the feedback is given
by noisy measurements [1], [2]. Another challenging example
is extended object tracking, where measurement information is
used to estimate the trajectory and shape of moving objects [3],
[4]. In general, we seek to condense obtained measurements
and represent them in a compact manner, without losing
information. Thereby we want a constant memory demand and
prevent an increasing calculation complexity over time.

Using the Bayesian estimation framework, noisy infor-
mation characterizing the system state can be represented in
form of a conditional probability density function (PDF). The
system state propagation over time and the relation between
the system state and measurements are given by stochastic
models [5]. In case of stochastic systems with linear dynamics
disturbed by additive and state-independent Gaussian white
noise, the Kalman filter yields the closed-form optimal solution
in the sense of minimizing the mean squared error [6]. Unfor-
tunately, in case of stochastic discrete-time nonlinear dynamic
systems, as considered in this work, closed-form Bayesian
state estimation cannot be performed. As a consequence, many
approximate approaches have been developed.

Particle Filters (PF) employ a set of weighted particles in
order to represent the state estimate [7], [8]. Whereas, this

group of filters has the ability to handle strong nonlinearities,
the main drawbacks are a high computational cost due to the
curse of dimensionality and sample degeneracy as the result
of particle reweighting subject to likelihood evaluation. One
principle underlying the PF is importance sampling, which will
also play a major role in this work. The general idea is to
generate a set of particles from a density, which cannot be
sampled directly [8]. Instead, we sample from a similar - let
us say a well guessed density. Then we correct the sample
set by adjusting the weights accordingly. This guess is the
so-called proposal density. The obvious problem is how to
decide on a good proposal density. It has been shown that the
optimal proposal density is one that minimizes the variance of
the sample weights. Unfortunately, this is the density we are
actually looking for, the posterior [8].

Following the Kalman filter, many filter for nonlinear
systems work with Gaussian densities [9], [10]. Whilst shar-
ing the state representation being a Gaussian density, the
characteristics and underlying ideas can be very distinct. For
one, the Extended Kalman Filter (EKF) and Iterated Extended
Kalman Filter (IEKF) work with explicit model linearization
[11]. Also assuming a linear relation between system state and
measurement, the Linear Regression Kalman Filters (LRKF)
approximate the joint density of state and measurement by a
Gaussian density and use implicit statistical linearization [12],
[13]. Methods implementing the statistical linearization idea
include the Unscented Kalman Filter (UKF) [14], the High-
Degree Cubature Kalman Filter [15], and the Smart Sampling
Kalman Filter (S2KF) [13], [16]. These filters are generally fast
and easy to implement. They do not require explicit evaluation
of the likelihood function, but may lack in estimation quality,
especially in the presence of strong nonlinearities.

In this work, we focus on a less restrictive approximation.
We do not explicitly assume a linear relation, but we only
assume all state estimates to be Gaussian distributed. The
main challenge here is to find the best Gaussian distributed
approximation of the true posterior after every filter step.
In literature, there are several approaches to achieve this
goal. It is possible to employ Monte-Carlo integration to
approximate the true posterior and calculate its mean and
covariance [17]. Instead of a random sample approach, we
utilize a progressive framework. The idea is to interpret the
calculation of the posterior as a continuous process, where the
prior is transformed into the posterior by a homotopy [18].
Thus, we assume a continuous flow of probability mass. If
particles are used to represent this flow of probability mass
this method of progressive filtering is often called particle



flow. The state of the homotopy will be called progression
time. There are two major concepts to progressive filtering
previously published, namely physics-inspired and stochastic-
inspired progressive filter. The first class of approaches uses
ideas like diffusion to derive a model from an explicit solution
of an ordinary or partial differential equation [19]. This has
been implemented to applied to Gaussian filter in [20]–[22]
and general parametric distributions in [23]. The second class
of approaches reformulates the problem such that the posterior
is step-wise recursively computed [24]–[26].

Contribution: We propose to take advantages of both ideas
and implement a two-step approach. Instead of physical parti-
cle models, we estimate a simple motion model to represent the
movement of each particle and exploit statistical importance
sampling to derive a step-wise update of the posterior. We
use a deterministic sampling strategy to generate particles
from Gaussian densities (e.g., [27]). The continuity of particle
flow is exploited particle-wise by a deterministic first-order
linear model. The continuity of single sample trajectories over
different progression steps is decided upon by solving an
assignment problem. We utilize this relationship to calculate
the model parameters, i.e., the constant motion speed of each
particle. Using this model for each particle, we calculate
the proposal density and update the posterior of the next
progression time step. The preliminary posteriors will be called
interim posterior throughout this work. This proposed proce-
dure results in a predictor-corrector approach, predicting the
interim posterior exploiting the motion model and correcting
this proposal density.

Outline: Subsequently, this paper is structured as follows:
in the next section, the considered problem is given formally.
Sec. III elaborates on the key ideas of this paper and introduces
some groundwork later employed. The novel approach is then
derived in Sec. IV in detail and evaluated in Sec. V by
a simulation. There, we compare the new method to other
Bayesian state estimation methods in a target tracking example.
Finally, we conclude this work in Sec. VI and give some
outlook on future work.

Notation: Throughout this work, bold face lower case let-
ters x denote random variables. We distinguish vectors x from
scalar quantities x by underlining the corresponding variables.
The notation x ∼ f(x) denotes that x is characterized by the
probability distribution f(x). Finally, a matrix A is denoted
by bold face capital letters.

II. PROBLEM FORMULATION
We consider the problem of estimating the hidden state

of a discrete-time stochastic nonlinear dynamic system based
on noise-corrupted measurements. The relation between a
measurement ỹ

k
and the system state xk is given by the time-

variant measurement model

y
k

= hk(xk,vk) , (1)

where ỹ
k

is a realization of the random vector y
k
∼ fyk (y

k
)

characterizing the probability of possible measurements. The
random vector vk ∼ fvk (vk) describes an arbitrary state
independent measurement noise.

The goal of this work is to update a given prior state
estimate xpk characterized by

fpk (xk) = fpk (xk|ỹ0
, . . . ỹ

k−1
)

at every time k, by recursively including the newly received
measurement ỹ

k
using the Bayes’ rule. Thus, we seek to obtain

the posterior state estimate xek characterized by

fek(xk) = fek(xk|ỹ0
, . . . ỹ

k
)

Please note that we focus on the measurement update only.
The temporal evolution of the system state, i.e., the update of
the prior xpk, is not in the scope of this work.

Using the general Bayesian estimation formulation, a new
measurement ỹ

k
is incorporated into the state estimate by

fek(xk) = ck · fLk (ỹ
k
|xk) · fpk (xk) , (2)

where ck = 1/
∫
fLk (ỹ

k
|xk)fpk (xk)dxk is a normalization

constant and fLk (ỹ
k
|xk) is the likelihood function for the

considered measurement ỹ
k
. The likelihood can be derived

by transforming the generative model (1) into a probabilistic
model by

fLk (ỹ
k
|xk) =

∫
δ(ỹ

k
− hk(xk, vk)) · fvk (vk)dvk , (3)

where δ(·) is the Dirac delta function. As already discussed in
the introduction, it is not possible to perform the measurement
update (2) analytically in general. This holds true, even if the
likelihood (3) is given in closed-form. Actually, after only one
filter step, the state estimate fek(xk) can be of arbitrary form.
This means, it is not Gaussian, even if the prior fpk (xk) is
given as a Gaussian. Throughout this work, we assume that
the true underlying probability density functions representing
the prior and posterior states are of Gaussian form. Thus, the
considered problem is to calculate the Gaussian approximation
of fek(xk) ≈ N (x̂ek,C

e
k), under the assumption that we also

have a Gaussian prior of the form fpk (xk) = N (x̂pk,C
p
k).

In the course of this work, we focus on the derivation of
one filter step. Thus, we are not moving forward in time and,
for the reason of better readability, we omit the time index k
in Sec. III and Sec. IV.

III. KEY IDEA AND GROUNDWORK
We propose to systematically calculate mean x̂e and

covariance matrix Ce of the posterior estimate fe(x), by
moment matching of a sample set generated by exploiting
importance sampling. Key challenge in importance sampling
is to find a proposal density as similar as possible to the
true posterior, from which particles can be generated and
their weights adjusted accordingly. We solve this problem by
utilizing progressive filtering, where a homotopy is employed
to the likelihood function. This progressive likelihood defines a
continuous transformation from the prior fp(x) to the posterior
fe(x) over a progression time given by a parameter γ ranging
from 0 to 1.

This continuous progression time allows for small progres-
sion steps ∆γ, where the movement or flow of each particle
can be approximated by a first-order linear model. Using this
prediction model, we can systematically generate proposal
densities within the progression time. We compensate for the
prediction error by adjusting the particle weights and resample
the resulting interim posterior. This predictor-corrector process
is repeated until the end of the progression time is reached and
therefore, the last correction of the proposal density at γ = 1
yields the posterior fe(x).



In the following, we introduce some of the fundamental
work employed in the presented method.

A. Deterministic Sampling
For the utilization of importance sampling, we need a

discrete approximation of the occurring Gaussian probability
densities. Furthermore, we consider the continuous flow of
probability mass by a homotopy. The product of likelihood and
prior, i.e., fL(ỹ|x) ·fp(x), can be of arbitrary form. Therefore,
we cannot consider the entire probability mass, but rather look
for a representative set of particles.

The challenge of predicting the trajectory of each particle
restricts us to deterministic sampling procedures. Therefore,
we utilize the LCD approximation first introduced in [28].
An approximation of an arbitrary probability density can be
calculated by solving an optimization problem, where the
multivariate generalization of the Cramér-von Mises Distance

D =

∫
IR

ω(b)

∫
IRN

(F1(m, b)− F2(m, b))
2
dm db

is minimized. Here ω(b) : IR+ → [0, 1] denotes a weighting
function and probability densities f1(x) : IRN → IR and
f2(x) : IRN → IR are compared by their corresponding
Localized Cumulative Distributions F1(m, b) and F2(m, b)
given in the form

F (m, b) =

∫
IRN

f(x) ·K(x−m, b) dx ,

where K(·, ·) a Gaussian kernel at position m and size b.
Minimizing this distance, we can systematically maximize

the similarity between two probability densities and approxi-
mate each occurring continuous probability density by a Dirac
mixture density

f̃(x) =

L∑
i=1

ω(i) · δ(x− x(i)) , (4)

with L particles. Every particle i is positioned at x(i) and is
weighted by ω(i). The weights should always be normalized
to
∑
ω(i) = 1. Further details and a closed-form solution

for the approximation of Gaussian densities can be found in
[27]. The ingenious of this approach is that it approximates
the shape of the underlying PDF. Therefore, we obtain an
exhaustive approximation of the probability mass by a con-
sistently distributed set of samples. For the approximation of
Gaussian densities, we can work efficiently with pre-calculated
approximations of standard normal distributions and adjust
these by using the Cholesky decomposition. A non-exhaustive
alternative using very few samples to approximate Gaussians
is the unscented transformation, which can be found in [14].

B. Importance Sampling
Having established a deterministic sampling procedure, we

want to employ it such that we can calculate the posterior
fe(x) by updating the particle weights. Therefore, we quickly
recapitulate importance sampling.

Let us consider the integral
∫
g(x) dx factorized by∫

g(x) dx =

∫
φ(x)f(x) dx ,

where φ(x) is an arbirtrary function and f(x) a probability
density function. Expanding the function by the proposal

probability density function q(x), the product can be rewritten
by ∫

g(x) dx =

∫
φ(x) · f(x)

q(x)
· q(x) dx . (5)

We want to evaluate the densities at discrete points, thus, we
approximate the latter q(x) by a Dirac mixture density q̃(x)
as given in (4), which leads to∫

g(x) dx ≈
L∑
i=1

ω(i) · φ(x(i)) · f(x(i))

q(x(i))
. (6)

This means, we can approximate the integral by exploiting
the sifting property of Dirac mixture densities and only have
to evaluate the function φ(x) and the probability densities
f(x) and q(x) at positions x(i). Further details on importance
sampling in the context of Bayesian filtering can be found
in [8].

C. Progressive Filtering
The main challenge using importance sampling is that the

quality of the calculated approximation is strongly dependent
on the choice of the proposal density q(x). Therefore, we
further introduce the procedure of progressive filtering [18],
which is later employed to systematically compute q(x).

The progressive filtering approach defines a homotopy over
the likelihood fL(ỹ|x), in order to introduce a continuous
incorporation of the measurement ỹ over the so-called progres-
sion time. The progression time is a fictional time, which runs
from zero to one over a single filtering step. The homotopy is
called progressive likelihood function fL(ỹ, γ|x) and is given
by

fL(ỹ, γ |x) = (fL(ỹ|x))γ

where γ = [0, 1] is the parameter defining the progression
time.

Using the progressive likelihood, the interim posterior
fe(x, γ) is calculated by the progressive Bayesian update

fe(x, γ) = c(γ) · (fL(ỹ|x))γ · fp(x) . (7)

The normalization constant c(γ) depends on the progressive
likelihood analogous to the normalization constant in (2). The
progressive update can be interpreted as adjustable formulation
controlling how much information of the measurement ỹ is
incorporated into the state estimate. Moreover, the prior and
posterior can be stated by the extremes of γ, i.e.,

fe(x) = fe(x, 1) ,

fp(x) = fe(x, 0) .
(8)

We can picture this, by thinking of the prior and the likelihood
as two potentials pulling the posterior in their direction.
We progressively vary the intensity of the likelihood in the
calculation from completely irrelevant to its full contribution.
The inherent movement of probability mass throughout the
progression is used to systematically obtain the proposal
density q(x) and therefore, the posterior fe(x). This is done by
portioning the estimation problem into several iteration steps
∆γ � 1.



IV. PROGRESSIVE PROPOSAL DENSITY FILTERING
So far, we have established the foundation on which this

work is built. In this section, we piece together the groundwork
and give the final details on the combination of deterministic
sampling, importance sampling, and progressive filtering.

Let us first recapture the problem as a result of the intro-
duced approach. We are given a Gaussian prior state estimate
fp(x) ∼ N (x̂p,Cp) and a measurement ỹ, from which we can
point-wise evaluate a progressive likelihood fL(ỹ, γ |x). We
perform one filter step by a set of small progression steps ∆γ,
which leads the progression time from γ = 0 to γ = 1 and
step-wise increases the influence of the likelihood. This results
in an recursive procedure, where between two progression
steps the resulting interim posteriors fe(x, γ) are of high
similarity. We also assume interim posteriors to be Gaussian.
The main challenge is to calculate interim posteriors fe(x, γ),
which ultimately leads to the posterior fe(x) ∼ N (x̂e,Ce).

The computation of the τ -th interim posterior fe(x, γτ )
for every progression step γτ is calculated in two steps. First,
we predict a proposal density qτ (x) ∼ N (x̂qτ ,Cqτ ) using the
continuity assumption resulting from the progressive filtering
approach. Second, we calculate the interim posterior fe(x, γτ )
utilizing importance sampling with the corresponding progres-
sive likelihood fL(ỹ, γτ |x), the prior fp(x), and the proposal
density qτ (x).

We can interpret this methodology as a predictor-corrector
method. The optimal proposal density qτ (x) would be the
interim posterior fe(x, γτ ) itself. Thus, we try to predict the
result, i.e., the interim posterior, and then correct the prediction
using importance sampling. Subsequently, we are describing
the predictor and corrector steps in detail, and elaborate on
the initialization and parametrization, and complexity.

A. Predictor
As previously described, the goal of the predictor is to

systematically calculate a proposal density of the next pro-
gression time step, where we exploit the particle flow of the
progression. In order to do that, we first need to approximate
the previously calculated interim posterior fe(x, γτ ) by a Dirac
mixture density

f̃e(x, γτ ) =

L∑
i=1

ω(i)
τ · δ(x− x(i)

τ ) , (9)

which gives us a fresh set of particles at the positions x(i)
τ . The

particles are equal weighted, i.e., ω(i)
τ = 1/L for i = 1 . . . L.

We assume a certain smoothness of the particle flow
over the progression time. This means for small progression
time increments ∆γ we assume a linear prediction model
to be sufficient to represent the particle displacement. The
displacement or velocity of the particles is directly calculated
from a one-step history and recomputed in every progression
step.

Let us first consider a single particle x(i)
τ . We can predict

its displacement from one progression time step τ to τ + 1
over the progression time γ by

x
(i)
τ+1 = Fτ

[
x

(i)
τ

x
(i)
τ−1

]
, (10)

where the transition matrix Fτ consists of two concatenated
diagonal matrices and is of the form

Fτ =


1+T 0 . . . 0 −T 0 . . . 0

0 1+T
. . .

... 0 −T
. . .

...
...

. . . . . . 0
...

. . . . . . 0
0 . . . 0 1+T 0 . . . 0 −T

 .

The prediction is adjusted by coefficient T = ∆γτ/∆γτ−1 for
not equidistant time steps, i.e., if ∆γτ 6= ∆γτ−1.

This can now be easily extend to the prediction of all
samples by arranging them column-wise. This means, we can
predict all samples by[

x
(1)
τ+1 . . . x

(L)
τ+1

]
= Fτ

[
x

(1)
τ . . . x

(L)
τ

x
(1)
τ−1 . . . x

(L)
τ−1

]
. (11)

We would like to emphasize that the sample positions on the
right-hand side of the equation always refer to the corrected
samples – not the predicted ones. This means they are taken
directly from the approximation of fe(x, γτ ). Using moment
matching, we calculate the proposal density qτ (x) from the
predicted sample set.

The last missing piece of the predictor function is to find
the corresponding samples x

(i)
τ−1 and x

(i)
τ in two indepen-

dently generated particle sets belonging to f̃e(x, γτ−1) and
f̃e(x, γτ ), respectively. In general, we are looking for a sample
assignment minimizing the so-called Wasserstein distance [29].
The second-order Wasserstein distance for two Dirac mixture
densities f̃r(xr) and f̃s(xs), given by their particles sets
R = {r1, . . . , rL} and S = {s1, . . . , sL} is calculated by

D(xr,xs) =

(
1

L
inf
λ∈ΛL

(
L∑
i=1

d
(
ri, sλ(i)

)2
))1/2

, (12)

where the minimum is computed over all permutations ΛL of
the set {1, . . . , L}. In this notation sλ(i) is the i-th element of
the permutation λ of S. In this work, the point-wise distance
function d(·, ·) is the Euclidean distance.

In other words, in order to find the optimal assignment
between two sets of particles, we minimize the sum of all
single-point distances. The most performant implementation to
do so is the so-called Hungarian algorithm [30]. Proficient im-
plementation does not require solving the association problem
in every progression step. More details are given in Sec. IV-C.

B. Corrector
The corrector step basically consists of one importance

sampling step, where we exploit the proposal density qτ (x) and
update the weights of the predicted sample set. The updated
sample set is then used to calculate the interim posterior
fe(x, γτ ) via moment matching.

Let us consider the importance sampling as presented in
Sec. III-B in the context the given correction problem. We
restate and normalize (5) to calculate the interim posterior
fe(x, γτ ) by

fe(x, γτ ) = c(γτ )fL(ỹ, γτ |x) · f
p(x)

qτ (x)
· qτ (x) .

Analogous to (6), we replace the latter proposal density
qτ (x) by its corresponding Dirac mixture, i.e., the particle set



resulting from the predictor. Please keep in mind that these
particles have equal weight. We now calculate new weights by
particle-wise evaluating the progressive likelihood, the prior,
and the proposal density leading to the not yet normalized
particle weights

ω̆(i) = fL(ỹ, γτ |x(i)) · f
p(x(i))

qτ (x(i))
. (13)

Finally, normalization of all ω̆(i), such that
∑L
i=1 ω̃

(i) = 1,
facilitates the calculation of the interim posterior Gaussian
fe(x, γτ ).

C. Initialization, Parametrization, and Complexity
In this section, we give some details on the presented

method. First, we talk about some points to be considered
during initialization. Then, we discuss important questions, like
numerical stability and implementation issues, to keep in mind.
Finally, we briefly analyze the complexity of the presented
method.

Initialization: In the first step of the progression, we neither
can perform a predictor step, since there is no previous step
τ − 1, nor can we perform a corrector step as introduced, due
to the lack of a proposal density. The initialization is done by
using the prior as proposal density. This assumption is often
also used by particle filter implementations (e.g., [8]). For a
complete filter step this is arguably not the best this choice,
but in our case, due to the progression, the prior fp(x) (i.e.,
fe(x, γ0) with γ0 = 0) and the first interim posterior fe(x, γ1)
can be assumed to be very similar for small ∆γ0 = γ1 − γ0.

Numeric Stability: In extreme cases, the samples given by
the proposal Dirac mixture q̃τ (x) may be positioned, where
only very little probability mass of the prior is positioned or
the likelihood yields very small values. This happens primarily
when an unexpected measurement occurs, i.e., the likelihood
and the prior have little overlap. In these cases, the evaluation
of (13) yields extremely small (intermediate) results, which can
lead to numerical instability. Hence, we recommend taking the
logarithm of (13).

Implementation: The computationally most expensive part
of the calculation is to solve the association problem. Let us
righteously assume, we use small progression steps, leading
to similar probability densities over one progression step. Fur-
thermore, we assume the deterministic sampling approximates
similar densities without permuting the resulting vectors of
samples (i.e., writing the set of samples in a vector, samples
with similar positions occupy the same vector position). In this
case, the association is already given. In order to check, if the
assumption is true, we can evaluate the single point distances
for this given association and only evaluate the Hungarian
algorithm if the single point distance between at least two
samples is surprisingly large.

Parametrization: The proposed method has basically two
parameters which values have to be decided on: first, the num-
ber of particles used in the progression; second, the number of
steps to be performed during the progression. Both parameters
have an influence on estimation quality and computational
cost. The particles have to be able to meaningfully represent
a Gaussian. Although rarely yielding good results, the bare
minimum is n + 1 particles, with n the dimensionality of
the state. A more practical minimum is 2n + 1, which is
also the number of particles the unscented transformation

generates [14]. In general, this algorithm works well with the
minimum number, as the evaluation shows. If computational
power is available, or the sampling time allows it, we propose
to experiment with a larger set of samples, like 2n2 + 1,
which attains a very good coverage of the probability mass
of a Gaussian. The progression step size on the other hand
strongly depends on the nonlinearity of the estimation problem.
It can be compared to the sampling rate of a control system,
where strong nonlinearities tend to generate higher frequencies.
Thus, weakly nonlinear problems can be handled with very few
steps, whereas strongly nonlinear problems need smaller and
therefore more steps in order to perform well. As can be seen
in the evaluation, we have achieved a good performance for
the considered problem with P = 14 progression steps with
an equidistant step length of ∆γ ≈ 0.07.

Complexity: Let us briefly summarize the computational
complexity of the presented algorithm. We consider P progres-
sion steps with L samples in a N -dimensional state space. The
deterministic sampling and the importance sampling have com-
ponents, like the Cholesky decomposition and matrix inversion
with the complexity O(N3). Reshaping the standard normal
distributed samples to represent the Gaussian distribution ac-
cordingly, the deterministic sampling also performs a matrix
multiplication with the complexity O(N2 ·L). The association
can be solved in O(L3) using the Hungarian algorithm. If the
association problem does not have to be solved explicitly, only
the single point distances for a given association are computed,
i.e., we are left with O(L). The above stated calculations have
to be performed for all P progression step. Since L has to be
larger than N , we are left with O(P ·N2 ·L), if the Hungarian
algorithm does not have to be evaluated, and with O(P ·L3),
if we solve the association problem in every progression step
explicitly.

V. EVALUATION
We evaluate the proposed progressive Gaussian filter by

means of a simulation, which was performed using the Non-
linear Estimation Toolbox for MATLAB [31]. We compare the
novel filter to the Extended Kalman Filter (EKF), the Smart-
Sampling Kalman Filter (S2KF) [16], the Sampling Importance
Resampling Particle Filter (SIR-PF) with resampling threshold
using a normalized effective sample size of 0.5 [8], and finally,
another progressive filter, namely the Progressive Gaussian
Filter using explicit likelihoods (PGF) presented in [25].

This comparison covers the most common methodological
groups of state-of-the-art nonlinear Bayesian filters, namely
Kalman filter with explicit linearization, linear regression
Kalman filter (LRKF) with statistical linearization, particle
filter, and progressive filter. In the simulation we use a target
tracking example, where we want to estimate five-dimensional
hidden system state vector

xk = [xk yk φk vk ϕk]
>
, (14)

where xk and yk define the position on a plane, φk is the ori-
entation, and vk and ϕk are the positional and angular velocity,
respectively. We consider a noisy directional distance sensor,
generating polar coordinate measurements by the nonlinear
sensor model

y
k

=

[√
x2
k + y2

k
ψk

]
+ vk, (15)
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Fig. 1. Evaluation of one exemplary simulation run of system (16), with
the start position [x0, y0]> = [1, 1]>. The trajectory of the actual system
state is depicted as solid black line. The trajectories estimated by the filters
in comparison are shown by thin colored lines, where we have depicted the
proposed filter (red), the EKF (cyan), the S2KF (green), the SIR-PF (yellow),
and the PGF (blue). The filters are initialized with the mean position at
[x̂0, ŷ0]> = [0, 0]>. They are depicted after the incorporation of the first
measurement to illustrate the difference in the initial convergence.

with ψk angle in direction of the target, which can be
computed by atan2(yk,xk). The measurement noise vk =

[v
(d)
k ,v

(ψ)
k ]> is state-independent white noise characterized by

the normal distribution N (0, diag([0.01, 0.0001]). System state
changes over time are modelled by

xk+1 =


xk + vk + cos(φk)
yk + vk + sin(φk)

φk +ϕk
vk
ϕk

+


0
0
0

u
(v)
k

u
(ϕ)
k

+


w

(x)
k

w
(y)
k

w
(φ)
k

w
(v)
k

w
(ϕ)
k

 , (16)

where we can influence the positional and angular velocity
by the input vector uk = [u

(v)
k , u

(ϕ)
k ]>. The system noise

wk = [w
(x)
k ,w

(y)
k ,w

(φ)
k ,w

(v)
k ,w

(ϕ)
k ]> is characterized by the

normal distribution N (0, diag([1, 1, 0.01, 1, 0.01] · 10−3). The
system state is initialized by xk = [1, 1, 0, 20, 5]> and we
constantly decrease the positional velocity and increase the
rotational velocity by uk = [−0.1, 0.1]>. The simulation is
run over 100 time steps and results in a spiraling trajectory
as depicted in Fig. 1, where we have plotted one exemplary
simulation outcome.

In the evaluation, we have used the following filter setup:
Proposed #particles: 51, #progression steps: 14
EKF No parameters to decide on
S2KF #particles: 201
SIR-PF #particles: 1000
PGF #particles: 51

The filters are initialized with a rough estimate xe0 with

mean x̂e0 = [0, 0, 0, 10, 2]> and covariance matrix Ce
k =

diag([10, 10, 0.1, 5, 5]).
The outcome of 100 Monte-Carlo simulations is depicted in

Fig. 2. The dashed lines indicate the maximum error (MAXE)
and the solid lines show the root mean squared error (RMSE).
Although due to different reasons, the EKF, as well as the
SIR-PF have problems track the trajectory of the hidden
state. The linearization around the mean is not a sufficient
approximation of the presented problem, which lead to a poor
performance of the EKF. On the other hand, the particle filter
has problems to adjust for particle degeneration. The S2KF and
both progressive filters, the PGF and the proposed approach,
are able to reconstruct the hidden state from the measurements.
In the presented scenario the S2KF shows a solid performance,
but having some problems in the initialization phase. We can
see a significant improvement after 15 steps in average and
after 25 steps in the worst case. This is outperformed by both
progressive filters, whereas the proposed approach has the best
performance in the initialization phase. On the other hand the
performance does not reach the same level in the long run.
Where in average the S2KF, PGF, and the proposed method
show only little difference, the proposed method can be seen
to be less performant in the worst case.

VI. CONCLUSIONS AND FUTURE WORK
We presented a novel approach to Gaussian filtering using

the progressive Bayesian filter framework. The combination
of importance sampling and particle flow allows us for good
estimation results in critical situations, i.e., if the likelihood
and the prior estimate have very little overlap. Especially in
these cases particle filters suffer from particle degeneration and
show very poor performance.

The combination of importance sampling and particle flow
is very general. Requirements are a consistent and systematic
sampling procedure and re-approximation by a continuous
probability density, where the samples can be evaluated. There-
fore, a generalization of this work to multi-modal density
representations, e.g, Gaussian mixture densities, will be con-
sidered in future work. Furthermore, other ways of modelling
the particle flow should be investigated in upcoming extensions
to this work.
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