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Abstract—Fingerprinting localization is to estimate a mobile
terminal’s location using its online received signal strength (RSS)
measurement and offline RSS database originated from multiple
access points (APs). Kernel-based fingerprinting localization is
such a competitive algorithm. However, all training data need to
be considered in its offline model learning stage. This render high
risks for overfitting. To alleviate this, we suggest to apply cluster-
ing to the localization region of interest first and then use kernal-
based fingerprinting localization for each cluster. A byproduct of
clustering is that the computational load for each cluster is also
significantly reduced. To further reduce the computational load
within each cluster, we also suggest to apply principal component
compression to the raw RSS measurements to reduce their
dimensionality. The rationale for applying principal component
compression is that the distributions of the RSS measurements
at all calibration points (CPs) within each cluster will be
more similar after clustering. Performance evaluation using both
simulated data and real data show that the extended kernel-
based fingerprinting localization using clustering and principal
component compression have better location estimation accuracy
and less computational load.

Keywords: Location fingerprinting, received signal

strength, overfitting, clustering, principal component com-

pression, dimensionality reduction.

I. INTRODUCTION

Localization of a mobile device has received much attention

recently with the development of smart mobile devices, perva-

sive computing, and location based service. Global Positioning

System (GPS) works well in outdoor environments. However,

it may fail in urban or indoor environments. Many model-

based localization algorithms have been developed utilizing

the geometrical relationship between an access point (AP)

and a mobile terminal, such as time difference of arrival

(TDOA), RSS, and angle of arrival (AOA). However, these

measurements can suffer from complex signal propagation,

especially in indoor environments.

The widespread use of WLAN has made the localization

algorithm using RSS measurements practical in many indoor

environments. As an alternative to model-based localization

[1], LF is a model-free method using RSS measurements in
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that it does not make any assumptions on the measurement

model [2]. Many LF algorithms have been investigated in

recent years. K-nearest neighbor (KNN) [3] was used in

user location and tracking system in indoor environments. A

probabilistic approach to estimate user location by WLAN was

proposed in [4]. It has presented a probabilistic framework for

LF problem. Statistical learning theory provides a profound

theoretical basis for LF prolbem. Many statistical learning

algorithms like support vector regression [5], [6], weighted

KNN, and neural network [7] for LF problem have been

investigated recently. From filtering perspective, Bayesian and

Kalman filters were applied to LF in [8]. In addition to

the current measurements, previous measurements are also

considered for the current location estimate. In [9] strategies

to generate a subset of calibration points (CPs) and AP

were proposed. Also, a kernelized measure for evaluation of

similarity between an RSS vector and the training RSS records

was proposed.

A kernel regression based method for LF (KLF) was pro-

posed in [10]. This method is quite competitive. However,

with an increase of the number of calibration points (CPs) and

APs, the computational complexity of KLF and its memory

requirements will increase dramatically. The mobile terminal

is usually small in size and thus has limited battery capacity.

Also, location aware services usually need to access the

location as fast as possible. For the KLF method, how to

reduce the computational complexity without sacrificing the

mobile terminal’s location estimation accuracy too much is a

challenging problem.

To tackle this, an idea is to reduce the dimensionality of the

RSS measurements. This was achieved first by Youssef et al. in

[11] by choosing a subset of the APs with the strongest signal.

However, the APs with the strongest signal are not necessarily

the most discriminating ones. An information gain based [12]

AP selection strategy for radio map based LF was proposed in

[13]. The information gain is designed only for classification

purpose but not for regression purpose. Therefore only the

discrete cell or grid index rather than the continuous location

can be determined.

The number of APs is in fact the dimension of the RSS

measurements. Some transformation methods, e.g., PCA [14],

ICA, DCT, were proposed to reduce the dimensionality of RSS



data in [15], [16]. It was found that PCA LF outperforms DCT

LF and ICA LF. The algorithm that applies PCA to the KLF

is called PCA KLF. However, the distributions of RSS mea-

surements at different CPs are different, especially when the

CPs are far away from each other. So the implicit underlying

assumption that the distributions of the RSS observations from

all CPs are the same when applying the PCA is violated in

[15], [16].

Cluster analysis can be used for LF to reduce the compu-

tational load. In [17], proximity graphs were employed for

predicting performance of LF algorithm. This also eliminates

unnecessary fingerprints to reduce computational load. In

[17], cluster analysis was used and proximity graphs were

applied only to each small cluster. In [18], artificial neural

network model was used to group the CPs into clusters. In

the estimation phase, Kohonen networks as a type of self

organizing map was used to convert high-dimensional RSS

into a two-dimensional discrete map. The method proposed in

[19] groups CPs into several clusters according to its highest

and second highest RSSs. It allows that a CP can have more

than one fingerprint and can be grouped into multiple clusters.

In [20], to avoid the false cluster selection in the online

stage, several clustering strategies to enhance the k-means

algorithm by allowing clusters to have overlapping members

were proposed.

In this paper, we suggest the use of two new LF algorithms

called mKLF and mPCA KLF to extend the KLF algorithm.

The mKLF uses cluster analysis to group the training data into

several clusters. This can help alleviate the potential overfitting

problem of KLF and reduce the computational complexity in

the offline stage. PCA is then also suggested to compress the

original RSS measurement to a relatively lower dimension.

This can further reduce the computational complexity. It

should be also noted that cluster analysis has the byproduct

to make the underlying assumption when applying PCA, i.e.,

all the involved RSS measurements should follow the same

distribution, more valid. Therefore the use of PCA is more

reasonable after cluster analysis. Illustrative examples show

that the newly suggested mKLF and mPCA KLF outperform

the KLF and PCA KLF.

The rest of this paper is organized as follows. Section II

formulates the LF problem. Section III gives a brief summary

of KLF. Section IV discusses the new mKLF and mPCA

KLF in detail. Section V provides evaluations to mKLF and

mPCA KLF using both simulated data and real data. Section

VI concludes the paper.

II. PROBLEM FORMULATION

Suppose that we have M APs and N CPs. The augmented

RSS measurement at the l-th CP is denoted as rl, where

rl = [r1l , r
2
l , · · · , r

M
l ]T , l = 1, . . . , N,

and ril is the RSS measurement with respect to the i-th AP,

i = 1, . . . ,M . The offline RSS data set is denoted as

R = [r1, r2, · · · , rN ].

The location of the l-th CP is denoted as pCPl
, where

pCPl
= [pxCPl

, p
y
CPl

]T ∈ R
2, l = 1, . . . , N

is its coordinates in 2D Cartesian plane.

In LF, one needs to train a mapping ψ(·) : RM → R
2 from

the RSS measurement space to the 2D location space using the

offline training data set {(rl,pCPl
)}Nl=1

first. Then for online

location applications, one can simply use the obtained mapping

ψ(·) and the real-time RSS measurement of a mobile terminal

to determine its location.

III. SUMMARY OF KERNEL-BASED FINGERPRINTING

LOCALIZATION

It was shown in [10] that the kernel-based method is more

accurate than the popular WKNN method for LF. Due to

limited space, only the kernel-based ridge regression for LF

will be considered in this paper.

In the kernel-based method, one maps the original feature

space rl, l = 1, · · · , N into a nonlinear feature space φ(rl)
by the kernel function

k(rl, rj) = φ(rl)φ(rj) (1)

The general idea of kernel trick is that if an algorithm can be

formulated only by the inner product, if we replace the inner

product rl · rj by φ(rl)φ(rj), then the original feature space

is implicitly mapped into a higher dimensional one. Explicit

representation for φ(·) is not required and the inner product

φ(rl)φ(rj) can be replaced by the kernel function k(rl, rj).
The cost function for LF can be written as:

c(ψd) =
1

N

∑N

l=1
(pdCPl

− ψd(rl))
2 + η ‖ψd‖

2

H , (2)

where d ∈ {x, y}, [ψx(·), ψy(·)]
T = ψ(·), and η is a positive

tuning parameter that controls the trade-off between fitness

error and the complexity of the solution.

According to the reproducing property, the minimizer of the

cost function (2) is of the following general form

ψd(·) =
∑N

l=1
αl,dκ(rl, ·), (3)

where κ(yl, ·) is a reproducing kernel and αl,d is the corre-

sponding ridge regression coefficient.

By substituting (3) into (2), the following dual optimization

problem in terms of αd can be obtained

min
αd

(p−Kαd)
T (p−Kαd) + ηNαT

dKαd (4)

where αd = [α1,d, · · · , αN,d]
T , pd = [pdCP1

, · · · , pdCPN
]T ,

IN is an N -dimensional identity matrix, K = [Kl,j ]
N
l,j=1

is a kernel matrix with Kl,j = κ(yl,yj). In this paper, the

Gaussian kernel

κ(rl, rj) = exp(−
||rl − rj ||

2

2σ2
κ

)

is considered, where σ2
κ determines the width of the Gaussian

kernel.



The solution of (4) is of the following form

αd = (K+ ηNIN )−1pd, d ∈ {x, y}, (5)

For the location fingerprinting problem, given the coeffi-

cient vector αd and the mapping (3), one can easily obtain

the location estimate of the mobile terminal from its RSS

measurement.

Remark 1: From (3), it can be seen that due to the

involvement of all available RSS measurements in the database

for regression, the KLF method may still be subject to high

risks for overfitting although η has controlled this to certain

extent.

IV. EXTENDED KERNEL-BASED FINGERPRINTING

LOCALIZATION

A. Extension using clustering only

The computational complexity of the KLF and its memory

requirements will increase dramatically with an increase of the

number of CPs and APs. It is therefore preferred to reduce

the computational complexity without sacrificing the mobile

terminal’s location estimation accuracy too much. From Eq.

(3), we see that all training data are used during the offline

stages. With the increase of the training data, i.e., the number

of CPs, the mapping becomes more and more complicated,

which may render high risks for overfitting. To alleviate the

potential overfitting problem, a method called multiple kernel

based location fingerprinting (mKLF) is suggested. It first

divides all the training data into small clusters. Then for

each cluster, the KLF is applied. Because only the training

data within each cluster is used, it reduces the fingerprinting

comparison significantly. Thus the computational complexity

can be reduced. Although the number of training data in each

cluster is reduced, the CPs in each cluster are more related.

The workflow of the mKLF is shown in Fig. 1. It can be

seen that the workflow consists of the following two stages.

Off-line stage:

Step 1: Acquire the original RSS data set R from N CPs.

Step 2: Apply a cluster analysis method, e.g., k-means, to

the positions of all available CPs to get C clusters of the lo-

calization region of interest. After this, the training data subset

for the i-th cluster is Ri = [ri1 , ri2 , · · · , riNi
], where Ni is

the number of CP’s belonging to it, and rij , j = 1, . . . , Ni is

the j-th RSS measurement belonging to it.

Step 3: Calculate the sample mean of all RSS measurements

of the i-th cluster

r̄i =
1

Ni

∑Ni

j=1
rij , i = 1, . . . , C.

Step 4: For the i-th cluster, use the input-output data pair

(rij ,pCPij
), j = 1, . . . , Ni, and an KLF algorithm to train a

mapping ψi(·).
On-line stage:

Step 1: Acquire the RSS measurement rmt from all N APs.

Step 2: Find the cluster to which the mobile terminal

belongs according to

i∗ = arg min
i∈{1,...,C}

d(rmt, r̄i),

where d(·, ·) is the Euclidean distance between two RSS

measurements.

Step 4: Apply the decided mapping ψi∗(·) to obtain the

estimated location p̂mt of the mobile terminal as

p̂mt = ψi∗(rmt).

Remark 2: For simplicity, the cluster analysis is over

the positions but not the RSS measurements of all avail-

able CPs. We agree that the use of RSS measurements for

cluster analysis is more reasonable since they also account

for the impact of the environments over the measurement.

However, it is not used here for cluster analysis because of

two reasons. First, closely located CPs will have close RSS

measurements in general. Second, computation-wise the use

of RSS measurement is not preferred because the location is

just a two-dimensional vector but the RSS measurement is

M -dimensional.

B. Extension using both clustering and principal component

compression

If we want to further reduce the computation of mKLF

without sacrificing the accuracy too much, an idea to achieve

this trade-off is to find a new dimensionality-reduced vector

yl ∈ R
L, where L < M , to represent the original RSS

measurement rl. Then yl can be used as the new input data

to the mKLF algorithms.

In [16], PCA was used to reduce the dimension of the orig-

inal RSS measurement. First by subtracting the sample mean

from each column, the original input data set R is changed to

a new zero-mean input data set X = [x1,x2, . . . ,xN ], where

x = r − r̄ and r̄ = 1

N

∑N

j=1
rj . Then one can use PCA to

linearly compress the data set X to a dimensionality-reduced

one Y

Y = AX, (6)

where

Y = [y1,y2, · · · ,yN ].

PCA can be defined [21] as the linear projection onto

the principal subspace that minimizes the average squared

projection error

J =
1

N

∑N

i=1
||xi − x̂i||

2,

where

x̂i =
∑L

j=1
αj,iuj +

∑M

k=L+1
βkuk,

and L is a given desired dimension for the principal subspace,

{uj}
M
j=1 is a complete orthonormal set of M -dimensional

basis vectors, and αj,i depends on xi but βk does not.

It was found that when [u1,u2, · · · ,uL] are the eigenvec-

tors corresponding to the first L largest eigenvalues of the

sample covariance matrix P of {xi}
N
i=1, i.e.,

P =
1

N

∑N

i=1
(ri − r̄)(ri − r̄)T =

1

N

∑N

i=1
xix

T
i (7)
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Figure 1: Workflow of mKLF

and [uL+1,uL+2, · · · ,uM ] are the eigenvectors corresponding

to the M − L smallest eigenvalues of P, the projection cost

achieves its minimum. It was also found that

αj,i = xT
i uj , βk = x̄Tuk.

For the problem we are considering, βk = 0 because x̄ = 0.

Thus an L-dimensional compression to the original data is

simply

yi = Axi,

where

A = [u1,u2, · · · ,uL]
T .

Remark 3: An implicit assumption of the PCA LF is

that the distributions of the RSS measurements from different

CPs are the same. This can be clearly seen from (7) for

sample covariance P which requires that all samples {ri}
N
i=1

should be generated from the same distribution. However, this

underlying assumption is hardly true in practice especially for

the RSS measurements from CPs far away form each other.

For example, the means of the RSS measurements from apart

CPs are significantly different when the Okumura-Hata model

[10] is used.

As for the mKLF method, compared to the whole training

data, the training data within each cluster is more similar,

which has alleviated the violation of the underlying assump-

tion of PCA. So a method called multiple PCA kernel based

location fingerprinting is suggested. It first apply cluster anal-

ysis to the positions of all CPs so that the localization region

of interest is partitioned into certain number of clusters. Then

a PCA based transformation is applied to each cluster. Then

the KLF method is applied to each cluster. Compared with

the use of all training data, cluster analysis makes the number

of training data in each cluster significantly reduced. So it

helps alleviate the overfitting problem. Also, a byproduct of

its is that the distributions of the RSS measurements within

the same cluster will not be that different. Thus the underlying

assumption of PCA can be satisfied to certain extent. This is

similar to the hybrid grid scheme [22] for estimation problem

with model/parameter uncertainty.

The workflow of the mPCA KLF is shown in Fig. 2. It can

be seen that the workflow consists of the following two stages.

Off-line stage:

Step 1: Acquire the original RSS data set R from N CPs.

Step 2: Apply a cluster analysis method, e.g., k-means, to

the positions of all available CPs to get C clusters of the lo-

calization region of interest. After this, the training data subset

for the i-th cluster is Ri = [ri1 , ri2 , · · · , riNi
], where Ni is

the number of CP’s belonging to it, and rij , j = 1, . . . , Ni is

the j-th RSS measurement belonging to it.

Step 3: Calculate the sample mean of all RSS measurements

of the i-th cluster

r̄i =
1

Ni

∑Ni

j=1
rij , i = 1, . . . , C.

Step 4: For the i-th cluster, i = 1, . . . , C, subtract the

sample mean from all its measurements to obtain the corre-

sponding zero-mean data set Xi = [xi1 ,xi2 , · · · ,xiNi
], where

xij = rij − r̄i.

Step 5: Apply PCA to each data subset Xi, i = 1, . . . , C
to obtain a transformation matrix Ai so that each piece

of original data xij is reduced to a lower dimensional one

yij , j = 1, . . . , Ni, through

yij = Aixij , i = 1, . . . , C, j = 1, . . . , Ni.

Step 6: For the i-th cluster, use the input-output data pair

(yij ,pCPij
), j = 1, . . . , Ni, and an KLF algorithm to train a

mapping ψi(·).
On-line stage:

Step 1: Acquire the RSS measurement rmt from all N APs.

Step 2: Find the cluster to which the mobile terminal

belongs according to

i∗ = arg min
i∈{1,...,C}

d(rmt, r̄i),
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where d(·, ·) is the Euclidean distance between two RSS

measurements.

Step 3: Use the the corresponding transformation matrix

Ai∗ to obtain the lower-dimensional input

ymt = Ai∗(rmt − r̄i∗).

Step 4: Apply the decided mapping ψi∗(·) to obtain the

estimated location p̂mt of the mobile terminal as

p̂mt = ψi∗(ymt).

V. ILLUSTRATIVE EXAMPLES

For performance evaluation purpose, both simulated data

and real data have been used. To demonstrate performance

improvement, mKLF and mPCA KLF are compared with KLF

and PCA KLF.

First, the comparison is conducted using simulated data.

Consider a 100 m × 100 m rectangle region with 16 APs and

400 CPs uniformly distributed over it as in Fig. 3.

0 20 40 60 80 100

0

20

40

60

80

100

AP

CP

Figure 3: The deployment of APs and CPs for simulated data

The RSS measurement is generated from the Okumura-Hata

model [10]

ril = r0 − 10nP log10 ||pAPi
− pCPl

|| + εil , (8)

where ril is the RSS measurement at the l-th CP originated

from the i-th AP, r0 is the initial power (set to 150dBm),

||pAPi
− pCPl

|| is the Euclidian distance between the i-th AP

and the l-th CP, nP is the path-loss exponent (set to 4), and εil
is the accompanying Gaussian measurement noise with zero

mean and variance σ2
ε .

Leave-one-out cross validation is a valid way for parameter

selection and performance evaluation. In leave-one-out cross

validation, one RSS measurement is chosen as the testing set

and the remaining ones are chosen as the training set. Repeat

this procedure until each RSS measurement has been chosen

as the testing set. Using leave-one-out cross validation, it is

obtained that the best η and σκ are η = 2−20 and σκ = 27

for the simulated data. In mPCA KLF, we choose the k-means

for cluster analysis and set C = 2, 3, 4, 5. KLF and PCA KLF

are chosen to be compared with mPCA KLF and mKLF.

The mean absolute error (MAE) [23] is a frequently used

measure to evaluate the estimation accuracy. For LF problem,

it is defined as:

MAE(p̂mt) =
1

Nt

Nt∑

i=1

|p̂i
mt − pmt| (9)

where p̂i
mt is the i-th location estimate of leave-one-out cross

validation and Nt is the total number of estimation times.

For the first simulated scenario, the variance of the additive

Gaussian noise σ2
ε is set to 1. The MAEs of mPCA KLFs

(C = 2, 3, 4, 5) and PCA KLF obtained using leave-one-out

cross validation are shown in Fig. 4a. When L = 16, the

dimensionality reduced technique PCA is not necessary. So

when L = 16, the MAEs of PCA KLF and mPCA KLF are

reduced to those of KLF and mKLF as shown in Fig. 4a. It can

be seen that the mPCA KLFs are all more accurate than PCA

KLF when the dimension of the transformed data is larger than

or equal to eight. Also, mPCA KLF is more accurate than KLF

which has used all training data. This means that mPCA KLF

has not only reduced the computational load of KLF but also

increased its accuracy. When 8 ≤ L ≤ 15 mPCA KLF has

similar accuracy to that of mKLF. But mPCA KLF has lower



computational load than mKLF which will be illustrated next.

From another perspective, the percentage of the points whose

estimation error is within 3m is shown in Fig.4c. It can be seen

that all mPCA KLFs have more accurate points than PCA KLF

when the L ≥ 8. It can be further seen from Fig. 4a that L = 8
is the best choice for the tradeoff between computational load

and location estimation accuracy. The cumulative distribution

function (CDF) of location estimation error 2-norm for L = 8
is shown in Fig. 4b. It can be clearly seen that the CDF’s

of all mPCA KLFs are above that of PCA KLF. Also, the

more clusters the region of interest is partitioned, the better

the location estimation accuracy.
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Figure 4: Simulated data with σ2
ε = 1

In practical applications, the computational load of the

online stage plays an important role in the LF method per-

formance. So the computational load of the online stage of

each method is evaluated. Because multiplication takes more

time than addition, only multiplications will be considered for

computational load evaluation. For KLF, it needs to consider

all N training data. Each data is M -dimensional. In total KLF

needs N · M multiplications. For PCA KLF, the dimension

of the data is reduced to L, but it needs L · M extra

multiplications for the data transformation y = Ax. So in

total PCA KLF needs N · L + L · M multiplications. For

mKLF on average it takes N
C

· M + C · M multiplications,

where C · M multiplications are from the decision process

i∗ = arg min
i∈{1,...,C}

d(rmt, r̄i). For mPCA KLF, on average it

needs N
C
·L+C ·L ·M +C ·M multiplications. The number

of multiplications every method needs is summarized in Table

I.

For this scenario, we also compared the relative python code

running time of the online stage for each method. Dividing the

absolute running time of the online stage for each method by

that of the KLF, we have the relative running time of the online

stage for each method as in Table II.

The second simulated scenario, the variance of the additive

Gaussian noise σ2
ε is set to 4. The MAEs of mPCA KLFs

(C = 2, 3, 4, 5) and PCA KLF obtained using leave-one-out

cross validation are shown in Fig. 4a. When L = 16 the

MAEs of PCA KLF and mPCA KLF are reduced to those

of KLF and mKLF. It can be seen that the mPCA KLFs are

all more accurate than PCA LF when the dimension of the

transformed data is larger than or equal to eight. Also, mPCA

KLF is more accurate than KLF which has used all training

data. This means that mPCA KLF has not only reduced the

computational load of KLF but also increased its accuracy.

From another prospective, the percentage of the points whose

estimation error is within 3m is shown in Fig.5c. It can be

seen that all mPCA KLFs have more accurate points than PCA

KLF and KLF when the L ≥ 8. It can be further seen from

Fig. 5a that L = 8 is the best choice for the tradeoff between

computational load and location estimation accuracy. The CDF

of location estimation error 2-norm for L = 8 is shown in

Fig. 5b. It can be clearly seen that the CDF’s of all mPCA

KLFs are above that of PCA KLF. Also, the more clusters

the region of interest is partitioned, the better the location

estimation accuracy.

Third, the comparison is also conducted using the collected

real data, which was also used in [5]. The data set is available

at http://ardent.unitn.it/software/data. Is is collected with 257
CPs and 6 APs. The MAEs of mPCA KLFs (C = 2, 3, 4, 5)

and PCA KLF obtained using leave-one-out cross validation

for this scenario are shown in Fig. 6a. When L = 6 the MAEs

of PCA KLF and mPCA KLF are reduced to those of the

KLF and mKLF. It can be seen that the mPCA KLFs are all

more accurate than PCA LF for all allowable dimensions of

the transformed data. The mPCA KLF has similar accuracy

to that of mKLF but with lower computational load as can

be seen from Table III. From another perspective, mKLF and

mPCA KLF have more accurate location estimate than KLF

and PCA KLF as shown in Fig. 6c. The CDF of location

estimation error 2-norm for L = 4 is shown in Fig. 6b, a

similar phenomenon as in Fig. 4b can be also observed.



Table I: The number of multiplications for each method

KLF PCA KLF mPCA KLF mKLF

N ·M N · L+ L ·M
N

C
· L+ C · L ·M + C ·M

N

C
·M + C ·M

Table II: Computational load comparison using simulated data

Relative running time PCA KLF 2PCA KLF 3PCA KLF 4PCA KLF 5PCA KLF

L=8 0.8001516 0.41368265 0.29658398 0.22408827 0.19155497
L=10 0.91468995 0.4649678 0.32235735 0.25095722 0.21049691
L=12 0.97756062 0.50662387 0.34709056 0.265419 0.22551723
L=14 1.06114586 0.5429253 0.38862215 0.29810043 0.24919617
L=16 1 0.529407479094 0.43317977678 0.34684983607 0.268571803774

Table III: Computational load comparison using real data

Relative running time PCA KLF 2PCA KLF 3PCA KLF 4PCA KLF 5PCA KLF

L=3 0.84120485 0.43932526 0.31124994 0.24732615 0.20602325
L=4 0.89765605 0.46385849 0.31520439 0.26002322 0.21938527
L=5 0.95394358 0.50514494 0.33544964 0.27740712 0.23192127
L=6 1 0.487606024385 0.340882082303 0.262983278327 0.230893590005

The choice of the dimension L of the transformed data and

the number C of the clusters is very important. L determines

the tradeoff between the computational load and location esti-

mation accuracy. The smaller L is, the less the computational

load and the poorer the location estimation accuracy, and vice

versa. A larger C will alleviate the overfitting problem. Also

it makes the RSS measurements of the CPs within the same

cluster have similar distributions, which in consequence makes

the underlying assumption of PCA more valid. However, if C

is too large, the sample size of training data for one cluster

will be too small to obtain an accurate fingerprinting mapping.

Cross validation can be used to determine the values of L and

C. The above illustrative examples show that for appropriate

choice of L and C, mPCA KLF outperforms KLF and PCA

KLF in both accuracy and computational efficiency. Also,

mPCA KLF outperforms mKLF in computational efficiency.

Since the cluster analysis is applied offline, it does not increase

the online computation.

VI. CONCLUSIONS

In this paper, two extensions to the KLF, called mKLF and

mPCA KLF, are suggested. In the off-line stage of mKLF,

we first apply cluster analysis to positions of the CPs so that

the localization region of interest is partitioned into certain

number of clusters. As a result, the distributions of the RSS

measurements from the CPs within the same cluster will

be more similar. This in consequence can help alleviate the

potential overfitting risk. Then an KLF algorithm is applied

to each cluster to obtain a mapping rule. In the on-line stage

of mKLF, the cluster to which the RSS measurement belongs

to is decided first. Then the decided mapping rule is applied

to locate the mobile terminal. The mPCA KLF using PCA

dimensionality reduction for each cluster can further reduce

the computational load. Cluster analysis makes the underlying

assumption of PCA, i.e., all samples used to calculate the

sample covariance should be the same, more valid. Thus

the use of PCA for each cluster in mPCA KLF is more

reasonable than the use of PCA for all training data in PCA

KLF. Illustrative examples show that mPCA KLF significantly

outperforms KLF and PCA KLF in both location accuracy

and computational efficiency. Also, mPCA KLF outperforms

mKLF in computational efficiency.
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