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Abstract—We look at the task of estimating the parameters
of a geometric constraint from noisy points in 2D. The classical
approach of minimizing the Euclidean distance error between
points and constraint generally yields biased estimates for non-
linear constraints and higher noise levels. To deal with this
issue, the expected distribution of the distance error can be
explicitly incorporated in the estimator. However, for piecewise
linear constraints, e.g., polygons, only computationally demand-
ing sampling-based approaches are available. We propose two
major contributions in order to resolve this issue. First, we
derive closed-form expressions for the probability density of the
signed distance between noisy points and a polygon angle. Second,
based on this result, we develop a bias reduction method for
polygons, which can be calculated in closed-form as well. We
demonstrate that the quality of our approach can compete with
its sampling-based alternatives, but only demands a fraction of
their computational cost.

I. INTRODUCTION

Fitting a potentially time-varying geometric constraint to
noisy points (with distortion in all dimensions) is a classical
problem in many fields related to computer vision, robotics,
or economics. The probabilistically correct approach to solv-
ing such a so called errors-in-variables problem is explicitly
modeling the probability for each point in the constraint, to
generate a measurement [1], [2], which is known as Spatial
Distribution Model (SDM). However, using SDMs is com-
putationally demanding for more complex constraints, and
requires detailed knowledge about the measurement principle.
Another straightforward approach is minimizing a distance-
related expression between points and curve [3]. Typically,
the minimal Euclidean distance is used in this context and
related approaches include orthogonal least squares [4], and
the iterative closest point algorithm [5].

A. Estimation Bias

However, it is well known that this traditional estimation
approach, also referred to as geometric fitting [6], produces
biased estimates for all parameters that encode nonlinearity
of the constraint, e.g., the radius of a circle [1], the axes of
an ellipse [7], or the angle of a polygon corner. This bias
originates from an incorrect data association of points to the
constraint, which is implicitly performed when calculating the
minimal distance [8]. Unfortunately, this Greedy Association
Model (GAM) becomes increasingly incorrect with higher
nonlinearity and noise [9] and, in turn, results in increasing
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Fig. 1: Bias in the estimated parameters originates from an
imbalanced ratio of measurements occurring on both sides
of a constraint. In each of the three examples, the gray and
blue areas indicate, where measurements will originate from a
single source (filled black circle). Naı̈ve distance minimization
imposes a perfect balance, which is generally not true (b,c).

bias. In consequence, dealing with errors-in-variables prob-
lems is a difficult task as Griliches pointed out in [10]: “In
short, errors in variables are bad enough in linear models.
They are likely to be disastrous to any attempts to estimate
additional nonlinearity or curvature parameters.”

Despite of this pessimistic perspective, there are approaches
to reduce bias by predicting its effect on the minimal distance
from the constraint’s nonlinearity and the measurement noise
[11], [7], [8]. An example is shown in Fig. 1, where the
expected bias in the minimal distance is proportional to the
imbalance of probability mass for measurements occurring on
both sides of the constraint [8]. In [12], we showed that bias-
reduction techniques that compensate for this imbalance are
closely related to the statistical concept of partial likelihood
[13]. For several special cases, there are even closed-form so-
lutions available, including circles [14], ellipses [6], and more
general differentiable curve constraints [7]. However, when
it comes to non-differentiable constraints or constraints not
differentiable everywhere, such as open and closed polygonal
curves, bias reduction has to be performed by constructing
complex levelsets [15], or by using numerical approaches such
as sampling [8]. This drawback leads us to the contribution
presented in this paper.

B. Contribution

We derive a likelihood with closed-form bias reduction that
can be used to design an estimator for the parameters of a poly-
gon based on 2D measurements with noise in both dimensions.



(a) Gaussian noise. (b) Calculating a single
distance.

Fig. 2: Visual explanation of the problem statement and the
used symbols.

As the essential component, we derive the probability density
of the minimal signed Euclidean distance between noisy points
and the two legs of an angle, for Gaussian noise with identity
covariance matrix, and the source of all points being the
intersection of the legs. Based on this theoretical result, we
develop a closed-form version of the partial likelihood from
[12] for polygonal curves. Our approach marks a significant
contribution beyond the state of the art as it (i) extends the
class of constraints which can benefit from closed-form bias
reduction, and (ii) almost demands no additional computa-
tional cost compared to the classical orthogonal least squares
approach. In addition, note that essentially any constraint can
be approximated as a polygonal curve and, thus, the respective
estimator can take advantage of the proposed approach.

II. FORMAL PROBLEM STATEMENT

Let the desired constraint be represented by a set of pa-
rameters, which are aggregated in the state vector x. This
state includes all information to infer the set of all points
zx ∈ Zx ⊂ R2 that satisfy the constraint. For example,
parameters of a polygon may include the positions of all its
vertices.

The measured points are given as a list of 2D vectors
y

1
, . . . , y

n
. In order to find an accurate estimate, the re-

lationship between parameters and measurements must be
specified. The probabilistic approach to define this relation-
ship is through the likelihood p(y

1
, . . . , y

n
|x). Assuming the

measurement noise to be uncorrelated between all points, the
likelihood can be factorized as

p(y
1
, . . . , y

n
|x) =

n∏
i=1

p(y
i
|x) , (1)

which lets us define individual likelihoods p(y
i
|x) for each

point y
i
. Hence, we can drop the index i for the following

considerations. By further assuming the measurement noise to
be additive Gaussian with an identity covariance matrix I, the
likelihood is given by

p(y|x) = N (y; z∗x, I) , (2)

where z∗x denotes the true source of the measurement y (see
Fig. 2a).

However, due to the measurement noise, we know z∗x only
up to the fact that it lies in the constraint z∗x ∈ Zx. In

consequence, in order to be able to evaluate the likelihood,
we have to make assumptions about the actually unknown
location of the source z∗x. Making these assumptions, in turn,
is an instance of continuous data association, and in the
context of errors in variables, z∗x is referred to as a nuisance
parameter [11].

A widely-used heuristic [8] to resolve this association is
greedily assuming that a measurement originates from its most
likely source in the constraint according to

ẑx := arg max
zx∈Zx

N (y; zx, I) . (3)

Then, by substituting the true source z∗x in (2) by its greedy
estimate ẑx, the likelihood can be evaluated. Note that ẑx is
also the source with the minimal Euclidean distance to the
measurement y for the considered isotropic noise characteris-
tics, as illustrated in Fig. 2b.

Thus, by using this Greedy Association Model (GAM) [8],
the estimator will minimize the closest Euclidean distance
between measurements and constraint. And, in doing so,
GAMs mark the prototype for the popular geometric fitting
approach. In order to see this relationship, let us apply the
substitution e := y− ẑx in the likelihood (2), and rearrange it
into

N (y; ẑx, I) = c · exp

(
−1

2
· eT I e

)
(4)

= c · exp

(
−1

2
‖e‖2

)
∝ N (‖e‖; 0, 1) ,

where c is a normalization constant and d2 := ‖e‖2 is
the squared Euclidean distance between measurement and
constraint. Using this likelihood in (1), a maximum likelihood
estimator would minimize the sum of all squared distances d2

and, in doing so, would find the least-squares estimate.
At this point, an important observation can be made. The un-

derlying probabilistic model N (d; 0, 1) actually incorporates
the sign (+/-) of the distance d, as the Gaussian distribution
has support on the full domain R. More specifically, the sign
distinguishes whether a measurement y lies on the one or the
other side of the constraint, as sketched in Fig. 1. The true
constraint in each figure is marked in black, a selected source
is drawn as a black dot, and the magnitude of noise around it
is schematically indicated by the filled circle. Probability mass
for expected measurements from this source on both sides of
the constraint is schematically colored in blue and gray.

Based on Fig. 1, we can now conveniently explain the
initially mentioned issue that GAM-estimators are generally
biased for nonlinear constraints together with noise. The
main problem is that, due to the symmetry of N (d; 0, 1),
the GAM imposes that positive and negative distances are
perfectly balanced for the true constraint. This assumption
indeed holds for the polygon vertex with a straight angle in
Fig. 1a. However, for any other angle different from π, such
as in Fig. 1b and Fig. 1c, the signed distances will always be



(a) First case: β ∈ [0;π). (b) Second case: β ∈ [π; 2π).

Fig. 3: Partitioning of the integration domain according to the function a(r, φ). Five different parts can be distinguished for
each case. Blue and gray mark parts on one and the other side of the constraint, respectively.

imbalanced. In consequence, by ignoring the specific imbal-
ance, the algorithm will find biased parameters which produce
an incorrect constraint with (incorrectly imposed) balanced
signed distances.

III. OVERVIEW OF THE PROPOSED APPROACH

An effective mechanism to reduce bias in the estimated
parameters is replacing the invalid moments µd = 0 and
σ2
d = 1 by values which are predicted from the current

knowledge about nonlinearity and noise [8]. The key idea is to
calculate the expected moments of the signed distance at the
location ẑx on the curve, and then use them in the likelihood
according to

p(y|x) ≈ N
(
d;µd, σ

2
d

)
. (5)

In [12], we showed that p(y|x) can formally be derived from
the statistical concept of a partial likelihood, where the mea-
surement y is re-parametrized into a component d that encodes
“how well” it fits to the constraint, and another component that
encodes, “where” on the constraint it corresponds to. Ignoring
the unknown “where”-component yields the partial likelihood
(5), which we denote as Partial Information Model (PIM).

As the key idea of this paper, we exploit that the density
fd(d) of the minimal signed distances (and its first two
moments) between Gaussian samples and a polygon angle can
be calculated in closed form, for the case that the measurement
source is located on the vertex. In the following, we first
derive the closed-form expression for the density fd(d) and
its moments in Sec. IV. Subsequently, in Sec. V, we show
how to evaluate the PIM (5) in closed form for polygons as
well.

IV. PROBABILITY DENSITY OF THE SIGNED DISTANCE

In this section, we derive the density (and its first two
moments) of the minimal signed distance of samples from
a Gaussian to a polygon corner with angle β. We use the
convention where d < 0 if the sample lies within the angle,
and d > 0, otherwise. Formally, we derive this density from

the probabilistic distance model. For this purpose, let r and φ
denote the polar coordinates of a sample drawn from N (0, I).
In addition, let the considered polygon vertex be located on
the origin of the polar coordinate system. Then, the distance
d is determined by

d = a(r, φ) , (6)

where the function a(·, ·) computes the minimal signed Eu-
clidean distance of a sample to both legs. In terms of polar
coordinates [18], the Gaussian density N (0, I) can be written
as

f(r, φ) =
1

2π
exp

[
−1

2
r2

]
. (7)

Using (7) and (6), the density of the minimal distance d can
be calculated according to

fd(d) =
1

2π

∫
Φ

∞∫
0

δ(d− a(r, φ)) exp

[
−1

2
r2

]
r dφ dr , (8)

where Φ is the angular integration domain, and δ(·) is the
Dirac-δ distribution. In the following, we derive a closed-
form solution to this integral with respect to the polygon
angle β. In doing so, we distinguish two cases, 0 ≤ β < π
and π ≤ β < 2π, both illustrated in Fig. 3.

A. First case: β ∈ [0;π)

The density of the minimal signed distance of the samples
of N (0, I) for 0 ≤ β < π is given in the following theorem.

Theorem 1. For the inner angle β of the body depicted in
Fig. 3a with 0 ≤ β < π, the minimal signed distance proba-
bility density f (β1)

d (d) of measurements distributed according
to N (0, I) is given by

f
(β1)
d (d) =

(
1√
2π

+
π − β

2π
d

)
exp

[
−1

2
d2

]
Θ (d)

+
1√
2π

exp

[
−1

2
d2

](
1 + erf

[
d√
2

cot

(
β

2

)])
Θ (−d) ,

(9)
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Fig. 4: Calculation of the distribution of the minimal signed distance for two different polygon angles. The respective sampling-
based distributions where calculated using a kernel density estimator.

where Θ (·) denotes the Heaviside function.

Proof. The proof is given in Appendix A.

The mean µd and variance σ2
d of fd(d) can be obtained

using the results of the following lemma.

Lemma 1. The first and second moments of the minimal
signed distance probability density f (β1)

d (d) of measurements
distributed according to N (0, I) are given by

E {d} =
π − β + 2 cos(β2 )

2
√

2π

and

E
{
d2
}

=
3π − β − sin(β)

2π
.

Proof. The results of Lemma 1 can be obtained by evaluating
the integrals

E {d} =

∞∫
−∞

d f
(β1)
d (d) dd , and

E
{
d2
}

=

∞∫
−∞

d2f
(β1)
d (d) dd .

B. Second case: β ∈ [π; 2π)

In the following theorem, we give the probability density of
the minimal signed distance for measurements being sampled
from a standard Gaussian N (0, I).

Theorem 2. For the inner angle β of the body depicted in
Fig. 3b with π ≤ β < 2π, the minimal signed distance proba-
bility density f (β2)

d (d) of measurements distributed according
to N (0, I) is given by

f
(β2)
d (d) =

(
1√
2π

+
π − β

2π
d

)
exp

[
−1

2
d2

]
Θ (−d)

+
1√
2π

exp

[
−1

2
d2

](
1 + erf

[
d√
2

cot

(
β

2

)])
Θ (d) .

(10)

Proof. Analogously to Theorem 1.

The results given in the following lemma can be used to
calculate the first two moments of f (β2)

d (d).

Lemma 2. The first and second moments of the minimal
signed distance probability density f (β2)

d (d) of measurements
distributed according to N (0, I) are given by

E {d} =
π − β + 2 cos(β2 )

2
√

2π

and

E
{
d2
}

=
π + β + sin(β)

2π
.

Proof. Analogously to Lemma 1.
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Fig. 5: Approximation quality of the moments of fd(d).

C. Discussion

By comparing the results from both lemmas, it can be seen
that the first moments are equal and the second ones differ. In
consequence, we obtain

µd := E {d} =
π − β + 2 cos(β2 )

2
√

2π
(11)

for the mean and

σ2
d := E

{
d2
}
− E {d}2 =


3π−β−sin(β)

2π − µ2
d if β ∈ [0;π)

π+β+sin(β)
2π − µ2

d otherwise ,
(12)

for the variance of the minimal signed distance. The full
densities f (β1)

d (d) and f (β2)
d (d) can be aggregated into fd(d)

analogously using the case function.
Now that we have the desired closed-form expressions,

we can compare them to their sampling-based alternatives,
available in literature [12]. In Fig. 4, the density fd(d) is drawn
for two example angles. Besides the closed-form approach,
we derived kernel densities using 107 random samples (for
“ground truth”) on the one hand, and two sets of determin-
istically calculated samples on the other hand. For the 51
and 5 deterministic samples (shown in the figure), we used
the approaches proposed in [16] and [17], respectively. As
can be seen from the figure, the closed-form expression for
fd(d) perfectly coincides with the “ground truth”, while the
51-samples and 5-samples kernel densities do not achieve this
quality.

Nevertheless, as can be seen from Fig. 5, the approximation
quality of mean and variance of fd(d) is comparable for
all approaches and all possible polygon angles β ∈ [0, 2π],
except for the “5-samples” approach, which yields an incorrect
variance. It is interesting to note that for β = π, mean and
variance are given by µd = 0 and σ2

d = 1, which are the
values that are used in the GAM (4). That is why GAMs are
unbiased when estimating linear constraints.

V. CLOSED-FORM BIAS REDUCTION FOR POLYGONS

In this section, we show how to incorporate the closed-
form expression for µd and σ2

d into the PIM-likelihood (5)
for polygon constraints. Unfortunately, we cannot always use
(11) and (12) directly, as they are only valid for the case
that the considered source is located on a vertex. However,

(a) (b)

Fig. 6: Sketch of the applied interpolation.

generally, we have to deal with situations, where the source
is located somewhere else (see Fig. 6b). However, the closed-
form solution is valid for (i) the polygon vertices themselves,
and (ii) for all sources with a larger distance than a given
threshold lmax from a vertex, as we can interpret them as
vertices with β = π. In Fig. 6a, the “good” parts of the
constraint are drawn in green, and the “bad” parts are drawn
in red. From the figure, it can be seen that for all sources
being closer to the left vertex than lmax, the minimal distance
would be calculated using the other leg, which would affect the
distribution fd(d). In the following, we propose an approach
to approximate the moments of the signed distance for the
red part of the constraint by linear interpolation between the
known moments of the polygon vertex and the first source,
which is not affected by the other leg.

A. Interpolation

For calculating the interpolation range lmax, we assume
the magnitude of the measurement noise to be the standard
deviation = 1 (see Fig. 6a). Based on this assumption, lmax
can be calculated according to lmax = 1/ sin(β/2), using the
triangle from the figure. For the interpolation values, we use
µd and σ2

d from (11) and (12) for the vertex and µd = 0 and
σ2
d = 1 for the first source whose distance exceeds lmax. Then,

for any other source with a distance l ∈ [0, lmax] from the
vertex, we can apply a linear interpolation in the form of

µd(l) =

{
−µd · sin(β2 ) · l + µd if l ≤ l ≤ lmax

0 otherwise ,
(13)

and

σ2
d(l) =

{
(1− σ2

d) · sin(β2 ) · l + σ2
d if l ≤ lmax

0 otherwise .
(14)

Finally, the proposed Partial Information Model with closed-
form bias reduction (PIM-CF) is given by

p(y|x) ≈ N
(
d;µd(l), σ

2
d(l)
)
. (15)

B. Implementation

Evaluating the likelihood for a given state x and measure-
ment y then requires the following three steps:

1) Find the closest source ẑx to y using (3), and calculate
the signed distance d = ±‖y − ẑx‖.



y1

y
2

−4 −2 0 2 4

−2

0

2

4

(a) Polygon angle with β = 68◦.
y1

y
2

−4 −2 0 2 4

−2

0

2

4

(b) Polygon angle with β = 138◦.

Fig. 7: Two instances of the evaluation scenario. For the
respective areas within the dashed rectangles, the shape es-
timates are drawn in Fig. 9.

2) Determine the closest vertex of the polygon to ẑx. The
angle at this vertex is β and the distance between vertex
and ẑx is l.

3) Calculate the moments µd(l) and σ2
d(l) of the signed

distance according to (13) and (14).

Finally, with d from step 1, and µd(l), σ2
d(l) from step 3,

all components of the likelihood (15) are given, and it can
be used in any estimator that employs explicit likelihoods,
e.g., a maximum likelihood estimator, particle filter, or the
Progressive Gaussian Filter [19], among others. In addition,
the proposed approach can be used with estimators which
require measurement functions, such as nonlinear Kalman
filters, as explained in [12]. For these filters, the measurement
equation is given by 0 = h(x, y, v) = ±‖y − ẑx‖ − v, where
v is a Gaussian noise term with v ∼ N (µd, σ

2
d).

VI. EVALUATION

Earlier in Sec. IV-C, we already validated the correctness
of the closed-form expression for the probability density
fd(d) of the signed distance, and its moments µd and σ2

d.
Now, we evaluate the proposed PIM-CF likelihood (15) that
incorporates the linear interpolation of the closed-form bias
reduction.

A. Experiment

We consider a scenario where the parameters of a non-
moving polygon angle are to be estimated from sequentially
measured noisy points, as sketched in Fig. 7. The state
parameters x to be estimated consist of the angle β of the
polygon angle, as well as the y2-component of the vertex (y-
intercept). In order to allow for a representative assessment of
the proposed likelihood, we consider 36 polygon angles with
different ground-truth values β in the range between 1

4π and
7
4π. Two instances of the experiment are shown in Fig. 7a and
Fig. 7b, respectively. For each instance of the estimation task,
we simulated a total of 2500 point measurements from the
polygon angle, where measurement sources were distributed
uniformly on the legs within a distance of 10. Then, the mea-
surements were to be processed recursively by the estimators,
in 250 packages with 10 points.
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Fig. 8: Mean signed deviation of the estimated parameters
from their ground truth-values.

B. Estimators

We implemented likelihoods based on the following models:
• SDM: For reference, we consider a Spatial Distribution

Model, where we correctly model a uniform distribution
for the measurement sources. The involved integral [1]
is numerically evaluated, using 100 vertices along the
constraint.

• GAM: As a representative for the classical orthogonal
least squares approach, we set up a Greedy Association
Model according to (4).

• PIM-5-SP / PIM-51-SP: For the Partial Information
Model with sampling-based moment-matching [12], we
deterministically calculated 5 and 51 samples according
to [17] and [16], respectively.

• PIM-CF (proposed): For the proposed Partial Infor-
mation Model with closed-form moment-matching and
linear interpolation we use the implementation according
to Sec. V-B.

For all models, we set up recursive Bayesian estimators
[20] based on the Progressive Gaussian Filter [19], which
includes an explicit likelihood-based measurement update step.
For initialization, we set the state parameters x0 to their
respective ground truth values and the covariance matrix to
Cx0 = 10−1 · I. Note that we intentionally chose the ground
truth here in order to demonstrate that even perfectly initialized
estimates drift away from their perfect values when using an
incorrect model. In order to encourage this drifting behavior,
we incorporate a random walk model with logarithmically
decreasing process noise from a magnitude of 10−5 down to
10−14. The following results are obtained from 100 runs for
each instance of the experiment, i.e., for each ground truth
angle β.

C. Results

In Fig. 8, the estimation accuracy can be quantitatively
compared. The horizontal axes denote the ground-truth an-
gle used in the respective experiment, and the vertical axes
show the mean signed deviation of the estimated parameters
from their ground truth values. For unbiased estimators, this
deviation should be zero. As can be seen from the figure, the



SDM-approach performs best, as it has additional information
about the distribution of the measurement sources. Again, it is
important to note that this information is typically not available
and the biased GAM-approach would be applied (green).

For the PIM-approaches, there are two important obser-
vations we can draw from this accuracy analysis. First, all
PIM-versions yield a similar bias reduction of about 50%
compared to the traditional GAM approach. This result is
remarkable, as the proposed PIM-CF only has a fraction
of the computational effort compared to its sampling-based
alternatives. The second observation is that the bias reduction
mechanism of the PIM cannot compensate for all bias. In
particular, increasing nonlinearity of the constraint causes
larger bias in the parameters. This behavior can be explained
based on the studies in [12], where it was shown that increas-
ing nonlinearity of the constraint increases correlation of the
ignored association heuristic.

For a more intuitive understanding of the estimation quality,
for two example angles, the estimated shapes are drawn in
Fig. 9. In each figure, the estimated shapes of all runs are
drawn against the ground truth. As can be seen, the GAM
approach cannot manage to find the correct parameters at all
for the smaller angle, while the PIM approaches, again, yield
far better results.

VII. CONCLUSION

In this paper, we considered the task of estimating the
parameters of polygonal constraints (open or closed) and
presented two major contributions:

1) we derived a closed-form expression for the density (and
its first two moments) of the minimal signed distance
between noisy points and the two legs of an angle, for
Gaussian noise, and the source of all points being the
intersection of the legs, and

2) based on the closed-form moments, we proposed a
Partial Information Model for polygonal constraints that
yields a bias-reduced estimator, and where the bias
correction can be calculated in closed-form.

In a synthetic benchmark scenario, we showed that the re-
sulting estimator is able to compete with the quality of state-
of-the-art bias correction by only requiring a fraction of their
computational cost. Subsequent work includes, e.g., improving
the interpolation mechanism, or derivation of closed-form
expressions for higher-dimensional polyhedrons.

APPENDIX A
PROOF OF THEOREM 1

For f (β1)
d (d), it holds

f
(β1)
d (d) =

2π∫
0

∞∫
0

f(d, r, φ) dr dφ

=

2π∫
0

∞∫
0

f(d|r, φ)f(r, φ) dr dφ , (16)

where f(r, φ) is the Gaussian probability density function
N (0, I) in polar coordinates according to (7). The density of
d conditioned on r and φ can be obtained from (6) according
to

f(d|r, φ) = δ(d− a(r, φ)) .

For 0 ≤ β < π, the distance function a(·, ·) is given by

a(r, φ) =


−r sin(φ) , for φ ∈ [−π2 ; β2 )

r sin(φ− β) , for φ ∈ [β2 ;β + π
2 )

r , for φ ∈ [β + π
2 ; 3

2π) .

Fig. 3a illustrates a(r, φ) for 0 ≤ β < π. Please observe that
we define the distance to be positive outside the body and
negative inside.

In order to evaluate integral (16), we divide it into a sum of
integrals w.r.t. φ over different intervals. It can be shown that
the integral (16) for φ ∈ [−π/2; 0) is equal to the integral (16)
for φ ∈ [β;β + π/2), and the integral (16) for φ ∈ [0;β/2)
is equal to the integral (16) for φ ∈ [β/2;β). Integral (16) for
φ ∈ [β + π/2; 3π/2) can be evaluated as follows

f
(β1,1)
d (d) =

1

2π

3
2π∫

β+π
2

∞∫
0

δ(d− r) exp

[
−1

2
r2

]
r dr dφ

=
1

2π

3
2π∫

β+π
2

∞∫
−∞

δ(d− r) exp

[
−1

2
r2

]
rΘ (r) dr dφ

=
π − β

2π
d exp

[
−1

2
d2

]
Θ (d) .

(17)

For the integral (16) for φ ∈ [−π/2; 0), it holds

f
(β1,2)
d (d) =

1

2π

0∫
−π2

∞∫
0

δ(d+ r sin(φ)) exp

[
−1

2
r2

]
r dr dφ

=
1

2π

0∫
−π2

∞∫
−∞

δ(d+ r sin(φ)) exp

[
−1

2
r2

]
rΘ (r) dr dφ

=
1

2
√

2π
exp

[
−d2

]
Θ (d) ,

(18)

where we used the identity

δ(d+ r sin(φ)) =
δ
(
r + d

sin(φ)

)
| sin(φ)|

and the fact that | sin(φ)| = − sin(φ) in the considered
integration interval for φ.
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Fig. 9: Results of the polygon angle experiment for 68◦ (first row) and 138◦ (second row). Estimates of 100 runs are drawn
together against the ground truth (black). In addition, the average estimates are drawn as dashed lines. The GAM bias increases
with higher nonlinearity. The proposed PIM-approach yields a comparable quality to its sampling-based alternatives.

Finally, the integral (16) for φ ∈ [0;β/2) is given by

f
(3)
d (d) =

1

2π

β
2∫

0

∞∫
0

δ(d+ r sin(φ)) exp

[
−1

2
r2

]
r dr dφ

=
1

2π

β
2∫

0

∞∫
−∞

δ(d+ r sin(φ)) exp

[
−1

2
r2

]
rΘ (r) dr dφ

=
1

2
√

2π
exp

[
−1

2
d2

](
1 + erf

[
d√
2

cot

(
β

2

)])
Θ (−d) .

(19)

Combining (17), (18), and (19), we obtain

fβ1

d (d) = f
(β1,1)
d (d) + 2f

(β1,2)
d (d) + f

(β1,3)
d (d)

=

(
1√
2π

+
π − β

2π
d

)
exp

[
−1

2
d2

]
Θ (d)

+
1√
2π

exp

[
−1

2
d2

](
1 + erf

[
d√
2

cot

(
β

2

)])
Θ (−d) ,

which concludes the proof.
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