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Abstract—When approximating one probability density with
another density, it is desirable to minimize the information loss
of the approximation as quantified by, e.g., the Kullback–Leibler
divergence (KLD). It has been known for some time that in the
case of the Gaussian distribution, matching the first two moments
of the original density yields the optimal approximation in terms
of minimizing the KLD. In this paper, we will show that a similar
property can be proven for certain hyperspherical probability
distributions, namely the von Mises–Fisher and the Watson
distribution. This result has profound implications for moment-
based filtering on the unit hypersphere as it shows that moment-
based approaches are optimal in the information-theoretic sense.

Keywords—von Mises–Fisher distribution, Watson distribution,
parameter estimation

I. INTRODUCTION

In many practical scenarios, it is necessary to approximate
some complicated density p(·) with a simpler density q(·) that
is more convenient to use. For example, a Gaussian mixture
might be approximated with a single Gaussian component. In
order to find a good approximation, we desire to minimize
the information loss, e.g., the Kullback–Leibler divergence
(KLD) [1] between the original and the approximating density.
The KLD between two probability densities p(·) and q(·) on a
domain D is defined as

KLD(p||q) =

∫
D

p(x) log

(
p(x)

q(x)

)
dx .

This integral quantifies the information loss when approximat-
ing p(·) with q(·). The KLD can be rewritten as

KLD(p||q) =−
∫
D

p(x) log (q(x)) dx︸ ︷︷ ︸
cross entropy

−
∫
D

−p(x) log(p(x)) dx︸ ︷︷ ︸
entropy of p

,

i.e., the difference of the cross entropy between p(·) and q(·)
and the entropy of p(·) (see [2, Sec. 2.8.2]). As we assume p(·)
to be given, minimizing the KLD is equivalent to minimizing
the cross entropy.

It has been known for a long time that the Gaussian
density possesses an interesting and useful property. If we
approximate an arbitrary density on Rn with a Gaussian density,
the parameters that minimize the KLD are exactly the same as
the parameters obtained by setting the first two moments of the
approximating (Gaussian) density to the first two moments of
the given density (see, e.g., [3, Sec. 2]). Setting the parameters

Fig. 1: Parameter estimation from a probability density or a set
of samples using different methods. Depending on the original
distribution, the different methods may or may not lead to the
same result. We can also approximate a continuous probability
density by an intermediate sample representation. In this case,
we consider the limit for an infinite number of samples.

in such a way that the moments are equal is called moment
matching. Thus, approximating the true density on Rn with
a Gaussian by means of moment matching is justified in the
sense that the information loss is minimized.

Beyond the Gaussian, there are other densities for which
such a result can be obtained. In particular, Herbrich [4] showed
a similar property for certain exponential densities on Rn. It is
also possible to show related properties for distributions defined
on manifolds other than Rn. Chiuso et al. [5, p. 95] proved that
the von Mises–Fisher distribution on the unit sphere S2 ⊂ R3

also has the property that moment matching (using the so-
called mean result vector instead of traditional power moments)
yields the same result as minimizing the KLD. Furthermore,
we showed that the von Mises distribution on the unit circle
also has this property if trigonometric moments are used [6].
In the following, we show a closely related property for certain
hyperspherical probability distributions.



There are various applications of probability distributions
on the sphere or hypersphere in numerous fields. Early uses of
hyperspherical distributions can be found in geology [7], [8], [9]
because they naturally appear when considering quantities such
as the orientation of rock formations or paleomagnetic fields.
In recent years, these approaches have found their way into
many fields and are not limited to descriptive statistics, but
are also used for estimation and filtering. For example, the
task of tracking objects using omnidirectional cameras [10]
can naturally be mapped to a spherical estimation problem.
Thus, it even becomes possible to consider multiple target
tracking on the surface of the unit sphere [11]. The orientation
of crystalline structures including the occurring symmetries can
also be elegantly represented using spherical distributions [12].
In the field of signal processing, hyperspherical distributions
have been used for multiple speaker tracking [13] and speaker
clustering [14]. Further applications include quaternion-based
orientation estimation [15], [16], protein structure modeling
in molecular biology [17], machine learning [18], [19], and
neuroscience [20].

The estimation of a density’s parameters based on a set
of samples is a closely related problem to the approximation
of a continuous density. In this case, moment matching and
maximum likelihood estimation (MLE) can be used. For some
densities, e.g., Gaussian densities, it can be shown that both
approaches always yield the same parameters. If a continous
density is to be approximated (and not a set of samples), MLE
can only be used indirectly. MLE is not immediately applicable
for approximation of continuous densities because the likelihood
of obtaining a particular set of samples is considered. However,
the original density can be sampled stochastically and those
samples can be used for MLE. If the parameters converge to
some fixed result as the number of samples approaches infinity,
we can obtain an MLE-based approximation this way. This
result may (or may not, depending on the density) be identical
to the results obtained by moment matching and the minimizing
the KLD. This connection is illustrated in Fig. 1.

The contribution of this paper can be summarized as follows.
We consider the von Mises–Fisher distribution and the Watson
distribution on the unit hypersphere Sd−1 and show that they
both fulfill the property that matching a suitable moment (the
mean resultant vector or the covariance matrix, respectively)
minimizes the KLD. In both cases, we can also show a close
connection to MLE. In the case of parameter estimation based
on a set of samples, the MLE coincides with the moment
matching estimator, which in turn is equivalent to the minimum
KLD estimator.

Our novel results have significant implications for filtering
algorithms based on von Mises–Fisher or Watson distributions,
e.g., [21], [5]. In particular, they serve as a justification for
moment-based filters by proving that approximations that use
moment matching are not just ad-hoc methods but provide an
optimal approximation in the sense that the information loss
is minimized. Furthermore, our results are of interest for the
research area of minimum divergence filtering [22], [23], where
filtering algorithms are constructed to minimize the Kullback–
Leibler divergence rather than, say, the mean squared error
(MSE).

II. VON MISES–FISHER DISTRIBUTION

The von Mises–Fisher (VMF) distribution is a probability
distribution on the unit hypersphere Sd−1 = {x ∈ Rd : ‖x‖ =
1} ⊂ Rd [24]. It includes the von Mises distribution [25] on the
unit circle as a special case for d = 2. The VMF distribution
is sometimes also referred to as the Langevin distribution [26].

Definition 1 (von Mises–Fisher Distribution) The von Mises–
Fisher distribution is given by the probability density function

q(x) = cd(κ) exp(κµTx) ,

where x ∈ Sd−1, µ ∈ Sd−1, and κ ≥ 0. It can be shown that
the normalization constant cd(κ) is given by

cd(κ) =

(∫
Sd−1

exp(κµTx) dx

)−1
=

κd/2−1

(2π)d/2Id/2−1(κ)
.

The term Id/2−1(κ) refers to the modified Bessel function of
order d/2− 1 evaluated at κ [27, Sec. 9.6].

Intuitively, µ represents the predominant direction on the
hypersphere and κ determines the concentration around that
direction. Examples of the VMF density are depicted in Fig. 2.
In the three-dimensional case (d = 3), the normalization
constant can be rewritten as

c3(κ) =
κ

4π sinh(κ)
. (1)

The mean resultant vector of an arbitrary spherical density
f(·) is given by [28, Sec. 4.2.2]

m = E(x) =

∫
Sd−1

x · f(x) dx .

If f(·) is a VMF distribution, we obtain

m =

∫
Sd−1

x · cd(κ) exp(κµTx) dx

= µ ·Ad(κ)

where

Ad(κ) =
Id/2−1(κ)

Id/2(κ)
.

We give a proof of this property in Appendix A.

The moment-based parameter estimator is identical to the
MLE method [29], [19] for parameter estimation and is given
by the formulas

µ =
m

‖m‖
,

κ = A−1d (‖m‖) ,

where A−1d (·) refers to the inverse function of Ad(·) and m 6= 0
is the mean resultant vector of the spherical density or the
sample set, respectively. In the case of m = 0, µ is an arbitrary
unit vector and κ = 0.

We now formulate the main theorem regarding the connec-
tion between moment matching and the KLD in the case of a
VMF distribution. The special case for S2 has previously been
shown by Chiuso et al. [5]. The main difference in the general
case is that the normalization constant is significantly easier in
3D, as can be seen in (1).



(a) κ = 1. (b) κ = 10. (c) κ = 100.

Fig. 2: Densities of von Mises–Fisher distributions on the unit sphere S2 in three dimensions. We use the location parameter
µ = [0,−1, 0]T and different concentrations κ.

Theorem 1 Consider an arbitrary probability density p(x)
on the unit hypersphere Sd−1 ⊂ Rd. Assume that q(x;µ, κ)
follows a von Mises–Fisher distribution with parameters µ and
κ, i.e.,

q(x) =
κd/2−1

(2π)d/2Id/2−1(κ)
exp(κµTx) .

Then

arg minµ,κ KLD(p||q(x;µ, κ))

yields the same result as matching the mean resultant vector
of q(x) with that of p(x).

Proof:

We can rewrite the KLD as

KLD(p||q)

=

∫
Sd−1

p(x) log

(
p(x)

q(x;µ, κ)

)
dx

=

∫
Sd−1

p(x) log p(x) dx− log
κd/2−1

(2π)d/2Id/2−1(κ)

− κ
∫
Sd−1

p(x)µTxdx .

As mentioned in the introduction, the first term is indepen-
dent of q(·) and can be disregarded. In order to introduce the
constraint ||µ|| = 1 while minimizing the KLD, we use the
Lagrange multiplier method. Thus, we can minimize the KLD
by maximizing the function

g(µ, κ, λ) := log
κd/2−1

(2π)d/2Id/2−1(κ)
+ κ

∫
Sd−1

p(x)µTx dx

+ λ(1−
d∑
k=1

µ2
k)

where λ ∈ R is the Lagrange multiplier.

Now, we consider the partial derivatives with respect to µj
for j = 1, . . . , d and set them to zero

∂g

∂µj
= κ

∫
Sd−1

p(x)xj dx− 2λµj
!
= 0

⇔ µj
!
=

κ

2λ

∫
Sd−1

p(x)xj dx ,

for λ 6= 0. Thus, we have

µj ∝
∫
Sd−1

p(x)xj dx .

The second derivative is given by

∂2g

(∂µj)2
= −2λ ,

i.e., we have a maximum for λ > 0 and a minimum for λ < 0.
Considering the derivative of g(·) with respect to λ and setting
it to zero yields

∂g

∂λ
= 1−

d∑
k=1

µ2
k

!
= 0 .

Thus, we obtain µ as

µ =
r

‖r‖
, r :=

∫
Sd−1

p(x)x dx

if ‖r‖ 6= 0. If ‖r‖ = 0, g(·) is independent of µ and any unit
vector can be chosen. In this case, we have κ = 0 and obtain
a uniform distribution on the unit hypersphere.

For κ > 0, the derivative of g(·) with respect to κ is
independent of λ and can be calculated as

∂g

∂κ
=

(2π)d/2Id/2−1(κ)

κd/2−1
· ∂
∂κ

κd/2−1

(2π)d/2Id/2−1(κ)

+

∫
Sd−1

p(x)µTx dx

=
1

κd/2−1
·

(d/2− 1)κd/2−2Id/2−1(κ)− κd/2−1 ∂
∂κId/2−1(κ)

Id/2−1(κ)

+

∫
Sd−1

p(x)µTx dx



=
(d/2− 1)κ−1Id/2−1(κ)− ∂

∂κId/2−1(κ)

Id/2−1(κ)

+

∫
Sd−1

p(x)µTx dx

=
(d/2−1)κ−1Id/2−1(κ)−((d/2−1)κ−1Id/2−1(κ)+Id/2(κ))

Id/2−1(κ)

+

∫
Sd−1

p(x)µTx dx

=
−Id/2(κ))

Id/2−1(κ)
+

∫
Sd−1

p(x)µTxdx

where we use the identity [30, eq. (A.8)] to compute the
derivative of the Bessel function. Setting the derivative to zero
yields

Id/2(κ)

Id/2−1(κ)︸ ︷︷ ︸
=:Ad(κ)

=

∫
Sd−1

p(x)µTxdx︸ ︷︷ ︸
=:R

.

Thus, we have κ = A−1d (R). Note that R = ‖r‖ holds.

The second derivative with respect to κ

∂2g

(∂κ)2
= −A′d(κ)

is smaller than zero for all κ > 0 as shown by [31, p. 242]. As
a result, the derived values for µ and κ constitute a maximum
of g(·), and hence, minimize the KLD between p(·) and q(·).

This proof also shows the desired property for the circular
case, i.e., d = 2. The VMF density on the unit circle can
be parameterized using x = [cos(φ), sin(φ)]T and µ =
[cos(ν), sin(ν)]T according to

f(x) = f([cos(φ), sin(φ)]T )

= c2(κ) exp(κ[cos(ν), sin(ν)][cos(φ), sin(φ)]T )

= c2(κ) exp(κ(cos(ν) cos(φ) + sin(ν) sin(φ)))

= c2(κ) exp(κ(cos(φ− ν))) ,

which is a von Mises density. Thus, the proof for the VMF
distribution is also a generalization of the proof for the von
Mises distribution given in [6].

III. WATSON DISTRIBUTION

In this section, we will focus on the Watson distribu-
tion [8], [9], which is closely related to the VMF distribution.
The essential difference is the inclusion of a square in the
exponent as seen in the following definition. The Watson distri-
bution constitutes a special case of the Bingham distribution [7]
with rotational symmetry.

Definition 2 (Watson Distribution) The Watson distribution on
Sd−1 is given by the pdf

q(x;µ, κ) = cd(κ) · exp(κ(µTx)2) ,

where x ∈ Sd−1, µ ∈ Sd−1 and κ ∈ R. The normalization
constant cd(κ) can be written as

cd(κ) =
Γ(d/2)

2πd/2M(1/2, d/2, κ)
,

where M(·, ·, ·) is a confluent hypergeometric function known
as Kummer’s function [27, Sec. 13.1].

Kummer’s function M(·, ·, ·) is given by the power series
representation [30, eq. (A.18)]

M(a, b, κ) =

∞∑
n=0

Γ(a+ n)Γ(b)

Γ(a)Γ(b+ n)

κn

n!
.

Some examples of Watson densities are shown in Fig. 3. It
can be seen that the density is antipodally symmetric, i.e.,
f(x) = f(−x). For κ > 0, the density is concentrated around
the modes at µ and −µ. As κ approaches zero, the density
becomes less peaked and approaches a uniform distribution. For
negative κ, the density is concentrated around the hyperplane
through 0 that is perpendicular to µ.

As a result of the antipodal symmetry, it always holds
that E(x) = 0. Consequently, the mean resultant vector of a
Watson distribution does not contain any useful information.
However, its second moment C = E(xxT ) can be used for
moment matching. Due to E(x) = 0 the second moment
coincides with the second central moment, i.e., the covariance
matrix. A derivation of this covariance matrix can be found in
Appendix B.

The moment-based estimator can be found by inverting
the covariance formula (see Appendix C) and is identical to
the MLE estimator given in [32], [18]. To compute the MLE,
we consider the smallest and largest eigenvalues of C with
the corresponding eigenvectors. If κ > 0, µ is the eigenvector
corresponding to the largest eigenvalue. Otherwise, µ is the
eigenvector corresponding to the smallest eigenvalue. Following
[30, eqs. (A.20), (A.22)], we define

Dd(κ) =
M ′(1/2, d/2, κ)

M(1/2, d/2, κ)
(2)

=
M(3/2, d/2 + 1, κ)

d ·M(1/2, d/2, κ)
.

We observe that the derivative of M(·, ·, ·) can easily be
eliminated. The value of κ is then obtained by solving the
equation

Dd(κ) = µTCµ

for both possible values for µ are then selecting the result
that yields the larger likelihood. Note that the evaluation of
the inverse D−1d (·) is only possible numerically as described
in [32].

Theorem 2 Consider an arbitrary probability density p(x)
on the unit hypersphere Sd−1 ⊂ Rd. Assume that q(x;µ, κ)
follows a Watson distribution with parameters µ and κ. Then

arg minµ,κ KLD(p||q(x;µ, κ))

yields the same result as matching the second moment of q(x)
to the second moment

C =

∫
Sd−1

xxT · p(x) dx

of p(x).



(a) κ = 1. (b) κ = 10. (c) κ = −10.

Fig. 3: Densities of Watson distributions on the unit sphere S2 in three dimensions. We use the location parameter µ = [0,−1, 0]T

and different concentrations κ.

Proof: First, we rewrite the KLD according to

KLD(p||q)

=

∫
Sd−1

p(x) log

(
p(x)

q(x;µ, κ)

)
dx

=

∫
Sd−1

p(x) log p(x) dx−
∫
Sd−1

p(x) log q(x;µ, κ) dx

=

∫
Sd−1

p(x) log p(x) dx− log cd(κ)− κ
∫
Sd−1

p(x)(µTx)2 dx

=

∫
Sd−1

p(x) log p(x) dx− log Γ(d/2) + log(2πd/2)

+ log(M(1/2, d/2, κ))− κ
∫
Sd−1

p(x)(µTx)2 dx .

For fixed κ, we drop all terms independent of µ and obtain

KLD(p||q) = −κµT
∫
Sd−1

p(x)xxT dx︸ ︷︷ ︸
=C

µ+ const .

Because ‖µ‖ = 1, we can see that µ is the unit eigenvector of
C corresponding to the largest eigenvalue (for κ ≥ 0) or to the
smallest eigenvalue (for κ < 0). Similar to [32], we calculate
the result for both possible eigenvectors and later evaluate the
KLD to find the optimal solution.

To obtain the optimal value of κ, we consider the derivative
with respect to κ

∂KLD(p||q)
∂κ

=
M ′(1/2, d/2, κ)

M(1/2, d/2, κ)
− µTCµ .

Setting the partial derivative to zero and solving for κ yields
κ = D−1d (µTCµ). According to [32], this solution constitutes
a minimum.

IV. CONCLUSION

We have shown a fundamental property of two hyperspher-
ical probability distributions, the von Mises–Fisher distribution
and the Watson distribution. When approximating an arbitrary
hyperspherical distribution with one of these two distributions,
the result obtained by moment matching is also optimal in
the sense that the Kullback–Leibler divergence between the

original density and its approximation is minimized. Thus,
moment matching minimizes the information loss as a result
of the approximation.

The novel results have interesting implications for esti-
mation algorithms based on hyperspherical distributions. In
particular, the use of moment-based approximations is now
justified by an information-theoretic foundation. Thus, reliance
on moment matching is not only motivated by its computational
tractability, but also by the fact that it can be shown to be
optimal in terms of minimizing the information loss.

Future work may include the investigation of other densities
from directional statistics. It is expected that some of them
can be shown to have similar properties, whereas for others
counterexamples may be found.

APPENDIX A
DERIVATION OF THE MEAN RESULTANT VECTOR OF THE

VMF DISTRIBUTION

In the following, we show the property

m =

∫
Sd−1

x · cd(κ) exp(κµTx) dx

= µ ·Ad(κ) .

First, we consider the case of µ = [1, 0, . . . , 0]T . For 2 ≤ j ≤
d, we have

mj =

∫
Sd−1

xj · cd(κ) exp(κµ1x1) dx = 0

for reasons of symmetry of Sd−1. The first entry of m is
derived according to

m1 =

∫
Sd−1

x1 · cd(κ) exp(κµ1x1) dx

= cd(κ)

∫
Sd−1

x1 exp(κµ1x1) dx

=
cd(κ)

µ1

∫
Sd−1

∂

∂κ
exp(κµ1x1) dx

= cd(κ)
∂

∂κ

∫
Sd−1

exp(κµ1x1) dx



= cd(κ)
∂

∂κ

1

cd(κ)
,

where we use the dominated convergence theorem to in-
terchange differentiation and integration. Furthermore, we
introduce the abbreviation d̂ := d

2 − 1 and use [30, eq. (A.8)]
to obtain

cd(κ)
∂

∂κ

1

cd(κ)

=
κd̂

(2π)
d
2 Id̂(κ)

∂

∂κ

(2π)
d
2 Id̂(κ)

κd̂

=
κd̂

Id̂(κ)

∂

∂κ

Id̂(κ)

κd̂

=
κd̂

Id̂(κ)

(
∂
∂κId̂(κ)

)
κd̂ − d̂κ d

2−2Id̂(κ)

(κd̂)2

=

(
∂
∂κId̂(κ)

)
κd̂ − d̂κ d

2−2Id̂(κ)

κd̂Id̂(κ)

=
(d̂Id̂(κ)κ−1 + I d

2
(κ))κd̂ − d̂κ d

2−2Id̂(κ)

κd̂Id̂(κ)

=
d̂Id̂(κ)κ−1 + I d

2
(κ)− d̂κ−1Id̂(κ)

Id̂(κ)

=
I d

2
(κ)

Id̂(κ)
= Ad(κ) .

For µ 6= [1, 0, . . . , 0]T , we consider an arbitrary rotation
matrix M whose first column is µ. Thus, we have µ =
M · [1, 0, . . . , 0]T and µTM = [1, 0, . . . , 0]. We use integration
by substitution with x = Mt (which does not change the
integration area and has volume correction term 1) to reduce
the problem to the case of µ = [1, 0, . . . , 0]T , which yields

m =

∫
Sd−1

x · cd(κ) exp(κµTx) dx

=

∫
Sd−1

Mt · cd(κ) exp(κµTMt) dt

=

∫
Sd−1

Mt · cd(κ) exp(κ[1, 0, . . . , 0]t) dt

= M

∫
Sd−1

t · cd(κ) exp(κ[1, 0, . . . , 0]t) dt

= M[Ad(κ), 0, . . . , 0]T

= µ ·Ad(κ) .

APPENDIX B
DERIVATION OF THE COVARIANCE MATRIX FOR THE

WATSON DISTRIBUTION

The following derivation can be seen as a special case of
the covariance of a Bingham distribution [15, eq. (16)], [33,
Sec. A.5]. However, the solution for the Bingham distribution
is needlessly complicated as it relies on the matrix version of
the confluent hypergeometric function.

First, we consider the case µ = [1, 0, . . . , 0]T . We have

E(xxT ) =

∫
Sd−1

xxT cd(κ) exp(κ(µTx)2) dx

= cd(κ)

∫
Sd−1

xxT exp(κx21) dx .

The upper left entry of the matrix is found according to

E(x21) = cd(κ)

∫
Sd−1

x21 exp(κx21) dx

= cd(κ)

∫
Sd−1

∂

∂κ
exp(κx21) dx

= cd(κ)
∂

∂κ

∫
Sd−1

exp(κx21) dx

= cd(κ)
∂

∂κ

1

cd(κ)
,

where we are able to exchange integration and differentiation
due to the dominated convergence theorem. We further simplify

cd(κ)
∂

∂κ

1

cd(κ)

=
Γ(d/2)

2πd/2M(1/2, d/2, κ)

∂

∂κ

2πd/2M(1/2, d/2, κ)

Γ(d/2)

=
1

M(1/2, d/2, κ)

∂

∂κ
M(1/2, d/2, κ)

=
M(3/2, d/2 + 1, κ)

d ·M(1/2, d/2, κ)
= Dd(κ),

where we use (2). Furthermore, it is easy to see that the off-
diagonal entries are all zero because for i 6= j

E(xi · xj) = cd(κ)

∫
Sd−1

xixj exp(κx21) dx = 0

due to symmetry of Sd−1. To obtain the remaining entries, we
observe that

traceE(xxT ) = E(tracexxT ) = E(tracexTx) = E(1) = 1

because all x are unit vectors. This implies
∑d
i=1 E(x2i ) = 1.

Furthermore, we have E(xi ·xi) = E(xj ·xj) for all 2 ≤ i, j ≤
d. Thus, it holds that

E(xi · xi) =
1− E(x21)

d− 1
=

1− cd(κ) ∂
∂κ

1
cd(κ)

d− 1
=

1−Dd(κ)

d− 1

for 2 ≤ i ≤ d.

To generalize the derivation to arbitrary µ, we use the same
technique as in the case of the VMF distribution. Specifically,
we consider a rotation matrix M whose first column is µ. A
suitable matrix can be obtained using the QR decomposition
(see [21], [34]). According to

E(xxT )

=

∫
Sd−1

xxT cd(κ) exp(κ(µTx)2) dx

=

∫
Sd−1

Mt(Mt)T cd(κ) exp(κ(µTMt)2) dt

= M ·
∫
Sd−1

ttT cd(κ) exp(κ([1, 0, . . . , 0]T t)2) dt ·MT



we can reduce the problem to the case with µ = [1, 0, . . . , 0]T .
Therefore, the complete result is given by

E(xxT ) = M diag

(
Dd(κ),

1−Dd(κ)

d− 1
, . . . ,

1−Dd(κ)

d− 1

)
MT .

APPENDIX C
DERIVATION OF THE MOMENT-BASED ESTIMATOR FOR THE

WATSON DISTRIBUTION

We want to obtain the parameters µ and κ from a given
second moment matrix C = E(xxT ). As C is symmetric
positive definite, we can compute the eigenvalue decomposition
C = MΣMT , where M is orthogonal and Σ is a diagonal
matrix consisting of the eigenvalues of C. Because trace(C) =
1, the sum of the eigenvalues on the diagonal of Σ is 1.
Moreover, all eigenvalues are positive. If all eigenvalues are
identical, we estimate a uniform distribution with arbitrary µ
and κ = 0. Otherwise, we proceed as follows.

If we assume that C stems from a Watson distribution, we
find that d − 1 eigenvalues are identical and one eigenvalue
σ is different. We then obtain κ = D−1d (σ) and get µ as the
corresponding eigenvector.

For an arbitrary C, it is not possible to match the covariance
exactly because there may be more distinct eigenvalues. In this
case, we consider the smallest and the largest eigenvalues σ1
and σ2, respectively. We then obtain two candidates for κ
as κ1 = D−1d (σ1) and κ2 = D−1d (σ2). To pick one of the
candidates, we consider

arg max
j∈{1,2}

(κjσj − logM(1/2, d/2, κj)) .

This condition is motivated by the fact that it yields the same
result as before if C stems from a Watson distribution and
that it also matches the result that would be obtained by a
maximum likelihood estimator. The parameter µ is obtained as
the eigenvector corresponding to the chosen κ.

The proposed moment-based estimator is closely-related to
the moment-based estimator for the Bingham distribution [35,
Sec. 5.2]. However, in the case of the Bingham distribution, it
is always possible to match the second moment because the
Bingham distribution has more degrees of freedom.
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