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Abstract—In this paper, we propose a novel approach to track
elongated, curved extended targets by representing their shapes
with splines. Elongated shapes are forms whose length is much
larger than their width, and can be found in many places, such as
in connected vehicles like trains, in group targets like a caravan
moving along a curved street, or even when estimating the pose of
a person. A particular property of these targets is that we cannot
assume that their shape is rigid, as they can be expected to bend
and deform as they move. This raises the need of continuously
estimating their length, width, and curve characteristics as well
as their position. We introduce a straightforward approach to
track these shapes using splines, such as Bézier curves. By
approximating these curves as rectangle chains, we can derive
a simple closed-form likelihood function for use in a recursive
Bayesian estimator. We also show that this approach can be easily
extended to exploit negative measurements, i.e., clutter known not
to stem from the target. This allows the estimator to be robust
and maintain accuracy even in cases of low measurement quality.
Finally, we evaluate the proposed approach using real data.

I. INTRODUCTION

In this paper, we deal with tracking the parameters of an
elongated, moving object. There are different approaches in
literature to handle this task which depend on the information
the sensor can provide, such as the quality and type of measure-
ments. Classical target tracking techniques are concerned with
the case where only a single source can be resolved, and the
target can be assumed to be a single point. In this case, only
the position and the motion parameters are of interest. Once
multiple sources can be observed, robustness and accuracy are
improved by also taking into account the target shape, and it
may become necessary to simultaneously estimate the target
extent and its orientation in addition to its position, leading to
the field of extended object tracking (EOT). This raises the need
for shape models, which associate incoming measurements to
a given shape. The complexity of these models depends on
the available information, building a continuum that ranges
from simple but robust approximations, to detailed and accurate
reconstructions.

Literature provides a multitude of approaches that deal
with EOT. In case of low available information, the target is
approximated as a simple shape such as lines [1], polynomials
[2], or ellipses using random matrices [3]. As more information
becomes available, the shape can become more detailed. One
approach consists of constructing complex forms by combining
multiple ellipses [4], [5], leading to the necessity of associating
measurements to each ellipse. Other approaches parameterize
the boundary radially from a central point, using Fourier series
[6], extended Gaussian images [7], or Gaussian processes [8].
These models generally assume that the target is either convex
or star-convex.

200 220 240 260
u

160

180

200

220

240

v

(a) Measurements.
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(b) Bézier curve representation.

Figure 1: Left side, the partially occluded target being tracked
(measurements in red). Right side, target representation using an
open Bézier curve, approximated using rectangles. The crosses
represent the control points.

On a related line, tracking techniques can also be categorized
based on the kinds of measurements they can process. The
general approach is to exploit measurements that stem from the
target, denoted as positive measurements. However, negative
measurements, which are known not to stem from the object,
are also valuable as they indicate where the target cannot
possibly be, even if they are generally discarded as useless
clutter. Exploiting negative measurements for tracking has been
treated in [9]–[11]. Specific to EOT, the authors proposed a
model to incorporate negative observations in [12].

In this paper, we focus on estimating elongated, moving
target shapes such as the object visible in Fig. 1a. These shapes
can appear, for example, when observing group objects such
as a caravan of vehicles following a curved street, or when
tracking connected targets such as trains and human limbs, or
machinery with connected parts such as cranes. This presents
the following challenges. First, the shape is generally neither
convex nor star-convex. Second, we are dealing with an open
curve, i.e., the start and end points do not meet. The width (or
informally, the “thickness”) and the length of the curve also
need to be estimated. Third, while most approaches assume
that the object is rigid, i.e., the shape may only move or be
rotated, in this case we assume that the shape may also be bent,
deformed, or compressed. Fourth, due to partial occlusions or
sensor artifacts, we cannot assume that the entire shape will
be visible in a single scan, or even that the visible parts will
be connected.

The topic of elongated shapes has been discussed in
the context of computer vision, for example in [13]–[15].
However, while the focus has been mainly in dealing with
grid images, in the field of EOT measurements may arrive



as unstructured points with individual uncertainties, especially
in scenarios with multi-sensor fusion. Furthermore, in many
cases, negative measurements are available, which can provide
valuable information in cases of low measurement quality. In
this paper, we propose a new approach for elongated shapes
which takes into account these two issues. We will develop
a shape model which represents the target shape as a Bézier
curve of arbitrary complexity (Fig. 1b). By allowing its control
points to move, we also permit the modeling of bends and
compressions. Then, by approximating this curve as a chain
of rectangles, we derive a simple likelihood function which
can be used in a recursive Bayesian estimator. We also show
that this approach can easily be extended to also incorporate
negative measurements.

This paper is structured as follows. Sec. II illustrates the
problem formulation, and Sec. III describes how extended
objects are modeled. The proposed approach is introduced in
Sec. IV, and details of the implementation are presented in
Sec. V. An evaluation of the proposed ideas is described in
Sec. VI, and Sec. VII concludes this paper.

II. PROBLEM FORMULATION

The task explored in this paper is estimating the parameters
of an extended target, in particular its shape and pose, based on
incoming noisy point measurements from its surface. The state
vector, containing all the required shape and pose parameters,
is denoted as x. The target shape is denoted by the set of points
Zx ⊂ Rd. The incoming measurements Y = {y

1
, · · · , y

n
} are

in Cartesian coordinates from Rd. For simplicity, we will focus
in this paper on the case where d = 2.

Each measurement y
i

is assumed to have been generated by
the following process. In the first step, a source point zi ∈ R2

is drawn from the target shape Zx. Then, in the second step,
zi is corrupted by additive sensor noise as modeled by

y
i

= zi + vi ,

yielding the measurement y
i
. The noise term vi is assumed to

be zero-mean Gaussian distributed with covariance matrix Ri,
assumed to have the form Ri = σ2

v,i · I. The noise terms
of different measurements are assumed to be independent
from each other and from the state. As a consequence of
unpredictable occlusions and sensor artifacts, we do not assume
that the number of measurements carries information about the
target.

Finally, measurements may be received at different discrete
time steps, during which the state may also evolve according to
a dynamic model. We denote the time step using the subindex
k, i.e., the state at the time step k is xk and the measurements
at that point have the form y

k,i
.

III. SHAPE MODELS FOR EXTENDED OBJECTS

In this section, we explore how to model extended objects
probabilistically, based on the generative model from Sec. II.
The key idea is to develop a conditional density p(Yk |xk)
which describes how the measurement set Yk is associated to
a given state xk. Then, by interpreting this term as a likelihood
function for xk, we can derive a recursive Bayesian estimator

for extended object targets. We exploit the fact that the noise
terms are independent from each other to obtain

p(Yk |xk) =

n∏
i=1

p(y
k,i
|xk) .

The advantage of this result is that, in the following derivations,
we only need to concern us with a single measurement y

k,i
and

process each term p(y
k,i
|xk) separately, as the results can be

simply fused at the end by multiplying them. In the following,
to improve legibility, we will drop the subindices i and k for
sources and measurements unless needed.

A. Dealing with the Association Problem

The main challenge when deriving p(y |xk) is that y cannot
be directly associated to xk, as the source z that generated the
measurement is generally unknown due to the sensor noise. This
issue is known as the association problem. And in contrast with
fields like multiple object tracking, it is difficult to enumerate a
discrete list of hypotheses, as the number of potential sources
is infinite.

A commonly used approach to deal with this issue, which
we denote as Greedy Association Model [16], consists of
simply associating the measurement to the “closest source”,
i.e., the source which minimizes some sort of metric such
as the Euclidian distance. The task of the estimator, then, is
to ensure the shape fits the incoming measurements the best
way possible. However, for the open curves treated in this
paper, this technique presents a challenge we denote as the
length problem. This can be visualized in Fig. 2, where the
measurements (gray) already have a minimal distance to the
shape (cyan), and any other shape no matter how large will
be equally likely as long as it also contains all the possible
sources. Because of process noise, the length (and the width)
will eventually diverge and become arbitrarily large, and the
estimator has no way to recover. This presents a problem, as
for this paper we are specifically interested in estimating the
length and width parameters.
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Figure 2: Example estimate using an association to the nearest
source. The length and width cannot be estimated, and may
become arbitrarily large. Measurements in gray, shape estimate
in cyan.

B. Spatial Distribution Model

A method to address the length problem is by using Spatial
Distribution Models (SDMs) [1]. The idea is to model how
sources are selected from the shape Zx

k , e.g., during observation
by the sensor, as the probability density p(z |xk). Then, we
obtain the likelihood function

p(y |xk) =

∫
R2

N (y − z; 0,R) · p(z |xk) dz , (1)



and thus, we avoid an explicit association by implicitly
associating y to every possible source in Zx

k .

Based on this idea, different techniques have been developed
that make different assumptions on p(z |xk), the shape being
considered, and simplifications in order to make estimation
more tractable [1], [3]–[6]. The main challenge is that, except
for a few shapes, (1) is generally difficult to calculate in closed-
form. Some works address this by treating p(z |xk) as Gaussian
distributed [3]. In this paper, however, we will assume that z
is drawn uniformly from Zx

k , an idea also considered in [1],
[17], [18]. We obtain

p(z |xk) =
1

|Zx
k |

1Zx
k
(z) ,

where |Zx
k | is the shape area, and 1Zx

k
(·) is the indicator

function of Zx
k . By plugging this into (1), we obtain

p(y |xk) =

∫
R2

N (y − z; 0,R) · 1

|Zx
k |

1Zx
k
(z) dz

=
1

|Zx
k |

∫
Zx

k

N (y − z; 0,R) dz . (2)

However, as mentioned before, in real-life scenarios it is usually
impossible to obtain a reasonable approximation of p(z |xk)
consistent with the received measurements. An important case
where this happens is in the case of unexpected occlusions or
sensor artifacts, as seen in Fig. 3, which leads to estimation
bias and low robustness.
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Figure 3: Example case of a partially occluded target, measure-
ments in red. The source distribution cannot be known a priori,
and the visible parts are not connected.

C. Exploiting Clutter for Extended Objects

In [12], the authors presented an alternative way to model
extended objects, capable of incorporating “negative” mea-
surements, i.e., a position in which the target cannot be, in
addition to traditional positive measurements that stem from
the target. Negative measurements, usually discarded in the
segmentation process as unusable clutter, become invaluable in
cases of low information, such as during initialization or in the
presence of occlusions, when few or no positive measurements
are available.

For this approach, we make the following assumptions
about the sensor. First, in contrast to traditional scenarios,
we assume the sensor produces a set of measurements Y

in the same way as described in Sec. II, but the generating
sources are not necessarily part of the target shape. Instead,
each measurement takes the form of a pair

[
yp, yt

]
, which

consists of a position yp ∈ R2, and a corresponding type
yt ∈ {�+,�−}. A measurement of type �+ is known to have
been generated by the target, while a measurement of type �−
is assured not to stem from it. Thus, the traditional models
presented in Sec. III can be interpreted as special cases that only
exploit measurements of type �+. Second, we assume that the
measured positions, independent of their type, are uniformly
distributed in the region F visible by the sensor, i.e., its field
of view. As motivation for this assumption, consider a rotating
time-of-flight (TOF) sensor that samples its surroundings. The
sensor will always sample the same angles each cycle, always
producing a measurement for each yp, but only in combination
with the corresponding type yt can we gain information about
the target. The difference is that, while traditional approaches
would discard all measurements not produced by the target, we
now aim to exploit all types of measurements.

Analogously to Sec. III-B, we will now derive a likelihood
function p(yp, yt |xk). First, as we mentioned before, yp is
assumed to be sampled uniformly from F , i.e.,

p(yp |xk) =
1

|F |
:= cF .

For the sake of formality, we say that if yp is outside of F ,
then p(yp |xk) = 0. Second, we observe that the following
equation holds,

p(yp,�+ |xk) + p(yp,�− |xk) = p(yp |xk) . (3)

This can be easily proven by interpreting it as a marginalization
of yt out of p(yp, yt |xk). From these two equations, we obtain
the following two results,

p(yp,�+ |xk) = p(yp |xk) · p(�+ | yp,xk) (4)

= cF · p(�+ | yp,xk) ,

and, by exploiting (3),

p(yp,�− |xk) = p(yp |xk)− p(yp,�+ |xk) (5)

= cF ·
(
1− p(�+ | yp,xk)

)
.

Thus, we see that, in order to describe p(yp, yt |xk), we only
need the term p(�+ | yp,xk). For brevity, we define

Lk(yp) := p(�+ | yp,xk) .

In [12] it was shown that Lk(yp) could be easily gained from
a traditional SDM simply by multiplying (1) by the area |Zx

k |.
We apply this idea on the uniform SDM from (2), yielding

Lk(yp) =

∫
Zx

k

N (yp − z; 0,R) dz , (6)

Plugging this into (4) and (5), we obtain

p(yp,�+ |xk) = cF · Lk(yp)

p(yp,�− |xk) = cF ·
(
1− Lk(yp)

)
,

and p(yp, yt |xk) = 0 when yp 6∈ F . As cF is a state-
independent constant, it can generally be ignored during the
estimation process. In the following, we denote this model as
SDM-N.
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Figure 4: Example case where measurement positions are not
uniform. Positive measurements in red, negative measurements
in blue, empty spaces represent no information provided by
the sensor due to material-related artifacts.

The advantage of this approach is its resilience against
occlusions and incorrect assumptions of the source distribution.
However, for real-life sensors, it cannot be assured that
measurement positions are uniformly distributed in every
circumstance. Fig. 4 shows such an example, where a sensor
camera cannot observe the space above the target due to sensor
artifacts, and the density of negative measurements is not
uniform.

It becomes clear that both SDM and SDM-N bring their
own advantages and disadvantages. The remainder of this paper
will take into account both models, and the evaluation will
explore the differences in more depth.

IV. MODELING CURVES USING RECTANGLE CHAINS

An important part of the task of tracking elongated,
deformable targets is deciding which shape representation to
be used. For this paper, we assume that target shape has the
form of a “thick” Bézier curve, i.e., it has a non-zero width
(Fig. 6a). The curve control points are either directly contained
in xk, or are derived from its parameters. Furthermore, the
number of control points can be arbitrary, but is known a
priori. However, this representation raises the problem that the
likelihood function may be too difficult to calculate. To solve
this challenge, we do not work with the Bézier curve associated
to a given xk directly, but instead, we construct a rectangle chain
approximation of it (Fig. 6b). Thus, the likelihood function
becomes tractable due to the fact that, for rectangles, a simple
closed-form solution can be found for the integrals in (2) and
(6). The remainder of this section presents a general technique
to calculate a rectangle chain approximation, and derives the
SDM and SDM-N likelihood functions for this shape model.
Then, Sec. V will describe the specific implementation used in
the evaluation.

A. Building the Rectangle Chain

We now derive a simple way to approximate Bézier curves
as a chain of connected rectangles, denoted as Rk. Fig. 5
presents a sketch of the procedure. First, we obtain a set of
L control points b1k, · · · , bLk , and a curve width wk, from the
state xk. Based on these control points, we can traverse all

points in the Bézier curve using the function

b∗k(t) =

L∑
`=1

(
L

`

)
t` (1− t)L−` b`k ,

for t ∈ [0, 1]. Second, we sample m + 1 points c0k, · · · , cmk ,
where

cjk := b∗k

(
j

m

)
,

as shown in Fig. 5a. Note that these sample points are distinct
from the control points, and it does not need to hold that m = L.
Finally, for each 1 ≤ j ≤ m, we construct the rectangle Rj

k,
which spans between cj−1k and cjk, as described in Fig. 5b.
We define the length ljk := ||cjk − c

j−1
k ||, where || · || is the

Euclidian norm. Furthermore, we define the spanning directions
as illustrated in Fig. 5c, with αj

k :=
(
cjk − c

j−1
k

)
/ljk, and by

rotating this vector by 90o, we obtain βj

k
.

B. Deriving a Likelihood Function

We can now derive the likelihood function p(y |xk) for the
SDM, in the form of

p(y |xk) =
1

|Zx
k |

∫
R2

N (y − z; 0,R) · 1Zx
k
(z) dz

≈ 1

|Rk|

∫
R2

N (y − z; 0,R)

 m∑
j=1

1Rj
k
(z)

 dz

=
1

|Rk|
·

m∑
j=1

∫
Rj

k

N (y − z; 0,R) dz

︸ ︷︷ ︸
:=Lj

k(y)

.

The closed-form solution of the integral Lj
k(y) can be found in

the appendix. The term |Rk| is the area of the entire rectangle
chain, which easily follows from

|Rk| =
m∑
j=1

|Rj
k| = wk ·

m∑
j=1

ljk .

The likelihood functions for the SDM-N follow directly as

p(yp,�+ |xk) = cF ·
m∑
j=1

Lj
k(yp)

p(yp,�− |xk) = cF ·

1−
m∑
j=1

Lj
k(yp)

 .

Some comments on the proposed rectangle chain approxi-
mation follow. First, when evaluating the likelihood function,
all measurements are treated identically and independently
from each other, and combining the results consists of a
simple multiplication. This means that, during estimation,
the complexity scales linearly in function of the number of
measurements, the number of rectangles, and the number
of state samples. This also allows for a very high degree
of parallelization. Second, the number of rectangles can be



(a) Sample points.

}

(b) Constructing the rectangle Rj
k .

}
(c) Spanning directions of Rj

k .

Figure 5: A simple approach to construct a rectangle chain from a Bézier curve.

(a) Bézier curve. (b) Rectangle chain.

Figure 6: Representation of a Bézier curve as a chain of
rectangles. Note that we assume that the curve is “thick”,
i.e., it has a non-zero width wk.

arbitrary, allowing for a flexible trade-off between accuracy and
speed that can be changed at will. However, this approach has
the following weakness. As can be seen in Fig. 6b, this simple
construction does not prevent rectangles from overlapping
on certain regions, and from leaving empty holes in others.
Nonetheless, we will show that this construction still produces
accurate results.

V. IMPLEMENTATION

In this section we present an example implementation of
the proposed approach, which will be used for the evaluation
in Sec. VI.

A. State Parametrization

The state vector xk at the timestep k takes the form

xPk =
[
p
k
, sk,wk, θ1k, θ2k, θ3k, θ4k

]T
xVk =

[
vk,ω1

k,ω2
k,ω3

k,ω4
k

]T
xk =

[
(xPk )T , (xVk )T

]T
,

leading to a 14-dimensional state. The vector p
k

represents the
center position, sk the distance between control points, and wk

the curve width. The angles θ1k, · · · , θ4k serve to construct the
5 control points, in the form of

b3k = p
k

b2k = b3k − sk ·
[
cos(θ2k), sin(θ2k)

]T
b4k = b3k + sk ·

[
cos(θ3k), sin(θ3k)

]T
b1k = b2k − sk ·

[
cos(θ1k), sin(θ1k)

]T
b5k = b4k + sk ·

[
cos(θ4k), sin(θ4k)

]T
.

These are the control points required for the chain construction
described in Sec. IV-B. For the remaining terms, vk represents
the velocity of p

k
, and ω1

k, · · · ,ω4
k the velocities of θ1k, · · · , θ4k.

B. Initialization

When using a recursive estimator, it is very important to
have an adequate initial estimate. The initialization is a difficult
challenge for the non-convex shapes we are dealing with, given
that the likelihood may have multiple incorrect modes. We
propose the following approach using ideas from Principal
Component Analysis. For the timestep k = 0, and given an
initial set of measurements Y0 = {y

0,1
, · · · , y

0,n
}, we calculate

ŷ
0

=
1

n

n∑
i=1

y
0,i

, and

Cy
0 =

1

n

n∑
i=1

(
y
0,i
− ŷ

0

)(
y
0,i
− ŷ

0

)T
.

Let the eigenvectors of Cy
0 be e1 and e2, with corresponding

eigenvalues λ1 and λ2, so that λ1 ≤ λ2. Then, we define
γ := atan2

(
e
(2)
2 , e

(1)
2

)
as the orientation of e2. Finally, we

initialize x0 as

xP0 =
[
ŷ, 2 · λ2, 4 · λ1, γ, γ, γ, γ

]T
xV0 = [0, 0, 0, 0, 0]

T

x0 =
[
(xP0 )T , (xV0 )T

]T
.

Of course, this approach only produces satisfactory results
if the initial shape is not too bent or coiled, such as Fig. 7.
Otherwise, more elaborate initialization procedures may be
necessary, which will be explored in future work.
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Figure 7: Example initialization in green, with the starting
measurements in gray.

C. Dynamic Model

In this subsection, we will describe how the state xk evolves
in time for this implementation. Note that the SDM and the
SDM-N presented previously are only concerned with deriving
a likelihood function, and thus, they are not concerned with the
dynamic model, and do not impose any constraint upon it. We
will assume that xk evolves according to a constant velocity



model, i.e., at the timestep k and given a change in time ∆tk,
the state evolution is described by

ak(xk) =



p
k

+ ∆tk · vk
θ1k + ∆tk · ω1

k
θ2k + ∆tk · ω2

k
θ3k + ∆tk · ω3

k
θ4k + ∆tk · ω4

k
...

 .

The parameters not listed are assumed to remain unchanged.

D. Recursive Bayesian Estimator

As with the dynamic model, the proposed shape models do
not impose any constraint upon the recursive Bayesian estimator
being used, as long as they admit an explicit likelihood, such as
the well-known particle filters. For this implementation, we will
use a Progressive Gaussian Filter (PGF) [19], which represents
the state uncertainty as a Gaussian distribution. Thus, at the
timestep k, the state is represented by the probability density

fk(xk) = N (xk; x̂k,Pk) .

The estimation process consists of two steps,

1) the update step, where the filter corrects the knowledge
about xk based on the received measurements Yk
using Bayes’ rule and the likelihood functions derived
in Sec. IV-B,

2) and a prediction step, which lets the state uncertainty
at the time step k evolve in time into the next step
k + 1, using the system equation

xk+1 = ak(xk) + wk ,

where ak(·) is the function described in Sec. V-C,
and wk ∼ N (0,Qk) represents a zero-mean Gaussian
system noise term.

Note that, given that the state is Gaussian distributed and ak(·)
is linear, the prediction step can be calculated analytically.

VI. EVALUATION

In this section, we will evaluate the presented concepts using
real sensor data from a Kinect v2 camera. For reference, the
measurements shown in the previous pictures (such as Fig. 1)
stem from these sensors. For the evaluation, the measurements
together with the shape models will be in R2. Note that, while
this device is capable of producing full three-dimensional data,
for this evaluation we will only use the depth for segmentation.
Extending the proposed models to R3 for use with depth sensors
is a straightforward task, and part of our immediate future work.

A Kinect v2 sensor contains a color camera and a depth
camera. It provides depth images (Fig. 8a), i.e., the intensity
value of each pixel corresponds to a depth value, at a rate of
30 frames per second. By registering the color camera to the
depth camera, we can associate a color to each pixel in the
depth image. In order to find the measurements related to the
target, we apply the following segmentation process. First, as
we know a priori the color of the target object, we can mark as
negative measurements all pixels that do not match this color,
and as positive all measurements that do. Second, as we also

know that the target is more than 4 m away from the camera,
we mark as invalid all pixels behind this threshold (Fig. 8b).
Note that we do not mark them as negative, as that would
imply that the target is not at this position, and we cannot
know this for sure a priori, as it may happen that the target
is behind this occlusion. Finally, a bounding box around all
positive measurements is calculated, inflated by 20 pixels in
all directions. This box serves as the field of view, and all
measurements outside of it are ignored (Fig. 8c).

The settings for the estimator follow. For the PGF, we
employed 14 ∗ 16 = 224 state samples. For the measure-
ment noise, we assume that Rk,i = 1 px2 · I. While this
may seem small, notice that the target is usually 4-7 pix-
els wide. For the process noise and the initial state co-
variance matrix, we define Qb := diag(QP ,QV ), with
QP = diag(1, 1, 1, 1, 1, 10−4, 10−4, 10−4, 10−4), and QV =
diag(1, 1, 10−2, 10−2, 10−2, 10−2). Then, we set Qk = Qb,
and P0 = 10 ·Qb. Note that, as the pixel values are orders
of magnitude larger than the angle values, their entries are
correspondingly larger.

The models being evaluated are the SDM and the SDM-
N. In order to measure the quality of the shape estimate, we
require some sort of ground-truth, which is unavailable. Instead,
we represent the real target shape as the set Yk, constructed in
the following way. For each positive measurement, we create
a 1 px×1 px rectangle on that position, and then Yk results
as the union of all of these rectangles. Finally, we define the
intersection over union function in the form of

I(k) :=
Yk ∩Rk

Yk ∪Rk
,

where Rk is the shape of the evaluated rectangle chain. Thus,
I(k) = 1 means both shapes have a perfect match, and I(k) = 0
represents the exact opposite. Of course, I(k) is not meant as an
exact measure, and is instead more of a qualitative illustration.
In the following, we describe the two evaluation scenarios,
one with rapid motions and without occlusions, and one with
slower motions but with occlusions.

In the first scenario, the target is moved and bent rapidly.
Fig. 10 shows the results, where each timestep k represents
0.033 s, so that the entire run lasted a little more than 3 seconds.
In this case, both models are capable of correctly estimating
the length. However, the combination of the source probability
distribution not being correct, together with the rapid motions,
caused the width of the SDM to slowly collapse towards 0. The
SDM-N, on the other hand, had less problems with estimating
the width. This can be explained by the fact that the shape
boundary contains several invalid measurements, which become
larger the faster the object is moving. Both models interpret
these gaps in a different way. On the one hand, an SDM
treats a lack of measurements as evidence that the shape has
shrunk. On the other hand, an SDM-N makes no assumptions
about these gaps, and shrinks only in the presence of negative
measurements. This difference becomes evident in Fig. 9a.

In the second scenario, the target is moving more slowly,
but there is a significant occlusion between k = 10 and k = 60.
Fig. 11 shows the results. Note that the measurements for
k = 53, including the large occluded gap, can be seen more
clearly in Fig. 8c, which was taken from this scenario. In this
case, the inability for the SDM to estimate the width is more
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Figure 8: Example setup for a target partially occluded by a chair. Positive measurements in red, negative in blue, gaps are invalid
measurements. Note that the estimator needs to deal with some measurements being incorrectly classified.

egregious, as can be seen by the quick drop in Fig. 9b. However,
the SDM-N still yields appropriate results, even considering
that several measurements are misclassified, as can be seen
in the left part of Fig. 8c. The SDM-N is also capable of
reacting more quickly to changes in motion, due to the high
availability of negative measurements. Nonetheless, ignoring
the differences in the width estimation, both models are able
to follow the length and deformations very closely.
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Figure 9: Intersection over union for the evaluated scenarios.
A value of 1 is optimal, a value of 0 is a complete mismatch.

VII. CONCLUSION

In this paper, we focused on the task of tracking elongated
extended objects that can be deformed or bent. The difficulty
consisted of the fact that the target had the form of an open
curve, i.e., the start and end points did not meet, making the
estimation of its width and length more difficult. We proposed
an approach to represent the target shape in the form of a Bézier
curve, and during the evaluation of the likelihood function, we
approximated this curve as a chain of rectangles. This allowed
us to employ both a traditional SDM, and an extension called
SDM-N, which can also exploit information from measurements
that do not belong to the target. We evaluated the proposed
approach using real sensor data. It turned out that both models
were capable of estimating the length of the target, and reacted
well to bends and deformations. However, the low quality of
the sensor data prevented the traditional SDM from estimating
the width correctly, while the SDM-N, which relies on the

more numerous negative measurements, had few problems in
this task.

APPENDIX

In this appendix, we will derive a closed-form solution to
the integral

Lj
k(y) :=

∫
Rj

k

N (y − z; 0,R) dz ,

related to the rectangle Rj
k. As a reminder, it holds that

R = σ2
v · I. First, we construct the 2× 2 matrix

Mj
k :=

[
αj
k βj

k

]
,

that has the spanning directions of Rj
k as columns. Second, we

calculate the following term

ηj
k

=
[
ηjk,1, ηjk,2

]T
:=
(
Mj

k

)−1
· (y − cj−1k ) .

Then, using the helper function

G (a1, a2,µ,σv) :=
1

2

(
erf

(
a2 − µ√

2σv

)
− erf

(
a1 − µ√

2σv

))
we obtain the solution in the form of

Lj
k(y) = G

(
0, ljk, ηjk,1,σv

)
·G
(
−wk

2
,
wk

2
, ηjk,2,σv

)
,

where erf(·) is the error function, available in every modern
statistics library.
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