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Abstract—A lot of performance evaluation metrics exist for
nonlinear filters. At present, the most commonly used one is a
single and incomprehensive metric of performance. This metric
can continuously and quantitatively describe the performance of
the nonlinear filters. But in many cases, we need to rank the
performance of the filters. It is in general very hard to rank the
filters just using a single metric. First, the rankings using a single
metric at different times may be different. Then how to get a
unique rank for all times? A typical existing solution is to average
the single metric over all times. But it is easy to be dominated just
by very large values at just some times. Second, a single metric
is usually incomprehensive in measuring performance. To make
the ranking more comprehensive, multiple metrics are usually
needed. But how to get a comprehensive unique rank from the
ranks, possibly conflicting with each other? In this paper, we
propose a framework to rank multiple nonlinear filters using
ranking vectors and voting fusion based on a single metric or
multiple metrics. Illustrative examples show that this framework
is very effective.

Index Terms—Nonlinear filters, performance ranking, ranking
vectors, voting fusion, single metric, multiple metrics

I. INTRODUCTION

Filtering is a technique using an estimation criterion,

through the system model, to estimate state and parameters

with noisy measurements. In 1960, R. E. Kalman put forward

the Kalman filtering (KF) [1] marked the foundation of modern

filtering theory. However, the Kalman filter requires the system

to be linear. But in many cases, the models are nonlinear,

so we cannot directly apply the Kalman filter. The Extended

Kalman filter (EKF) [2] was proposed for nonlinear systems.

The EKF approximates nonlinear systems as linear systems by

a first-order Taylor series expansion of the nonlinear dynamics

equations or measurement equations. Then it uses the standard

Kalman filter for state estimation. M. Norgaard proposed

divided difference Kalman Filter (DDF) [3] using Stirling

interpolation formula. According to the interpolation number,

DDFs can be divided into first-order Divided Difference filters

(DD1) and second-order Divided Difference filters (DD2).

Both EKF and DDF aim at nonlinear function approximation.

Julier and Uhlmann put forward the Unscented Kalman filter
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(UKF) [4], [5] based on the unscented transform to approx-

imate the first two moments used in LMMSE estimation.

Another suboptimal filter called Quadrature Kalman filter

(QKF) [6], [7] was also proposed. It calculates the first two

moments based on Gauss-Hermite integration rules under the

hypothesis of Gaussian distributions. However the number of

quadrature points of this method grows exponentially with the

increase of state dimension. I. Arasaratnam and S. Haykin

proposed the Cubature Kalman filter (CKF) in [8] using a

third-degree spherical-radial cubature rule to calculate the first

two moments. The CKF does not entail any free parameter

[9] while the UKF introduces a nonzero scaling parameter to

define the nonzero center point. Another well-known nonlinear

filter is the particle filter using the sequential Monte Carlo

method [10]. This method approximates the discrete posterior

density using some random sample points and their corre-

sponding weights. This is different from the above nonlinear

filters that just intend to obtain the first two moments of the

posterior density.

From the above we can see that much has been done

regarding filtering algorithm development. Much less has been

done concerning filtering performance evaluation. However,

evaluation is as important as filtering algorithm development.

It should get more and enough attention.

A comprehensive survey of estimation performance evalu-

ation metrics, e.g., the root mean square error (RMSE), av-

erage Euclidean error (AEE), geometric average error (GAE),

harmonic average error (HAE), median error (ME), and error

mode (EM), was given in [11]. It also points out that the

most commonly used RMSE has two serious flaws. First,

it is highly large-error dominant. Second, RMSE has no

clear physical interpretation. [12] proposes a new measure

of central tendency called iterative mid-range error (IMRE).

Compared with ME, IMRE is more reliable as it is insensitive

to extreme values or the middle value. [13] discusses the

drawbacks of existing filter credibility evaluation measures

such as normalized estimation error squared (NEES) and

average normalized estimation error squared (ANEES), then

put forward a new filter credibility tests for bias alone, MSE

alone, and joint bias and MSE. The above filter credibility

evaluation metrics can be regarded as qualitative analysis. [14]

proposes new filter credibility metrics such as noncredibility

Performance Ranking of Multiple Nonlinear Filters 
Using Ranking Vector and Voting Fusion



index (NI) and inclination indicators (II) that can measure how

credible various self-assessments are.

Furthermore, evaluation methods based on multiple metrics

have always been an important part of modern evaluation

theory. In fact, most of them are based on weighted aver-

ages (see, e.g., [15]-[17]). That is, they combine multiple

attributes into a single one for evaluation. There is some

controversy in weighted average methods. First, we need to

normalize different attributes into consistent units and orders

of magnitude. However, there does not exist common meth-

ods for this. Second, this method only uses information of

each estimator, but not the joint information between two

estimators. [18] proposed a new approach, called estimator

ranking vector to overcome these drawbacks. This approach

uses the joint information like Pitman’s closeness measure

(PCM) to rank the performance of estimators. [19] presents

a metric of performance called error spectrum (ES) which

aggregates many incomprehensive metrics. It includes RMSE,

AEE, HAE, and GAE as special cases. However, when being

applied to dynamic systems, ES will have three dimensions

over the total time span, which is not intuitive and difficult

to analyze. To overcome this drawback, the dynamic error

spectrum (DES) was proposed in [20].

Given multiple filters, most may select a single performance

evaluation metric like the frequently used RMSE to determine

their ranking. However, ranking filters in terms of the same

and single error metric is not without controversy. First, the

rankings using a single metric at different times may be

different. It is hard to clearly distinguish the performance of

the filters at all times. Second, these incomprehensive methods

focus on the estimation performance of a certain aspect, so

they are one-sided. Furthermore the rankings according to

different error metrics may be different. Even when ranking

two estimators, there may be given opposite results. In other

words, we are not sure which order is reasonable. So, we want

to propose a framework for simultaneously solving dynamic

system of filtering and solving comprehensive evaluation using

multiple metrics to get a final unique ranking of filters.

To rank nonlinear filters using multiple performance met-

rics, it is better to avoid data normalization and use the joint

information between two filters. In this paper, we use the

ranking vector to get the filters ranking with both ordering and

quantitative information at each time. In many decision making

situations, it is necessary to achieve the group consensus.

Voting theory [21] can get group consensus well. We make

use of voting fusion to obtain the final comprehensive ranking

of all filters. Each time can be viewed as a voter, ranking

at each time of the dynamic process can be viewed as its

decision, and filters can be viewed as candidates. Because the

basic idea of voting theory is fairly diverse, the method by

which those votes are combined to determine a winner can

vary. Different voting methods may give different rankings.

We just picked some strategies from voting theory to rank

nonlinear filters and present different voting results with or

without quantitative information.

The rest of this paper is organized as follows. Section II

states the problem. Section III discusses how to rank using the

ranking vector. In Section IV, for nonlinear filters of dynamic

process, we use voting fusion to obtain the final unique

ranking. In Section V, an example is provided to illustrate how

to rank the nonlinear filters with multiple performance metrics

based on voting fusion. Section VI concludes this paper.

II. PROBLEM FORMULATION

Consider the following typical nonlinear discrete-time dy-

namic system

xk+1 = fk(xk) +wk

and its corresponding nonlinear measurement model

zk = hk(xk) + vk ,

where wk and vk are both zero-mean white Gaussian noise

with covariance Qk and Rk, and uncorrelated with each other.

It is assumed that we have N nonlinear filters and M
metrics that depict different aspects of filtering performance.

Denote x̂i
k = gi(z

k) as the state estimate of filter i at time k,

where zk = {z1, · · · , zk} is the measurement sequence. Our

goal is to give a performance ranking of nonlinear filters based

on M metrics.

Consider the following example in which there are three

nonlinear filters dealing with noisy data to obtain the state

estimation. We use four different attribute measures, i.e.,

RMSE, HAE, GAE, IMRE, to evaluate the performance of

filters as shown in Fig. 1.

1 2 3 4 5 6 7 8 9 10

k

0

2

4

6

8

10

12

14

16

R
M

S
E

Filter 1

Filter 2

Filter 3

(a) RMSE

1 2 3 4 5 6 7 8 9 10

k

0

5

10

15

H
A

E

Filter 1

Filter 2

Filter 3

(b) HAE

1 2 3 4 5 6 7 8 9 10

k

0

5

10

15

G
A

E

Filter 1

Filter 2

Filter 3

(c) GAE

1 2 3 4 5 6 7 8 9 10

k

0

5

10

15

IM
R

E

Filter 1

Filter 2

Filter 3

(d) IMRE

Fig. 1. Performance Evaluation of Filters

First, from Fig. 1(a), we can see that the ranking is

x̂3
2 � x̂2

2 � x̂1
2 at time k = 2, but x̂3

6 � x̂1
6 � x̂2

6 at time

k = 6, where “�” means that the performance of the filter in

the left is better than that of the filter in the right. The rankings

at different times are different. Furthermore, from Fig. 1(c)

we can see that the GAE of three filters are interleaved with



each other. Then the question is how to get the final unique

ranking just based on a single metric, e.g., GAE, over all

times. Second, the rankings may be inconsistent according to

four different performance metrics as in Fig.1 (a)-(d). How to

overcome this inconsistency? How to get a unique ranking of

multiple nonlinear filters based on multiple metrics?

III. FIRST RANKING USING RANKING VECTORS

A. Ranking Vectors

Our main goal is to rank nonlinear filters, but at the same

time it is better to also have a quantitative reference. Next we

introduce the concept of a ranking vector [18] that can provide

both ordering and quantitative information. Define a ranking

vector as

rk =
[
r1k, r

2
k, · · · , rNk

]T
,

where rik is the value of filter i at time k and rik > 0 and N
is the number of filters. The elements of a ranking vector are

all positive and stand for the strengths of the filters relative to

each other. The larger the element, the better the corresponding

filter. Therefore, the ranking vector elements reflect the order

of the filters.

B. PCM Matrix

To compare the performance of parameter estimators, Pit-

man [22] proposed a criterion based on the probability or

frequency that one estimator is closer to the truth than the

other. If this probability is larger than 0.5, then the first

estimator can be considered to be superior to the second. This

criterion is known as Pitman’s closeness measure (PCM) [23].

The definition of PCM is given in the following. Given an

estimated parameter x and its estimator x̂, let m(1, 2) denote

the measure of the difference between two estimators x̂1 and

x̂2 relative to the parameter x

m(1, 2) �

⎧⎨
⎩

1 if x̂1 � x̂2

0.5 if x̂1 = x̂2

0 if x̂1 ≺ x̂2
, (1)

where x̂1 � x̂2 means that x̂1 is closer to the truth than x̂2.

Let PCM(1, 2) denote PCM between two estimators x̂1 and

x̂2 relative to the parameter x

PCM(1, 2) = E [m(1, 2)]

= Pr
{
x̂1 � x̂2

}
+ 0.5Pr

{
x̂1 = x̂2

}
,

If PCM(1, 2) > 0.5 , we can consider that x̂1 is closer to the

truth than x̂2 in the sense of Pitman’s closeness. According to

the definition of PCM, we can see that PCM just describes

the joint information between two estimators. Due to the

drawbacks of nontransitivity described in [24], a competition

matrix called PCM matrix needs to be introduced

CPCM =

⎡
⎢⎣

PCM(1, 1) · · · PCM(1, N)
...

. . .
...

PCM(N, 1) · · · PCM(N,N)

⎤
⎥⎦ . (2)

It can be seen that the PCM matrix contains the entire

pairwise competitions of all estimators based on PCM.

C. Ranking Method Based on a Single Metric

After getting the PCM matrix, we need to specify a method

to get the ranking vector. Then we can get the filters’ order.

1) Sum Score Vector of the First Round (SSV1): One simple

method is to calculate the sum score vector of the first round,

defined as

SSV1 = CPCM · 1N×1 , (3)

where 1N×1 is a column vector with all elements equal to

one.

SSV1 ignores the prior strength (e.g., all equal to 1) of

the filters and treats them without difference [25]. Then its ith
element represents the sum of the ith filter’s Pitman’s closeness

measure when competing with all other filters.

2) Sum Score Vector of the Second Round (SSV2): Since

SSV1 does not make full use of joint information provided by

the competition matrix, an improved method called sum score

vector of the second round was proposed. The definition of

SSV2 is

SSV2 = C2
PCM · 1N×1 = CPCM · SSV1 . (4)

SSV2 treats SSV1 as the prior information. By pre-

multiplying the PCM matrix once more, we can explore more

joint information from the PCM matrix.

3) Order-Preserving Mapping (OPM): First we define the

quality vector q = [q1, · · · , qN ]
T

, where qi is the quality of

the ith filter and qi > 0. Using the PCM matrix obtained from

the above, we assume r = CPCM ·q. In order to ensure that the

ranking vector r and the quality vector q have the same order,

we assume that they have a linear relationship as r = λq. Now,

if we can get q, we can get the ranking vector r equivalently

[18].

In view of the above, let

CPCM · q = λq . (5)

Now, obtaining the ranking vector becomes finding eigen-

vectors of PCM matrix. According to Perron-Frobenius the-

orem [26], if we have a positive PCM, then we can obtain

the only eigenvector with all elements to be positive. If there

are zero elements in CPCM, they can be simply replaced by

very small positive numbers, e.g., 0.001. Thus, the effect of

substitution will be alleviated.

D. Ranking Method Based on Multiple Attributes

The above ranking methods are just for a single metric, but

not for multiple metrics. Because a single metric is in general

incomprehensive, it is preferable to use multiple metrics. Next,

we define multiple metrics competition measure (MCM) to

fully use comprehensive joint information between two filters.

Let mMCM(1, 2; ai) denote the PCM of filters x̂1 and x̂2

relative to the ith metric ai

mMCM(1, 2; ai) �

⎧⎨
⎩

1 if x̂1 � x̂2

0.5 if x̂1 = x̂2

0 if x̂1 ≺ x̂2
. (6)



Then, the MCM is defined as

MCM(1, 2) =
1

M

M∑
i=1

mMCM(1, 2; ai) . (7)

When MCM(1, 2) > 0.5, we can consider that x̂1 is better

than x̂2 in the sense of multiple metrics competition. Similar

to the PCM, MCM also just describes the joint information

between two filters. So we define MCM matrix to include the

entire pairwise competition information of all filters

CMCM =

⎡
⎢⎣

MCM(1, 1) · · · MCM(1, N)
...

. . .
...

MCM(N, 1) · · · MCM(N,N)

⎤
⎥⎦ . (8)

After obtaining the MCM matrix, we can use the above

ranking method like SSV1, SSV2 and Order-Preserving Map-

ping to get the ranking vector. Then we can rank the nonlinear

filters based on multiple metrics.

IV. SECOND RANKING USING VOTING FUSION

Nonlinear filtering is used for dynamic processes. However,

the above ranking methods can only be applied at a specific

time step. As a result of this, we can get the filters ranking

vectors at every time. How to get a final unique order for

all nonlinear filters? Next we provide some ranking fusion

methods to solve this problem.

A. Summation Method

The main idea is that ranking vectors of all times are

summed up and then normalized to get a final order. First if a

filter is better than another one, it shows that the performance

of this filter is better than another one in most of time. Second,

ranking vector contains the information of quantity, so it can

quantitatively tell us how big the difference between the filters

at each time. This method counts the difference of all times

and has certain rationality. The combined ranking vector is

defined as

r̄ =
k∑

i=1

ri

/∥∥∥∥∥
k∑

i=1

ri

∥∥∥∥∥
2

, (9)

where ri is the ranking vector at the ith time, and r̄ is the

combined ranking vector.

The disadvantage of this method is that the ranking is easily

corrupted by extreme values. For example, at a time, if the

ranking vector element of one filter is extremely large, it will

dominate the final ranking vector.

Example 1. Suppose that we have the ranking vectors of 3

filters at 3 times

r =

⎡
⎣ r11 r12 r13

r21 r22 r23
r31 r32 r33

⎤
⎦ =

⎡
⎣ 0.5 0.3 0.5

0.4 2.1 0.3
0.3 0.2 0.2

⎤
⎦ , (10)

where rij represents the ranking vector component of filter i
at time j, and r is matrix of ranking vectors at all times.

Then r̄ =
k∑

i=1

ri

/∥
∥
∥
∥

k∑

i=1

ri

∥
∥
∥
∥
2

= [ 0.2708 0.5833 0.1458 ]T ,

according to the summation method. The final ranking is x̂2 �

x̂1 � x̂3. But we can see that the ranking at both time 1 and 3

is x̂1 � x̂2 � x̂3. In other words, the ranking is x̂1 � x̂2 � x̂3

at most times. Just because of one time of dominant ranking,

the final order is totally changed.

B. Plurality Method

Majority Criterion [28]: If a choice has a majority of first-

place votes, that choice should be the winner.

This method is known to us as majority criterion in vot-

ing theory, namely the candidate with most votes is de-

clared the winner. We first sort every times ranking vec-

tor rk =
[
r1k, r

2
k, · · · , rNk

]T
in descending order rk =

[r
(1)
k , r

(2)
k , · · · , r(N)

k ]T . Then we use the ranking vectors in

descending order at all times to define a preference matrix as

R =

⎡
⎢⎢⎣

r
(1)
1 · · · r

(1)
k

...
. . .

...

r
(N)
1 · · · r

(N)
k

⎤
⎥⎥⎦ , (11)

where k denotes time and N denotes the number of filters.

From the first row of the preference matrix, we select

the filter with the largest number as the best according to

the plurality principle. We remove the first filter from the

preference matrix and it will become a dimension-reduced

preference matrix, each column remaining in a descending

order. Then we select the filter with the largest number from

the first row of the dimension reduction preference matrix as

the second best, and so on.

The advantage is that the ranking obtained by plurality

method is not corrupted by extreme values. The disadvantage

of this method is that it can only provide order information

but not quantitative information. If two or more filters have

the same largest number in the first row, then this method will

fail.

Example 2. Suppose that we have the ranking vectors of 3

filters at 4 times

r =

⎡
⎣ r11 r12 r13 r14

r21 r22 r23 r24
r31 r32 r33 r34

⎤
⎦ =

⎡
⎣ 0.5 0.3 0.5 0.6

0.4 2.1 0.3 0.4
0.3 0.2 0.2 0.5

⎤
⎦ .

Then the preference matrix is

R =

⎡

⎢
⎣

r
(1)
1 r

(1)
1 r

(1)
1 r

(1)
4

r
(2)
1 r

(2)
2 r

(2)
3 r

(2)
4

r
(3)
1 r

(3)
2 r

(3)
3 r

(3)
4

⎤

⎥
⎦ =

⎡

⎣
0.5 2.1 0.5 0.6
0.4 0.3 0.3 0.5
0.3 0.2 0.2 0.4

⎤

⎦

=

⎡

⎣
r11 r22 r13 r14
r21 r12 r23 r34
r31 r32 r33 r24

⎤

⎦ .

Next we can see that filter 1 has the largest number in the

first row of the above matrix. So we select filter 1 as the first

best and remove filter 1 from the preference matrix. Now we

can get the reduced preference matrix

R =

[
0.4 2.1 0.3 0.5
0.3 0.2 0.2 0.4

]
=

[
r21 r22 r23 r34
r31 r32 r33 r24

]
.

Then we select filter 2 as the second best because filter 2 has

the largest number in first row of reduced preference matrix.



Then we repeat the above steps until the ranking is finished.

The final ranking of plurality method is x̂1 � x̂2 � x̂3. At the

same time, we get the ranking is x̂2 � x̂1 � x̂3 by summation

method. So we can see that the final ranking of this method

is not affected by the extreme value at time 2.
Condorcet Criterion [27]: If there is a choice that is pre-

ferred in every one-to-one comparison with the other choices,

that choice should be the winner. We call this winner the

Condorcet Winner.
Example 3. Suppose that we have the ranking vectors of 3

filters at 7 times

r =

⎡
⎣ r11 r12 r13 r14 r15 r16 r17

r21 r22 r23 r24 r25 r26 r27
r31 r32 r33 r34 r35 r36 r37

⎤
⎦

=

⎡
⎣ 0.5 0.8 0.5 0.4 0.5 0.4 0.4

0.4 0.2 0.3 0.6 0.4 0.3 0.6
0.3 0.5 0.4 0.5 0.7 0.6 0.5

⎤
⎦ .

Then the preference matrix is

R =

⎡
⎣ 0.5 0.8 0.5 0.6 0.7 0.6 0.6

0.4 0.5 0.4 0.5 0.5 0.4 0.5
0.3 0.2 0.3 0.4 0.4 0.3 0.4

⎤
⎦ (12)

=

⎡
⎣ r11 r12 r13 r24 r35 r36 r27

r21 r32 r33 r34 r15 r16 r37
r31 r22 r23 r14 r25 r26 r17

⎤
⎦ .

According to the plurality method, we can get the order of

filters as x̂1 � x̂3 � x̂2. The ranking above may seem valid,

but there is a problem. Looking back at our preference matrix,

5 out of the 7 times (k = 1, 2, 3, 5, 6) we prefer filter 1 to filter

2. And 4 out of the 7 times (k = 4, 5, 6, 7) we prefer filter

3 to filter 1. Also we see that filter 3 is preferred to filter 2.

Finally, filter 3 is the Condorcet winner. So this method may

violate the Condorcet Criterion.

C. Instant Runoff Method
The Instant Runoff Method (IRM), also called Plurality with

Elimination, is a modification of the plurality method. The

main idea is to use the runoff step in which the filter with

the least number in the first row of the preference matrix is

eliminated. The dimension of the preference matrix is reduced

for the next elimination and the descending order of each

column is still remained. We then repeat the above steps until

the first best filter is obtained. Similarly, we runoff the first

filter in the original preference matrix and repeat runoff steps

to find the second filter.
The advantage is that the ranking obtained by instant runoff

method is not corrupted by extreme values. The disadvantage

of this method is still that it can only provide an order of the

filters but without quantitative information about them.
Example 4. Suppose that we have the same case as in

example 2.
Round 1: From the preference matrix R we can see that

filter 3 has the least number in the first row, so we eliminate

it. Then we have

R =

[
0.5 2.1 0.5 0.6
0.4 0.3 0.3 0.4

]
=

[
r11 r22 r13 r14
r21 r12 r23 r24

]

Round 2: From the above preference matrix R we can

see that filter 2 has the least number in the first row, so we

eliminate it. Then we can get:

R =
[
0.5 0.3 0.5 0.6

]
=

[
r11 r12 r13 r14

]
Round 3: we select filter 1 as the first best filter. Next we

runoff filter 1 in the original preference matrix. Then we can

get:

R =

[
0.4 2.1 0.3 0.5
0.3 0.2 0.2 0.4

]
=

[
r21 r22 r23 r34
r31 r32 r33 r24

]

Repeat runoff steps until the ranking is obtained.

Example 5. Suppose that we have the same case as in

example 3.

According to the instant runoff method, we can get the order

of the filters as x̂1 � x̂3 � x̂2. Similarly, this method may

violate the Condorcet Criterion, too.

D. Borda Count Method

The Borda count principle gives each filter in the de-

scending order at each time a numerical value. Assuming

that the descending order of the filters at time k is rk =

[r
(1)
k , r

(2)
k , · · · , r(N)

k ]T , we assign the corresponding values as

[N,N − 1, · · · , 1]T . Then the numerical values of all filters

at all times are summed up. Finally, we normalize the sum

vector to get the final ranking vector.

The advantage is that the ranking obtained by the Borda

count method is not corrupted by extreme values. At the

same time this method overcomes the drawback of missing

quantitative information in the plurality method. But if there

are filters of the same performance, it is not easy to assign

values to them.

Example 6. Suppose that we have the same case as in

example 1.

Then from (10) we can get the corresponding preference

matrix

R =

⎡
⎣ 0.5 2.1 0.5

0.4 0.3 0.3
0.3 0.2 0.2

⎤
⎦ =

⎡
⎣ r11 r22 r13

r21 r12 r23
r31 r32 r33

⎤
⎦ .

If we assign corresponding values of ranking vector in

descending order as [3, 2, 1]
T

.

The scores of the filters are summed up as in Table I.

Table I: Scores of filters for example 6

Filter 1 2 3

Score 8 7 3

Next we normalize the scores to get the final ranking vector

as r =
[
0.4444 0.3899 0.1667

]T
. The final ranking

is x̂1 � x̂2 � x̂3. This is different from the rank of the

summation method and overcomes its drawback.

Example 7. Suppose that we have the same case as in

example 3. We assign corresponding values of ranking vector

in descending order as [3, 2, 1]
T

. From (12) , the scores of the

filters are as in Table II.



Table II: Scores of filters for example 7

Filter 1 2 3

Score 15 12 15

According to the Borda count method, we can get the final

ranking vector as r =
[
0.3571 0.2857 0.3571

]T
. Then

the final ranking is x̂1 = x̂3 � x̂2. From the result of example

3, we can see that filter 1 is the majority one. So filter 1

should be the best one. However, it is obvious that Borda

Count method may violate the Majority Criterion.

E. Pairwise Comparison Method

In this method, each pair of filters is compared, using

ranking vectors at all times to determine which of the two

is preferred. The preferred filter is awarded 1 point. If there

is a tie, each filter is awarded 0.5 point. After all pairwise

comparisons are made at each time, the values of each filter

are obtained. The score is defined as,

ui
k(i, j) =

⎧⎨
⎩

1 if x̂i
k � x̂j

k

0.5 if x̂i
k = x̂j

k

0 if x̂i
k ≺ x̂j

k

, (13)

where ui
k(i, j) denotes the point of filter i obtained by its

comparison with filter j at time k. x̂i
k � x̂j

k means that the

performance of filter i is better than that of filter j at time k.

Next, each filter adds its own score of all times to get its

own final score. Finally, we use normalization to get the final

unique ranking vector.

The advantage is that the ranking obtained by pairwise

comparisons method is not corrupted by extreme values. At

the same time this method overcomes the drawback of without

quantitative information in the plurality method and difficult to

assign values in the borda count method. Because this method

is specifically designed to satisfy the Condorcet Criterion by

looking at pairwise (one-to-one) comparisons, it obviously

satisfies the Condorcet Criterion.

Example 8. Suppose that we have the ranking vectors of 3

filters at 4 times

r =

⎡
⎣ r11 r12 r13 r14

r21 r22 r23 r24
r31 r32 r33 r34

⎤
⎦ =

⎡
⎣ 0.5 0.5 0.2 0.5

0.3 0.2 0.4 0.6
0.4 0.4 0.5 0.4

⎤
⎦ .

Then the preference matrix is

R =

⎡

⎣
0.5 0.5 0.5 0.6
0.4 0.4 0.4 0.5
0.3 0.2 0.2 0.4

⎤

⎦ =

⎡

⎣
r11 r12 r33 r24
r31 r32 r23 r14
r21 r22 r13 r34

⎤

⎦ . (14)

From (14) we can see that filter 1 is better than filter 2 at

time 1 and 2, but worse than filter 2 at time 3 and 4. So filter

1 gets 2 points and filter 2 gets 2 points. Then we can see

that filter 1 is better than filter 3 at time 1, 2, and 4. So filter

1 gets 3 points and filter 3 gets 1 points. Similarly, we can

get the following scores when comparing with each other in

Table III.

Table III: Pairwise comparison of filters

Points Filter 1 Filter 2 Filter 3

Filter 1 0 2 3

Filter 2 2 0 1

Filter 3 1 3 0

In Table III, we just make row comparisons. For example,

the first row means that the scores of filter 1 got by comparing

with filter 2 and filter 3. Similarly, the second row means the

scores of filter 2, and the third row means the scores of filter

3. Finally, the total scores of each filter is in Table IV.

Table IV: Scores of filters for example 8

Filter 1 5

Filter 2 3

Filter 3 4

The final normalized ranking vector is r =
[ 0.4167 0.2500 0.3333 ]T . The final ranking is

x̂1 � x̂3 � x̂2 .

The Independence of Irrelevant Alternatives (IIA) Crite-
rion [28]: If a non-winning choice is removed from the ballot,

it should not change the winner of the election.

Example 9. Suppose that we have the same case as in

example 8

If we remove filter 3, the preference matrix is

R =

[
0.5 0.5 0.4 0.6
0.3 0.2 0.2 0.5

]
=

[
r11 r12 r23 r24
r21 r22 r13 r14

]
Then the total points is as in Table V,

Table V: Scores of filters for example 9

Filter 1 2

Filter 2 2

It can be seen that after we remove the non-winning filter

3, the ranking is changed. In this example, the IIA Criterion

was violated. Another disadvantage of Pairwise Comparisons

method is that it is fairly easy for ranking to end in a tie.

V. ILLUSTRATIVE EXAMPLES

The following examples demonstrate how the voting fusion

can be used for single-metric and multiple-metric ranking.

A. Scalar Dynamic System

To illustrate the effectiveness and rationality of the proposed

ranking method for multiple nonlinear filters based on voting

fusion, we consider the following scalar nonlinear dynamic

system

xk =
1

2
xk−1 +

25xk−1

1 + x2
k−1

+ 8 cos[1.2(k − 1)] + wk−1 ,

which is observed through

zk =
1

20
x2
k + vk .

The parameters are

x0 ∼ N (0.1, 2) , wk ∼ N (0, 1) , vk ∼ N (0, 1) .



This scalar nonlinear system works as a benchmark testing

example in many existing work for nonlinear filtering [10].

Next we consider six nonlinear filters such as DD1, DD2,

EKF, UKF, CKF, QKF for ranking over 500 Monte-Carlo runs.
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Fig. 2. Filtering RMSE

Table VI: Rankings based on RMSE

Summation Method

SSV1 DD1≺EKF≺CKF≺DD2≺QKF≺UKF

r = [0.2168, 0.3768, 0.3329, 0.6451, 0.3432, 0.4077]T

SSV2 DD1≺CKF≺EKF≺DD2≺QKF≺UKF

r = [0.1396, 0.3199, 0.2858, 0.7642, 0.2610, 0.3800]T

OPM DD1≺CKF≺EKF≺DD2≺QKF≺UKF

r = [0.1148, 0.2505, 0.2453, 0.8479, 0.1882, 0.3309]T

Plurality Method

SSV1 DD1≺EKF≺CKF≺DD2≺QKF≺UKF

SSV2 DD1≺EKF≺CKF≺DD2≺QKF≺UKF

OPM DD1≺EKF≺CKF≺DD2≺QKF≺UKF

Instant Runoff Method

SSV1 DD1≺EKF≺CKF≺DD2≺QKF≺UKF

SSV2 DD1≺EKF≺CKF≺DD2≺QKF≺UKF

OPM DD1≺EKF≺CKF≺DD2≺QKF≺UKF

Borda Count Method

SSV1 DD1≺EKF≺CKF≺DD2≺QKF≺UKF

r = [0.2444, 0.3834, 0.3453, 0.6166, 0.3543, 0.4103]T

SSV2 DD1≺EKF≺CKF≺DD2≺QKF≺UKF

r = [0.2444, 0.3834, 0.3453, 0.6166, 0.3543, 0.4103]T

OPM DD1≺EKF≺CKF≺DD2≺QKF≺UKF

r = [0.2444, 0.3834, 0.3453, 0.6166, 0.3543, 0.4103]T

Pairwise Comparisons Method

SSV1 DD1≺EKF≺CKF≺DD2≺QKF≺UKF

r = [0.2444, 0.3834, 0.3453, 0.6166, 0.3543, 0.4103]T

SSV2 DD1≺EKF≺CKF≺DD2≺QKF≺UKF

r = [0.2444, 0.3834, 0.3453, 0.6166, 0.3543, 0.4103]T

OPM DD1≺EKF≺CKF≺DD2≺QKF≺UKF

r = [0.2444, 0.3834, 0.3453, 0.6166, 0.3543, 0.4103]T

First of all, we use a single metric such as the RMSE for

ranking. Fig. 2 shows the RMSE of six filters. Table VI shows

the ranking based on RMSE. From Fig. 2, we can see that the

worst is EKF. However, we can see that the ranking of EKF is

not the worst from Table VI. We can see from Fig. 2 that DD1

is actually worse than EKF at most of time and better than

EKF only at some times. It illustrates that a few large values in

single metric ranking do not influence the final order. We can

see that the order of the filters using summation method is not

the same. Because different ranking vector methods are based

on different criteria and different fusion methods are based on

different criteria, the final order may be different. For example,

SSV1 and SSV2 have difference in prior information. This

will lead to different order. Now, we evaluate performance of

multiple nonlinear filters based on multiple metrics. First, we

get multi-metric performance of filters at a specific time, e.g.,

k = 50.

Table VII: Multi-metric performance of filters at time k = 50

DD1 DD2 EKF UKF CKF QKF
RMSE 5.8959 4.9097 4.6247 2.1942 4.3652 4.9983
AEE 2.4060 3.7855 1.9264 1.2061 1.9646 4.4303
HAE 0.1782 0.9590 0.1768 0.0364 0.1698 3.5695
GAE 0.7247 2.9573 0.6660 0.6494 0.7801 3.9713
ME 0.7879 3.2213 0.7056 0.7693 0.8718 4.0205
EM 0.2571 3.0245 0.4400 0.4132 0.4476 3.8485

IMRE 1.2342 3.4425 1.0602 0.9678 1.2348 4.2437

Six filters and seven metrics are considered in Table VII.

Our goal is to rank the comprehensive quality of the six filters.

Let filters compete with each other just like PCM does. For

example, DD1 is better than DD2 for metrics of AEE, GAE,

ME, EM, IMRE. Thus, mMCM(1, 2; a2) = mMCM(1, 2; a3) =
mMCM(1, 2; a4) = mMCM(1, 2; a5) = mMCM(1, 2; a6) =
mMCM(1, 2; a7) = 1. Then, we have

MCM(1, 2) = 1
7

7∑
i=1

mMCM(1, 2; ai) =
1
7 ∗ 6 = 0.8571 .

Table VIII: Rankings based on voting fusion

Summation Method

SSV1 QKF≺DD2≺CKF≺DD1≺EKF≺UKF

r = [0.3957, 0.2634, 0.5400, 0.5926, 0.2784, 0.2316]T

SSV2 QKF≺DD2≺CKF≺DD1≺EKF≺UKF

r = [0.3657, 0.2079, 0.5739, 0.6377, 0.2319, 0.1822]T

OPM QKF≺DD2≺CKF≺DD1≺EKF≺UKF

r = [0.3382, 0.1818, 0.5894, 0.6603, 0.2059, 0.1634]T

Plurality Method

SSV1 QKF≺DD2≺CKF≺DD1≺EKF≺UKF

SSV2 QKF≺DD2≺CKF≺DD1≺EKF≺UKF

OPM QKF≺DD2≺CKF≺DD1≺EKF≺UKF

Instant Runoff Method

SSV1 QKF≺DD2≺CKF≺DD1≺EKF≺UKF

SSV2 QKF≺DD2≺CKF≺DD1≺EKF≺UKF

OPM QKF≺DD2≺CKF≺DD1≺EKF≺UKF

Borda Count Method

SSV1 QKF≺DD2≺CKF≺DD1≺EKF≺UKF

r = [0.3828, 0.2516, 0.5513, 0.5929, 0.2713, 0.2472]T

SSV2 QKF≺DD2≺CKF≺DD1≺EKF≺UKF

r = [0.4054, 0.2463, 0.5579, 0.5841, 0.2593, 0.2354]T

OPM QKF≺DD2≺CKF≺DD1≺EKF≺UKF

r = [0.4051, 0.439, 0.5597, 0.5837, 0.2592, 0.2352]T

Pairwise Comparisons Method

SSV1 QKF≺DD2≺CKF≺DD1≺EKF≺UKF

r = [0.1707, 0.0853, 0.2707, 0.2920, 0.0973, 0.0840]T

SSV2 QKF≺DD2≺CKF≺DD1≺EKF≺UKF

r = [0.1813, 0.0840, 0.2747, 0.2907, 0.0920, 0.0773]T

OPM QKF≺DD2≺CKF≺DD1≺EKF≺UKF

r = [0.1813, 0.0827, 0.2760, 0.2907, 0.0920, 0.0773]T

By pairwise competition, the following MCM matrix is
obtained

CMCM =

⎡
⎢⎢⎢⎢⎢⎣

0.5000 0.8571 0.1429 0.1429 0.5714 0.8571
0.1429 0.5000 0 0 0 1
0.8571 1 0.5000 0.1429 0.0714 1
0.8571 1 0.8571 0.5000 1 1
0.4286 1 0.2857 0 0.5000 1
0.1429 0 0 0 0 0.5000

⎤
⎥⎥⎥⎥⎥⎦

.



Then according to the SSV1, SSV2, and OPM methods, we
can obtain the ranking vector at time k = 50 as

rSSV1 =
[

3.0714 1.6429 4.2143 5.21433 3.2143 0.6429
]T

,

rSSV2 =
[

6.6786 1.9031 10.0663 14.3520 6.4133 0.7602
]T

,

rOPM =
[

0.3054 0.0583 0.4862 0.7705 0.2687 0.0335
]T

.

Similarly, we can get the order at every time. Then we use

voting fusion to get the final order.

Different rankings and ranking vectors are shown in Table

VIII. We can see that different methods can give different

rankings. This is because different methods are based on

different criteria. Also, we can see that most of the rankings

are the same, e.g., summation method, Borda Count method,

and pairwise comparisons method, This illustrates that our

framework is reasonable.

VI. CONCLUSION

Although the idea of the multiple-metric decision method

based on weighted average can be used to solve the filter

ranking problem, it is not without controversy and has some

difficulties when directly applied to filter ranking problem.

First, we have to overcome the difficulty of the dynamic

system of filtering, which may have different rankings at

different times. Second, we need to find a consensus method

to normalize the different metrics into consistent units and

orders of magnitude. In this paper, we first applied three types

of ranking methods based on ranking vectors to obtain the

ranking of filters at every time. Then we used methods from

voting theory such as the summation method, the plurality

method one, the instant runoff method, the Borda count

method, and the pairwise comparison method to obtain the

final ranking of nonlinear filters based on multiple metrics. We

analyzed the pros and cons of different methods. The example

of a scalar dynamic system illustrates that our framework is

quite effective. In this paper, we just provided a few typical

voting fusion strategies. Other strategies can also be used and

will be discussed in our future work.
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