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Abstract—Decentralized data fusion is a challenging task.
Either it is too difficult to maintain and track the information
required to perform fusion optimally, or too much information
is discarded to obtain informative fusion results. A well-known
solution is Covariance Intersection, which may provide too
conservative fusion results. A less conservative alternative is
discussed in this paper, and generalizations are proposed in
order to apply it to a wide class of fusion problems. The Inverse
Covariance Intersection algorithm is about finding the maximum
possible common information shared by the estimates to be
fused. A bound on the possibly shared common information
is derived and removed from the fusion result in order to
guarantee consistency. It is shown that the conditions required
for consistency can be significantly relaxed, and also other causes
of correlations, such as common process noise, can be treated.

Index Terms—Decentralized data fusion, covariance intersec-
tion, ellipsoidal intersection, track-to-track fusion

NOTATION

An underlined variable x ∈ Rn denotes a real-valued
vector. Lowercase boldface letters x are used for random
quantities. Matrices are written in uppercase boldface letters
C ∈ Rn×n, and C−1 and CT are its inverse and transpose,
respectively. C ≥ C′ implies that the difference C − C′

is positive semi-definite. The notation (x̂,C) is used for
an estimate x̂ of x, which has the error covariance matrix
C = E[x̃ x̃T] with the estimation error x̃ = x− x̂. E(ĉ,X) =
{x ∈ Rn | (x− ĉ)TX−1(x− ĉ)} denotes an ellipsoid with
center ĉ and shape matrix X.

I. INTRODUCTION

Decentralized data fusion deals with finding a trade-off
between consistent and informative estimates [1]. Optimal
fusion that minimizes the uncertainty about the result is
difficult to implement as it requires particular information
about the estimates to be fused [2]. As such, the well-known
Bar-Shalom/Campo fusion formulae [3] depend on the cross-
covariance matrix of the estimation errors. Their generalization
to the simultaneous fusion of multiple estimates [4], [5] relies
on the joint error covariance matrix of the corresponding
estimation errors. Again, the cross-covariance matrix between
each pair of estimates is required. Storing and keeping track
of cross-covariance information is cumbersome and sometimes
impossible if sensor nodes are supposed to operate indepen-
dently. The explicit treatment of cross-covariance information
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Fig. 1: Results of different fusion methods depicted as ellipsoids
centered at origin. The ellipsoid related to CI is a bound on
the intersection E(0,CA) ∩ E(0,CB). The ellipsoid related to
EI is the largest ellipsoid inside the intersection. The ellipsoid
for ICI lies in between those related to CI and EI.

can be circumvented if a specific decomposition of the Kalman
filter formulae is exploited [6], [7], or frequent communication
takes place [8]. Although these methods can be even optimal
in the sense of a single, centralized Kalman filter, rather
restrictive prerequisites have to be met, which may hinder their
application in complex network architectures. In particular,
fully decentralized networks are therefore in need of fusion
techniques that do not rely on cross-covariance matrices or
specific requirements on the communication policy. In this
paper, a novel technique to fuse estimates with an unknown
cross-covariance structure is discussed and further developed.

A. State-of-the-art Intersection

Instead of striving for an optimal fusion result, a different
fusion strategy is to conservatively bound missing or discarded
cross-covariance information; as a consequence, this informa-
tion does not need to be maintained or reconstructed. In this
respect, Covariance Intersection (CI) [9], [10] is probably the
most well-known example, which provides the fusion result

x̂CI = KCI x̂A + LCI x̂B (1a)

with covariance matrix

CCI =
(
(1− ω)C−1A + ωCB

)−1
(1b)

and ω ∈ [0, 1] for the estimates (x̂A,CA) and (x̂B,CB). The
gains in (1a) are given by KCI = (1 − ω)CCIC

−1
A and

LCI = ωCCIC
−1
B . Its name originates from the observation

shown in Fig. 1, where the ellipsoid E(0,CCI) related to the



CI covariance matrix represents a bound on the intersection
E(0,CA) ∩ E(0,CB). CI provides consistent fusion results,
i.e., CCI ≥ E[x̃CIx̃

T
CI] with x̃CI = x − x̂CI , given that the

estimates (x̂A,CA) and (x̂B,CB) to be fused are consistent.
Consistency implies that the reported covariance matrix is an
upper bound of the actual error covariance matrix.

Since CI has emerged as a universal tool to fuse estimates,
much effort to improve and extend CI has been expended
in the last two decades. Improvements include the efficient
computation of the fusion result, which typically requires a
numerical optimization of the weighting parameter ω. These are
suboptimal but fast solutions [11], [12], specific optimization
criteria [13], [14], or closed-form solutions [15] for special
cases. Robustness and stability have been widely studied for CI
against the background of communication constraints [16], data-
driven policies [17], diffusion strategies [18], and heterogeneous
state representations [19]. The effect of multiple processing
steps on the fusion quality has been discussed in [20], as well
as the treatment and fusion of multiple estimates have been
widely studied [21], [22]. The possibility to express CI in terms
of probability densities, i.e., exponential mixture densities [23],
[24], has also been widely exploited. In doing so, CI fusion can
be applied to Gaussian mixtures [25] or PHD filters [26]. For
the fusion of densities, also a suitable weighting parameter has
to be computed [27], [28]. Applying CI to density functions,
however, still requires research toward a proper understanding
of general conservativeness as it is conducted in [29].

B. On Optimality of Covariance Intersection
Conservativeness for the linear fusion problem in (1) is

well understood, and it has even been proven in [30], [31]
that CI can be deemed to be the optimal fusion rule if the
cross-covariance matrices are unknown and cannot be exploited.
Optimality means that (1a) is the fusion result with the smallest
bound (1b) on its error covariance matrix. More precisely, the
error covariance matrix for (1a) is given by

E[x̃CIx̃
T
CI] = KCICAKT

CI + KCICABLT
CI

+ LCICBAKT
CI + LCICBLT

CI

(2)

and depends on the actual but unknown cross-covariance terms
CAB = CT

BA = E[x̃Ax̃T
B ]. The matrix CCI is the smallest

bound1 on E[x̃CIx̃
T
CI] ≤ CCI that holds for each possible CAB.

This result is a strong argument in favor of CI and yet, research
is also directed toward alternative fusion methods.

C. Why Yet Another Intersection?
Aside from a plethora of extensive studies on CI, alternative

approaches have been proposed that strive for fusion results
with a smaller error covariance matrix. An important candidate
is Ellipsoidal Intersection (EI) [32], which computes the result

x̂EI = CEI

(
C−1A x̂A + C−1B x̂B − Γ−1EI γ̂EI

)
(3a)

with covariance matrix

C−1EI = C−1A + C−1B − Γ−1EI . (3b)

1This is valid for each ω ∈ [0, 1], see [31].

The parameters γ̂
EI

and ΓEI are designed to account for
the maximum possible common information shared by the
estimates to be fused. EI proves its usefulness in several
theoretical [33] and practical [34], [35] case studies. In [36],
it has been shown that EI corresponds to the largest ellipsoid
within the intersection, as it can be seen in Fig. 1. As the same
figure reveals, a motivation behind EI is to provide a smaller
covariance matrix than CI does, but consistency then poses an
issue that has to be addressed.

II. INVERSE COVARIANCE INTERSECTION

The optimality aspects of CI suggest that alternative fusion
rules can only provide consistent results under restrictive
conditions. In order to attain less conservative but still con-
sistent estimates, the matrix CAB in (2) must fulfill specific
requirements. A typical example for a specific correlation
structure is common information that is shared by the nodes in a
sensor network [1], [37]. For this case—as shown in [38]—CI
is too conservative to optimally treat correlations caused by
unknown common information, on the one hand, and the
parameters γ̂

EI
and ΓEI in (3), which have been originally used

for EI, are not sufficient to guarantee consistency, on the other
hand. To bridge the gap between CI and EI, [38] introduces a
new set of parameters that provide less conservative but still
consistent estimates. The fusion rule in [38] is the optimal way
to treat unknown common information; however, the current
paper unveils that the same fusion rule can be also applied far
beyond unknown common information, e.g., to the problem
of common process noise. Before that, this section provides a
brief summary of the fusion rule in question.

Given two consistent estimates (x̂A,CA) and (x̂B,CB), Inverse
Covariance Intersection (ICI) provides the fusion result
(x̂ICI,CICI) with

x̂ICI = KICI x̂A + LICI x̂B (4a)

and

C−1ICI = C−1A + C−1B −
(
ωCA + (1− ω)CB

)−1
(4b)

for ω ∈ [0, 1]. The gains in (4a) are given by

KICI =CICI ·
(
C−1A − ω(ωCA + (1− ω)CB)−1

)
, (5a)

LICI =CICI ·
(
C−1B − (1− ω)(ωCA + (1− ω)CB)−1

)
. (5b)

A simple MATLAB implementation can be downloaded from
https://github.com/KIT-ISAS/ICI.

ICI is a novel approach to treat unknown correlations between
the estimates to be fused. Since ICI is tailored to a specific
correlation structure, less conservative bounds on the fused
error covariance matrix are provided than CI can compute.
More precisely, it has been shown in [38] that (4b) is smaller
than (1b) for each ω ∈ [0, 1], i.e., CICI(ω) ≤ CCI(ω).

In the following subsection, we recall the conditions that
have been utilized in [38] to prove consistency of the ICI
fusion rule. Under these conditions, the covariance matrix (4b)



is a conservative bound on the actual error covariance matrix,
i.e.,

E
[
x̃ICIx̃

T
ICI

]
= E

[
(x− x̂ICI)(x− x̂ICI)

T
]
≤ CICI (6)

for each ω ∈ [0, 1]. Sec. III will reveal that consistency also
holds under far weaker conditions and enables us to apply ICI
to more general fusion problems.

A. Considered Correlation Structure

For the derivation of ICI, a parameterization similar to EI
has been exploited. In the spirit of [38], we assume that the
considered estimates (x̂A,CA) and (x̂B,CB) to be fused are
consistent and share the common estimate (γ̂,Γ). In particular,
both estimates can be represented by the mutually uncorrelated
partial estimates (λ̂A,ΛA), (λ̂B,ΛB), and (γ̂,Γ) according to

x̂A = CA

(
Λ−1A λ̂A + Γ−1γ̂

)
, (7a)

CA =
(
Λ−1A + Γ−1

)−1
, (7b)

and

x̂B = CB

(
Λ−1B λ̂B + Γ−1γ̂

)
, (8a)

CB =
(
Λ−1B + Γ−1

)−1
. (8b)

The representations (7) and (8) correspond to the information
form [39], i.e., inverse covariance formulation, where (γ̂,Γ)

has been fused with both (λ̂A,ΛA) and (λ̂B,ΛB). This means
that (7) and (8) can each be regarded as the optimal fusion
result of uncorrelated estimates:
• In (7), (γ̂,Γ) has been fused with (λ̂A,ΛA).
• In (8), (γ̂,Γ) has been fused with (λ̂B,ΛB).
The decompositions (7) and (8) carry over to the correspond-

ing estimation errors, which yield

x̃A = x̂A − x = CA

(
Λ−1A λ̂A + Γ−1γ̂

)
− x

= CA

(
Λ−1A (λ̂A − x) + Γ−1(γ̂ − x)

)
= CA

(
Λ−1A λ̃A + Γ−1γ̃

)
and

x̃B = CB

(
Λ−1B λ̃B + Γ−1γ̃

)
.

Since the partial estimates have been assumed to be uncorre-
lated, i.e., E[λ̃Aλ̃

T

B ] = E[λ̃Aγ̃
T] = E[λ̃Bγ̃

T] = 0, the error
cross-covariance matrix CAB of x̃A and x̃B becomes

CAB = CT
BA = E

[
x̃Ax̃T

B

]
= CAΓ−1CB . (10)

If we assume for a moment that (γ̂,Γ) is known to the
fusion center, we are in the position to compute the optimal
fusion result (x̂opt,Copt) given by

x̂opt = Copt

(
Λ−1A λ̂A + Λ−1B λ̂B + Γ−1γ̂

)
= Copt

(
C−1A x̂A + C−1B x̂B − Γ−1γ̂

) (11a)
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Fig. 2: Bound on the ellipsoids that represent possible common
estimates. 70 possible inverse covariance matrices Γ−1 are
shown. A bound on all E(0,Γ−1) has to circumscribe the
intersection E(0,C−1A ) ∩ E(0,C−1B ). This property holds for
Γ−1ICI, but Γ−1EI in (3b) has been chosen too small.

and
C−1opt = Λ−1A + Λ−1B + Γ−1

= C−1A + C−1B − Γ−1 .
(11b)

This corresponds to the fusion of three uncorrelated estimates
in the information form. The latter part in each equation
reveals that common information can simply be removed from
the naı̈ve2 fusion result by subtraction—a technique that is
exploited by the channel filter [37]. In contrast to the channel
filter, ICI is concerned with the case that common information
is unknown.

B. Intuition Behind Inverse Covariance Intersection

In order to treat unknown common information (γ̂,Γ), the
ICI fusion rule (4) rests upon the idea to subtract a bound
on the maximum possible common information in (11). As
it can be seen in (4b), the used upper bound on the inverse
covariance matrix Γ−1 is

Γ−1 ≤ (ωCA + (1− ω)CB)
−1

=: Γ−1ICI , (12)

for each ω ∈ [0, 1]. This relationship holds for each set of
possible parameters in (7) and (8) as it is illustrated in Fig. 2,
which also reveals that the right-hand side in (12) corresponds
to an outer ellipsoidal approximation of the intersection

E(0,C−1A ) ∩ E(0,C−1B ) ⊆ E(0,Γ−1ICI) ,

which gives ICI its name. As it has been proven in [38], the
bound is even tight and hence, ICI constitutes the optimal way
to treat unknown common information. However, this result is
only half of the story as Sec. III will reveal.

C. Illustrative Example

For the purpose of comparing the different intersection
methods, we revisit the example in [32]. The estimates to
be fused have the parameters

(x̂A,CA) =
(
[ 0.51 ] ,

[
2.5 −1
−1 1.2

])
,

(x̂B,CB) =
(
[ 21 ] ,

[
0.8 −0.5
−0.5 4

])
,

and Fig. 3 depicts the fusion results provided by the EI, CI, and
ICI algorithms. The covariance matrices reported by the fusion

2A naı̈ve fusion ignores common information and possible correlations.
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Fig. 3: Fusion results of the estimates (x̂A,CA) and (x̂B,CB).
The corresponding ellipsoids centered at the origin are shown
in Fig. 1, and the ellipsoids for possibly shared common
information are discussed in Fig. 2.

methods are compared in Fig. 1, where the corresponding
covariance ellipsoids are centered at the origin.

The ICI approach attains an estimate that is close to the
EI result while being still less conservative than CI. For EI,
an estimate (γ̂

EI
,ΓEI) is computed that is subtracted in (11).

EI provides the smallest error ellipse, but consistency is not
guaranteed for the case of unknown common information,
which is related to the observation in Fig. 2, where Γ−1EI

is too small to account for all possible common estimates.
By contrast, ICI provides a tight bound for all possible
common estimates [38]. While ICI is based on a bound on the
intersection for the inverse covariance matrices in Fig. 2, CI
computes a bound directly on the intersection of the covariance
ellipsoids as it can be see in Fig. 1. Evidently, CI is too
conservative for the considered correlation structure (10).

ICI is tailored to the specific correlation structure (10). While
this allows us to compute less conservative fusion results, it
is an intriguing question whether ICI is still consistent when
correlations differ from (10). The following considerations
offer an answer to this question.

III. NEW PROPERTIES AND INSIGHTS

For the purpose of generalizing ICI, we do not have to
alter the fusion rule (4) itself but consider a modified problem
structure different to (7) and (8). In doing so, ICI becomes
applicable to more general fusion problems, and it can even
be employed to treat the problem of common process noise,
which is discussed in Sec. IV.

The fusion result (4) provided by ICI is consistent if
condition (6) is fulfilled. This has already been proven for
estimates that share a common estimate and are given in the
form (7) and (8). In this section, two key generalizations of
the considered problem structure are proposed:

(G1) The estimates to be fused may share correlated informa-
tion, not only common information.

(G2) The shared information has to be included only in one
estimate, not necessarily in both.

With the aid of these generalizations, we can leverage ICI to
guarantee consistency for a far wider class of fusion problems.

In place of the parameterizations (7) and (8), we consider
the estimates

x̂A = CA

(
Λ−1A λ̂A + Γ−1A γ̂

A

)
, (13a)

CA =
(
Λ−1A + Γ−1A

)−1
, (13b)

and

x̂B = CB

(
Λ−1B λ̂B + Γ−1B γ̂

B

)
, (14a)

CB =
(
Λ−1B + Γ−1B

)−1
. (14b)

Again, it is assumed that the partial estimates (λ̂A,ΛA),
(λ̂B,ΛB), (γ̂

A
,ΓA) and (γ̂

B
,ΓB) are mutually uncorre-

lated—except for the latter pair, which has the cross-covariance
matrix

ΓAB = ΓT
BA = E

[
γ̃
A
γ̃T

B

]
.

Compared to (7) and (8), the estimates (13) and (14) are
not required to share common information but correlated
information. As a consequence, the cross-covariance matrix
of (13) and (14) becomes

CAB = CT
BA = E

[
x̃Ax̃T

B

]
= E

[
CA

(
Λ−1A λ̃A + Γ−1A γ̃

A

)(
Λ−1B λ̃B + Γ−1B γ̃

B

)T
CB

]
= CAΓ−1A ΓABΓ−1B CB , (15)

which is different from (10). Based on this generalization, the
following considerations will reveal how (G1) and (G2) can
be established without impairing consistency.

A. Joint State Space Formulation of Fusion Problem

Before we study the consistency of ICI under the relaxed
problem setup (13) and (14), we introduce a joint state space
formulation of the ICI fusion rule. We consider the joint
estimate (x̂J,CJ), which comprises both estimates according
to

x̂J :=

[
x̂A

x̂B

]
, (16a)

CJ :=

[
CA CAB

CBA CB

]
= E

[[
x̃A

x̃B

]
·
[
x̃T
A x̃T

B

]]
. (16b)

As, for instance, stated in [4] or [30], the optimal fusion result
can be computed by

x̂fus =
(
HT

(
CJ
)−1

H
)−1

HT
(
CJ
)−1

x̂J , (17a)

Cfus =
(
HT

(
CJ
)−1

H
)−1

(17b)

with H =
[
I I

]T
. The optimal combination (17) is identical

to the Bar-Shalom/Campo fusion rule [3] and can also be
interpreted as a weighted least-squares solution [40].

Conservative fusion strategies like CI employ an upper
bound on the joint covariance matrix (16b) in order to treat
an unknown CAB. More precisely, the bound [41]

CJ
CI :=

[
1

1−ωCA 0

0 1
ωCB

]
≥ CJ (18)



holds for each ω ∈ (0, 1) and replaces CJ in (17). One can
easily check that (17) then results into (1). In general, every
upper bound on CJ provides a consistent fusion results when
used in (17).

The derivation of ICI in [38] can also be reformulated in
terms of (16) and (17). The corresponding bound for ICI is

CJ
ICI :=

[
CA + 1

λCAC−1B CA 0
0 CB + λCBC−1A CB

]
≥ CJ

(19)
for each λ > 0. We do not show that CJ

ICI is a consistent
bound on CJ in the case of common information as this will be
shown for the more general case in the subsequent subsection,
but we confirm that CJ

ICI plugged into (17) is equivalent to (4).
For this purpose, we consider (17b), which yields

C−1ICI = HT
(
CJ

ICI

)−1
H

=
(
CA +

1

λ
CAC−1B CA

)−1
+
(
CB + λCBC−1A CB

)−1
= C−1A −

(
λCB + CA

)−1
+ C−1B −

( 1

λ
CA + CB

)−1
= C−1A + C−1B − (1 + λ)

(
λCB + CA

)−1
= C−1A + C−1B −

( λ

1 + λ
CB +

1

1 + λ
CA

)−1
,

by means of the Woodbury formula. By setting ω := 1
1+λ , we

also have (1− ω) = λ
1+λ and arrive at (4b). In the same way,

it can be shown that using CJ
ICI in (17a) is identical to (4a).

The considerations in this subsection can be summarized as
follows: If the inequality (19) is fulfilled, the ICI estimate (4)
is a conservative and consistent fusion result.

B. Relaxed Conditions for Inverse Covariance Intersection
In the following, we study the more general parameteriza-

tions (13) and (14). The original proof of consistency in [38]
relies on the inequalities

Γ−1 ≤ C−1A and Γ−1 ≤ C−1B , (20)

which can easily be seen from (7b) and (8b). For the purpose
of applying ICI to the estimates (13) and (14), consistency
condition (20) is altered to the inequalities

αΓ−1A ≤ C−1B and
1

α
Γ−1B ≤ C−1A , (21)

where also a weighting parameter α > 0 has been introduced.
For α = 1 and ΓA = ΓB, the original formulation given
by (7) and (8) can be viewed as a special case. The generalized
condition (21) implies that even Γ−1A ≥ C−1B

(
or Γ−1B ≥ C−1A

)
may hold as long as there is an α > 0 such that (21) is met. In
doing so, generalizations (G1) and (G2) can be implemented.

In order to prove consistency of ICI under condition (21),
we have to verify that inequality (19) holds irrespective
of the actual cross-covariance matrix (15). The considered
inequality (19) expresses that the difference[

CA + 1
λCAC−1B CA 0

0 CB + λCBC−1A CB

]
−
[

CA CAB

CBA CB

]
=

[
1
λCAC−1B CA −CAB

−CBA λCBC−1A CB

]
(22)

has to be positive definite. The above matrix is bounded from
below by[

1
λCAC−1B CA −CAB

−CBA λCBC−1A CB

]
≥
[

α
λCAΓ−1A CA −CAΓ−1A ΓABΓ−1B CB

−CBΓ−1B ΓBAΓ−1A CA
λ
αCBΓ−1B CB

]
,

where (21) has been employed and CAB has been replaced
by (15). The right-hand side is a positive definite matrix if and
only if[
x1
x2

]T [ α
λCAΓ−1A CA −CAΓ−1A ΓABΓ−1B CB

CBΓ−1B ΓBAΓ−1A CA
λ
αCBΓ−1B CB

] [
x1
x2

]
(23)

is a positive value for every x1 ∈ RN and x2 ∈ RN . With the
aid of

y
1

:=

√
α

λ
Γ−1A CAx1 and y

2
:= −

√
λ

α
Γ−1B CBx2

we obtain[
x1
x2

]T [ α
λCAΓ−1A CA −CAΓ−1A ΓABΓ−1B CB

−CBΓ−1B ΓBAΓ−1A CA
λ
αCBΓ−1B CB

] [
x1
x2

]
=

[
y
1
y
2

]T [
ΓA ΓAB

ΓBA ΓB

] [
y
1
y
2

]
Finally, we have

ΓJ =

[
ΓA ΓAB

ΓBA ΓB

]
≥ 0

since ΓJ is the joint error covariance matrix of the joint
estimate [γ̂T

A
, γ̂T

B
]T and thus positive definite. Therefore, (23)

is a positive value and thus, the matrix (22) is positive definite,
which concludes the proof.

In conclusion, the ICI fusion rule (4) provides consistent
results if the estimates (13) and (14) to be fused meet
condition (21).

C. Bound on Common Information

The preceding considerations have demonstrated that ICI
can be applied to more general estimation problems. In this
concluding subsection, we show that the correlated parts of the
estimates (13) and (14) still lie in the intersection of E(0,C−1A )
and E(0,C−1B ) after fusion. The fused estimate is given by

x̂ICI = KICI x̂A + LICI x̂B

= KICICAΛ−1A λ̂A + LICICBΛ−1B λ̂B

+ KICICAΓ−1A γ̂
A

+ LICICBΓ−1B γ̂
B
.

With the definition of the gains in (5), the estimate can be
written as

x̂ICI = CICI

(
Λ−1ICI λ̂ICI + Γ−1ICI γ̂ICI

)
which resembles the representation (13) or (14). The term
Λ−1ICI λ̂ICI comprises the independent parts, and the second
term Γ−1ICI γ̂ICI

represents the fused dependent parts. The latter
term is studied in the following and a bound is derived.



The fused correlated partial estimates can be rewritten as

Γ−1ICI γ̂ICI
= C−1ICI

(
KICICAΓ−1A γ̂

A
+ LICICBΓ−1B γ̂

B

)
= K̄Γ−1A γ̂

A
+ L̄Γ−1B γ̂

B
(24)

with the matrices K̄ and L̄ given by

K̄ = C−1ICIKICICA

(5a)
=
(
C−1A − ω(ωCA + (1− ω)CB)−1

)
CA

= I− (ωCA + (1− ω)CB)−1 ωCA

= (ωCA + (1− ω)CB)−1 (1− ω)CB ,

L̄ = (ωCA + (1− ω)CB)−1 ωCA .

The matrices K̄ and L̄ can be interpreted as fusion gains since
I = K̄ + L̄ holds. The following considerations back up this
interpretation. With

Γ−1ICI = (ωCA + (1− ω)CB)−1 ,

as defined in (12), we can write K̄ = Γ−1ICI (1 − ω)CB and
L̄ = Γ−1ICI ωCA. For the estimation error x̃ICI, we can follow
the same calculations as above to obtain the estimation error

Γ−1ICIγ̃ICI
= K̄Γ−1A γ̃

A
+ L̄Γ−1B γ̃

B

with respect to (24). The error covariance matrix of γ̃
ICI

yields

E[γ̃
ICI

γ̃T

ICI
] = (1− ω)2CBΓ−1A CB

+ (1− ω)ωCAΓ−1A ΓABΓ−1B CB

+ ω(1− ω)CBΓ−1B ΓBAΓ−1A CA

+ ω2CAΓ−1B CA

where the cross-covariance terms are given by (15). In order
to treat the unknown matrices ΓAB = ΓT

BA, we exploit the
bounding technique (18) to obtain the bound

E[γ̃
ICI

γ̃T

ICI
] ≤ (1− ω)2

1− ω
CBΓ−1A CB +

ω2

ω
CAΓ−1B CA

= (1− ω)CBΓ−1A CB + ωCAΓ−1B CA

≤ (1− ω)CB + ωCA .

For the latter bound, condition (21) has been employed. To
keep it simple, we have assumed that the condition holds for
α = 1. In information form, we arrive at the bound

E
[
Γ−1ICIγ̃ICI

γ̃T

ICI
Γ−1ICI

]
= Γ−1ICI E[γ̃

ICI
γ̃T

ICI
]Γ−1ICI

≤ Γ−1ICI(ωCA + (1− ω)CB)Γ−1ICI = Γ−1ICI . (25)

This inequality shows that the actual error covariance matrix
in its information form on the left-hand side is bounded by
Γ−1ICI. As a result, the inverse error covariance matrix of the
fused dependent parts is still related to the intersection of the
inverse covariance ellipsoids, as it is stated in (12) and can be
seen in Fig. 2.

The bounding inverse covariance matrix Γ−1ICI for the
fused dependent parts is an astonishing result as—at the
same time—it represents the maximum common information
removed from the fusion result in (4b) and the maximum
common information that is still contained in the fusion result
as it can be seen from (25).

S2

S1

S3

S4

S5

Fig. 4: Communication in sensor network.

IV. A FIRST APPLICATION SCENARIO

In its original formulation, ICI has been designed to fuse
estimates that share a common estimate (γ̂,Γ) and as such, the
treatment of common process noise [3] has not been considered.
The derivations in [38] may even suggest that consistency
cannot be guaranteed anymore in the presence of process
noise that is not negligible. By exploiting the results from
the preceding section, the following simple example, however,
constitutes a case where common process noise can consistently
be treated by ICI.

We consider five sensor nodes deployed to observe a dynamic
process, as depicted in Fig. 4. The state is two-dimensional,
and its evolution is modeled by

xk+1 = Ak xk + wk

with system matrix Ak = [ 1 0.5
0 1 ] and zero-mean process noise

wk ∼ N (0,Cw). The process noise has the covariance matrix
Cw = 0.5 I2. Each sensor node computes an estimate by means
of a local Kalman filter. The filter processes measurements
over five time steps before the local estimates are sent to node
S5 according to the communication scheme shown in Fig. 4.
Each node employs different fusion algorithms to combine the
received estimates with its own estimate. The sensor nodes
directly observe the state according to

zk = HSi
k xk + vSi

k

with HSi
k = I2 for S1, . . . ,S5. The error covariance matrix

of vSi
k ∼ N (0,Cv,Si) is Cv,Si = [ 0.5 0

0 0.2 ] for S1, S3, S5 and
Cv,Si
k = [ 0.1 0

0 0.5 ] for S2, S4. The prior estimate has zero mean
and the covariance matrix CSi

0 = [ 2 1
1 2 ].

In order to compare the results of different fusion meth-
ods, 100 000 Monte Carlo runs have been performed. They
are used to compute the actual error covariance matrix
E[(x− x̂)(x− x̂)T] for each fusion method. In this scenario,
both common process noise and common information are
responsible for correlations between the estimates to be fused.
Fig. 5 shows that a naı̈ve fusion fails severely at providing
a consistent estimate. CI provides a consistent estimate,
while EI does not preserve consistency. The ICI fusion rule
achieves a slightly better performance than CI; it still holds
CCI > CICI—although barely visible—and also the actual
error has decreased, i.e., it holds E[x̃T

CIx̃CI] > E[x̃T
ICIx̃ICI].

Compared with the example in Sec. II-C, where ICI provides
a far smaller covariance matrix, as it can be seen in Fig. 1, ICI
only slightly outperforms CI here. The key message of this
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(d) ICI fusion result.

Fig. 5: Fusion results in node S5 at the end of the communication path in Fig. 4. The dashed ellipsoid represents the actual
error covariance matrix, which is compared with the reported covariance matrix shown as solid ellipsoid. The green ellipsoid
corresponds to the covariance matrix of the best attainable estimate provided by a centralized Kalman filter.

section, however, is not about the performance of the fusion
methods; the key message is that ICI is consistent, and we can
even confirm this assertion with the aid of the considerations in
Sec. III. In particular, the treatment of common process noise
has to be considered. The noise parameters in this example
adhere to the inequalities

Cw ≥ Cv,Si for every S1, . . . ,S5. (26)

For two sensor nodes Si and Sj, we use the abbreviations Cp
A :=

CSi
k|k−1 and Cp

B := CSj
k|k−1 for the predicted error covariance

matrices of the estimates x̂Si
k|k−1 and x̂Sj

k|k−1, respectively, and
CA := CSi

k|k and CB := CSj
k|k for the corresponding covariance

matrices after the measurement update step. In the prediction
from time step k − 1 to k, the covariance matrices

Cp
A = Ak−1C

Si
k−1|k−1A

T
k−1 + Cw , (27a)

Cp
B = Ak−1C

Sj
k−1|k−1A

T
k−1 + Cw (27b)

are computed. This leads to the inequalities Cp
A ≥ Cw and

Cp
B ≥ Cw. At this point, correlations between the predicted

estimation errors can be arbitrary and, in particular, the process
noise wk considered by each local Kalman filter introduces
further correlations—known as the problem of common process
noise. In the filtering step, we obtain(

CA

)−1
=
(
Cp

A

)−1
+
(
Cv,Si

)−1
, (28a)(

CB

)−1
=
(
Cp

B

)−1
+
(
Cv,Sj

)−1
(28b)

due to the identity measurement model, which implies(
Cv,Si

)−1 ≤ (CA

)−1
and

(
Cv,Sj

)−1 ≤ (CB

)−1
. We arrive at

the inequalities

Γ−1A ≤
(
Cp

A

)−1 (27a)
≤ (Cw)−1

(26)
≤
(
Cv,Sj

)−1 (28b)
≤
(
CB

)−1
Γ−1B ≤

(
Cp

B

)−1 (27b)
≤ (Cw)−1

(26)
≤
(
Cv,Si

)−1 (28a)
≤
(
CA

)−1
,

where all possibly correlated parts are related to the predicted
covariance matrix on the left-hand side since the measurement
noise terms vSi

k and vSj
k are uncorrelated. Hence, condition (21)

is fulfilled if fusion takes place after a measurement update;
ICI yields a consistent estimate.

The example demonstrates that the problem of common
process noise can be treated by ICI. It is an interesting
observation in (26) that the common process noise is even
larger than the measurement noise, which is surprising if
we note that ICI has been designed for unknown common
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(b) ICI fusion result.

Fig. 6: Fusion results in node S5 for different sensors.

information. We assume that ICI can be also applied to more
general and extended fusion problems with proven consistency.
Fig. 6 illustrates results for the same network, where the sensors
S1, S3, S5 only measure the first component of the state and
sensors S2 and S4 only the second component with variance
Cv,Si = 1. Inequality (26) does not hold in this case, but ICI
still provides consistent results. More general conditions for
consistency will hence be subject of future work.

V. CONCLUSION

For decentralized data fusion, methods are desired that can
cope with unknown correlations between the estimates to be
fused. Consistent fusion rules that provide less conservative
error covariance matrices than CI are only attainable if specific
requirements on the correlation structure are met. An often
encountered example is common information that is shared by
the estimates and must not be double counted. ICI has been
tailored to the treatment of unknown common information
and therefore provides an optimal, i.e., tight, fusion result.
Consequently, ICI reports a smaller error than CI. This paper
demonstrates that ICI can also be applied to fusion problems,
where other causes of correlations are present. In particular,
the conditions under which ICI provides consistent fusion
results have been relaxed, and it turns out that ICI can even be
employed to tackle fusion problems where common process
noise comes into play. These findings may indicate that ICI
has the potential to become a viable fusion rule for typical
Kalman filter-based fusion problems in general. Therefore, the
relaxed consistency conditions stimulate further research on the
field of fusion problems that can be covered by ICI. A second
interesting aspect concerns nonlinear decentralized estimation,
and it is to be studied whether ICI can be generalized to fuse
probability densities that share common information as CI has
been generalized in terms of exponential mixture densities.
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