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Abstract—With the ubiquity of information distributed in
networks, performing recursive Bayesian estimation using dis-
tributed calculations is becoming more and more important.
There are a wide variety of algorithms catering to different
applications and requiring different degrees of knowledge about
the other nodes involved. One recently developed algorithm is
the distributed Kalman filter (DKF), which assumes that all
knowledge about the measurements, except the measurements
themselves, are known to all nodes. If this condition is met,
the DKF allows deriving the optimal estimate if all information
is combined in one node at an arbitrary time step. In this
paper, we present an information form of the distributed Kalman
filter (IDKF) that allows the use of explicit system inputs at
the individual nodes while still yielding the same results as a
centralized Kalman filter.

Index Terms—Distributed Kalman filter, recursive Bayesian
estimation, information filter, track-to-track fusion

I. INTRODUCTION

With the advent of cheap integrated circuits and sensors,
the ability to observe phenomena from multiple perspectives
has become viable and affordable. However, to reduce costs
and keep sensors small, only very limited energy resources
are integrated into a single sensor node. Thus, it is essential
to conserve energy at the sensor nodes. In sensor networks,
the most expensive operation is communication and hence,
communication should be minimized when jointly observing
one phenomenon using multiple sensor nodes.

For linear models and uncorrelated measurements, the
Kalman filter is the Linear Minimum Mean Squared Error
(LMMSE) estimator [1, Ch. 13]. If the sensors perform mea-
surements in a time-synchronized manner and communication
is fast enough (or if the nodes wait until all measurements
of a time step have been received before performing the next
prediction step), it is possible in theory that one or all nodes
use a centralized Kalman filter and obtain the optimal result.
This is because if any node has access to all measurements
in every time step, the distributed nature of the measurements
obtained can be completely hidden from the filter and the node
can act as if it was equipped with multiple sensors. In practice,
however, transmitting all measurements is only feasible if
communication is very cheap, which is usually not the case
for sensor networks [2].
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Figure 1. A phenomenon observed by a sensor network. Each node performs
measurements at equidistant points in time. The vector ûk,s stands for the input
of the node s at time step k while the vector zk,s denotes the measurement
obtained by the node s at time step k . The nodes only influence the system
when deemed necessary.

To save communication, all nodes can act independently
and use a local Kalman filter to obtain estimates that are only
locally optimal. Then, the question is how the individually
obtained posterior estimates can be combined. This is not
only a challenge computationally but also semantically as the
two posterior densities to be combined both include prior
information. Due to the influence of the prior information,
the standard Kalman filter formulae should not be used to
fuse such estimates even in the absence of prediction steps.
A second challenge is that the information that the individual
nodes obtain using measurements become correlated during
the prediction steps.

The distributed Kalman filter (DKF) [3] can address both of
these challenges, given all nodes use the same system model
and have full knowledge about the measurement models and the
points in time at which measurements are observed. The DKF
has been explained in a different form using the information
filter form of the Kalman filter in [4]. We propose a similar
filter that we call the information form distributed Kalman
filter (IDKF) that also allows the use of explicit inputs. We
show how explicit inputs can be incorporated in the distributed
calculation, given the system model that a centralized Kalman
filter would use for the respective scenario. Based on this,
we describe how inputs may influence the system so that the
scenario is still suited to optimal distributed estimation. We



show that as long as the inputs influence the state linearly
and the uncertainties involved do not depend on the inputs,
the inputs may be arbitrary and no knowledge about whether
a node influences the system via an input is necessary. For
example, in the sensor network shown in Fig. 1, the nodes can
decide if they wish to influence the system based on the current
measurement, their current battery status, their accumulated
local data, or (if data from the other nodes are available) based
on the globally optimal estimate. An application of such a
sensor network could be, e.g., to control the composition of
a fluid when the nodes can add chemicals at their respective
locations. In addition to the prediction formulae that support
explicit inputs, we give different ways to initialize the filter
and provide the corresponding semantics.

The paper is structured as follows. Following this introduc-
tion, we provide an overview of related work in the second
section. In the third section, basics about stochastic models,
Kalman filtering, and the information filter are laid out. In the
fourth section, we provide the formulae of the IDKF and prove
that the prediction and update equations given can be used to
obtain the same result that a centralized Kalman filter would
obtain. Some properties of the IDKF are provided in the fifth
section. In the sixth and last section, we provide a conclusion
and an outlook.

II. RELATED WORK

To provide an estimate based on the information of multi-
ple nodes, several approaches have been proposed [5], [6],
[7]. There are simple approaches such as using a convex
combination of the two estimates with weightings according
to the covariances of the estimates. A more sophisticated
approach was proposed by Bar-Shalom and Campo [8], which
exploits the cross-covariances to fuse estimates. The approach
yields a fusion result that corresponds rather to a maximum
likelihood estimate [9] than to an LMMSE estimate given all
measurements acquired. Furthermore, a wide variety of other
approaches exist, such as tracklet fusion algorithms [10], [11],
[12] that aim to strip the estimates of the doubly integrated
prior information. Another strategy is to keep track of the
history [13], [14] and to fuse augmented state representations.

The different approaches come with different prerequisites.
While simple combination approaches do not require any
further knowledge, the Bar-Shalom–Campo formulae require
knowledge about the cross-covariance. Recently, the distributed
Kalman filter (DKF) [3] has been proposed, which allows
deriving the same result as a centralized Kalman filter. When
using the DKF, each node requires a considerable amount
of knowledge about the other nodes. Not only do all nodes
have to use the same system model, each node also requires
full knowledge about the measurement models of all nodes
and knowledge about the times at which measurements are
performed by the individual nodes.

The insights of the DKF have been developed over the
course of multiple publications [3], [4], [15], [16], [17]. The
approach is special as it the first to achieve the optimal fusion
result for dynamic systems with nonzero process noise without

requiring regular communication or transmission of a vector
that grows with time. For a sensor network with N nodes,
each node only needs to update and keep track of data of
the size of the state vector and the covariance matrix. When
the data of all nodes are obtained by a node at an arbitrary
point in time, the optimal estimate can be retrieved. The DKF
does, in general, not support data-dependent extensions such
as the EKF. However, this weakness can be alleviated by
establishing a hypothesis [18] on the globalized parameters.
Deviations from the hypothesis can be counteracted with the
aid of specific debiasing techniques [19], [20]. In a similar
way, communication uncertainties can be treated [21].

The information form of the DKF presented in [4] is similar
to the globalized likelihood version in [3] but the derivation in
information filter form allows for a different perspective on the
DKF. By regarding the DKF in information form, it can be seen
that, in fact, the DKF can be interpreted as an adapted version
of a centralized Kalman filter. For the DKF, the equations of
the centralized Kalman filter are split up among the individual
nodes in a way that the sum of the estimates always yields the
optimal estimate as obtained by the centralized Kalman filter.

III. BASICS OF KALMAN FILTERING
AND THE INFORMATION FILTER

In the course of this paper, we show that the formulae of the
IDKF yield the same results as a centralized Kalman filter with
explicit inputs. However, to benefit from the LMMSE property
of the Kalman filter, the usual requirements to use the Kalman
filter as an LMMSE estimator have to be met. For the standard
Kalman filter to be the LMMSE estimator, we require linear
system and measurement models and the noise terms need to
be uncorrelated [1, Ch. 13]. To introduce our notation directly
in the proper context, we briefly give the formulae for the
system evolution and for the generation of measurements as
well as the prediction and update step of the Kalman filter in
the first subsection of this section. In the second subsection, we
introduce the information form of the Kalman filter including
a way to incorporate multiple measurements in the same time
step.

A. System and Measurement Models and the Kalman Filter

The system evolves according to the system model

xk+1 = Akxk +Bkûk +wk ,

with the random vector describing the state xk, the system
evolution matrix Ak, the system input matrix Bk, the input
ûk, and a random vector describing an additive system noise
term wk. The Kalman filter preserves the LMMSE property by
propagating the current mean x̂p

k to the next time step using
the system input according to

x̂p
k+1 = Akx̂

e
k +Bkûk . (1)

The predicted covariance Cp
k+1 is then calculated according to

Cp
k+1 = AkC

e
kA

T
k +Cw

k ,



depending on the covariance matrix Ce
k of the posterior at time

step k and the covariance matrix Cw
k of the system noise term

wk. Note that for the DKF, all nodes have to use the same Ak

and Cw
k and thus, they must not depend on the current estimate.

In distributed scenarios, the models are often assumed to be
time-invariant.

The measurement equation is given by

zk = Hkxk + vk ,

with the measurement matrix Hk and the measurement noise
term vk. For the update step, the Kalman gain

Kk = Cp
kH

T
k (C

v
k +HkC

p
kHk)

−1

depending on the noise covariance Cv
k is calculated in each

time step. Using this gain and the actual measurement ẑk, we
obtain the updated mean and covariance according to

x̂e
k = x̂p

k +Kk(ẑk −Hkx̂k) ,

Ce
k = Cp

k −KkHkC
p
k .

B. Information Form of the Kalman Filter

In the information form of the Kalman filter [22] (also called
information filter), we keep track of an information vector ŷ

k
and an information matrix Yk. They relate to the original state
space mean and covariance according to

ŷ
k
= C−1

k x̂k and Yk = C−1
k .

As the covariance matrix is positive definite, the information
matrix is invertible and we can thus perform the transformation
back to state space by solving the above equations for x̂ and
Ck, respectively.

In the update step of the information filter, a vector ĵ
k

containing the new information of the measurement ẑk is
calculated and then fused with the current information about
the state via a summation. Thus, the update equations for the
information vector are

ŷe
k
= ŷp

k
+ ĵ

k
, ĵ

k
= HT

k (C
v
k)

−1ẑk .

In the update equations for the information matrix, a matrix-
valued term Jk to be added to the current information matrix
is determined. This leads to the update equations

Ye
k = Yp

k + Jk , Jk = HT
k (C

v
k)

−1Hk

for the covariance.
If we have N measurements indexed by s, the update

step can be performed analogously for all measurements ẑk,s,
measurement noise covariance matrices Cv

k,s, and measurement
matrices Hk,s. This leads to the formulae

ŷe
k
= ŷp

k
+

N∑
s=1

ĵ
k,s

, ĵ
k,s

= HT
k,s(C

v
k,s)

−1ẑk,s (2)

in total for the update of the information vector and

Ye
k = Yp

k +

N∑
s=1

Jk,s , Jk,s = HT
k,s(C

v
k,s)

−1Hk,s (3)

for the information matrix.

In the context of distributed estimation, each of the N
measurements is generated by a different sensor node. Thus, the
measurement covariance matrices Cv

k,s and measurement ma-
trices Hk,s describe the measurement models of the individual
sensor nodes. A centralized Kalman filter with all information
at its disposal could directly use the formulae (2) and (3).
However, to employ these formulae without modification, all
measurements would have to be transferred to the node running
the centralized Kalman filter.

While much less information needs to be sent for the
DKF, all nodes need to know the measurement matrices and
measurement covariance matrices of all sensors. Thus, the
measurement matrices must not be dependent on the current
estimate, such as when using linearization as in the extended
Kalman filter.

To perform the prediction step in the information form, the
easiest way is to transform the information vector and matrix to
state space, perform the prediction as usual, and then transform
the result back to information space. This can be performed
using

ŷp
k+1

= Yp
k+1

(
Ak(Y

e
k)

−1ŷe
k
+Bkûk

)
,

Yp
k+1 = (Ak(Y

e
k)

−1AT
k +Cw

k )
−1 .

IV. INFORMATION FORM OF THE
DISTRIBUTED KALMAN FILTER

The key feature of an energy-efficient distributed filter is that
the nodes need to be able to accumulate information about the
measurements in a way that does not require communication.
In the following, we denote the information accumulated by
the node s by ŷ

k,s
. In the IDKF, we ensure that the globally

optimal information vector ŷ
k,glob

as obtained by a centralized
Kalman filter in information form can always be computed via
the sum

ŷ
k,glob

=

N∑
s=1

ŷ
k,s

. (4)

In the following, we provide formulae to include measurements
in the information vector ŷ

k,s
and perform prediction steps

considering explicit inputs while maintaining this property. We
provide a proof by induction, starting with the initialization in
Sec. IV-A as the base case. For the induction step, we show
that this property is preserved throughout update and prediction
steps in Sec. IV-B and Sec. IV-C, respectively.

A. Initialization of the IDKF

As a Bayesian estimator, the Kalman filter is initialized using
a prior distribution. In [3], it is suggested to initialize the filters
in the individual nodes using the first measurement of the first
sensor, which can be seen as taking an empirical Bayes [23,
Ch. 4.1] approach. Since the formulae in [3] are given in state
space, it is necessary that the state is fully observable from the
first measurement as the measurement matrix is not invertible
otherwise. The initialization of the DKF in information form [4]
does not require this as the information vectors and matrices
are initialized using zero vectors and zero matrices. Within the



framework of Bayesian estimation, this strategy corresponds
to the use of an uninformative prior [23, Ch. 4.1].

In the following, we assume that precisely one prior
distribution is given. For the filter results of the IDKF to
be equal to those obtained using a centralized Kalman filter,
the prior used by the IDKF must be the same that would be
used in the centralized Kalman filter. The parameters required
by the Kalman filter are the mean x̂p

0 and the covariance Cp
0

of the prior distribution. The initial information vector ŷp
0,glob

and information matrix Yp
0,glob of the centralized Kalman filter

that is globally optimal can then be calculated according to

ŷp
0,glob

= (Cp
0)

−1x̂p
0 and Yp

0,glob = (Cp
0)

−1 .

Now, the information vector is to be distributed among all
nodes in such a way that (4) holds. While there are multiple
possibilities to distribute the information, there are two ways
that are intuitive. The first is to distribute the information
evenly, meaning the information vector

ŷp
0,s

=
1

N
ŷp
0,glob

is used for all of the N nodes. This subdivision trivially
ensures that (4) holds. We do not intend the vector ŷ

k,s
to

have any special semantics aside that the sum of all yields
the globally optimal information vector. We do not assign a
compatible information matrix to this information vector and all
nodes instead directly keep track of Yk,glob and initialize their
covariance matrices using Yp

0,glob. It is important to note that
an individual ŷp

0,s
combined with Yp

0,glob does not represent
the prior distribution. Only by combining the sum of all ŷp

0,s

with the information matrix Yp
0,glob, we can retrieve the prior

distribution.
The second approach to distribute the information vector

ŷp
0,glob

is to select one specific node with index m that keeps
track of the prior distribution. Then, we can set

ŷp
0,m

= ŷp
0,glob

,

while all other information vectors are initialized as zero vectors.
Again, all nodes keep track of Yk,glob. Semantically, the node
m has the valid prior distribution described by the information
vector ŷp

0,m
and the information matrix Yp

0,glob at its disposal,
while all other nodes have no information at the time of the
initialization. In all ŷp

k,s
with s 6= m, only information derived

from the measurements is accumulated, whereas ŷp
0,m

is used to
keep track of both the prior information and the measurements
obtained by the node with index m. While both approaches
allow an arbitrary node to derive the optimal estimate when
the information of all nodes is summed up, the latter approach
especially makes sense if the node m is particularly important,
e.g., when it is the only node that requires the globally optimal
estimate.

B. Update Step of the IDKF

The update step can be performed in an efficient manner
by simply adding the information contained in the new

measurement of the respective sensor, as shown in the following
theorem.

Theorem 1. Using the update equations

ŷe
k,s

= ŷp
k,s

+ ĵ
k,s

, ĵ
k,s

= HT
k,s(C

v
k,s)

−1ẑk,s , (5)

it can be ensured that (4) holds after the update step. Meaning,
the sum of the new vectors ŷe

k,s
is equivalent to the result

ŷe
k,glob

of the centralized Kalman filter, given that (4) holds for
the ŷp

k,s
.

Proof: According to (2), the centralized Kalman filter
having ŷp

k,glob
at its disposal can perform its update step via

ŷe
k,glob

= ŷp
k,glob

+

N∑
s=1

ĵ
k,s

.

Using that (4) holds for the ŷp
k,s

, we rewrite this as

ŷe
k,glob

=

N∑
s=1

ŷp
k,s

+

N∑
s=1

ĵ
k,s

=

N∑
s=1

(
ŷp
k,s

+ ĵ
k,s

)
=

N∑
s=1

ŷe
k,s

,

which concludes our proof.
To be able to perform future prediction steps and provide the

state space estimate when the resuls are fused, we also have to
update Yk,glob that each node keeps track of. According to our
assumptions, every node has full knowledge about all Hk,s

and Cv
k,s. Thus, each node can derive Ye

k,glob from Yp
k,glob just

like in a centralized Kalman filter according to

Ye
k,glob = Yp

k,glob+

N∑
s=1

Jk,s with Jk,s = HT
k,s(C

v
k,s)

−1Hk,s .

C. Prediction Step of the IDKF

In the versions of the DKF proposed in [3] and [4], inputs
are only supported implicitly. Instead of using the prediction
step as given in (1), the prediction equation

x̂p
k+1 = Akx̂

e
k

is employed. As our matrix Ak must not be data-dependent,
information about the inputs must be contained in the vector
x̂e
k, which potentially leads to larger vectors. In practice, the

computational effort of the Kalman filter scales approximately
cubically in the size of the state vector x̂. Thus, implicitly
modeling the input may result in a higher computational effort.

For example, let us assume we observe a phenomenon
described by a state vector with four components and we have
100 nodes using an input vector with four components each.
Then, directly encoding all inputs in a model for the centralized
Kalman filter (which is required by the DKF) would result
in a state vector with 404 entries. For the IDKF, we describe



how inputs can be integrated explicitly in the prediction step,
without a need to encode the input in the state vector.

As the IDKF is to yield the same results as a centralized
Kalman filter, we use the prediction step of the regular Kalman
filter (1) as the basis for our considerations. We now assume
that the (global) input vector ûk,glob can be written as a linear
combination of the inputs at the individual nodes. In this case,
the prediction step of the centralized Kalman filter

x̂p
k+1,glob = Akx̂

e
k,glob +Bk,globûk,glob

can be rewritten as a prediction step depending on all individual
input vectors ûk,s of the N nodes according to

x̂p
k+1,glob = Akx̂

e
k,glob +

N∑
s=1

Bk,sûk,s . (6)

Since each node generally only knows its own input vector,
only the vector ûk,s may be used for the prediction step of the
node s.

As an essential part of our prediction step, we require the
matrices Ak and Cw

k such that the evolution of the covariance
according to

Cp
k+1,glob = AkC

e
k,globA

T
k +Cw

k

properly reflects the evolution of the uncertainty, independent
of the inputs at the individual sensors. As the matrices Ak

and Cw
k would also be required for a centralized Kalman filter,

this is no requirement stemming directly from the use of the
IDKF. An important difference in a centralized Kalman filter
is that Ak and Cw

k could be easily made dependent on the
actual inputs or the current estimate.

It should be noted that we do not add any additional
requirements to those of the regular DKF without explicit
modeling of the inputs. First, the DKF requires that the system
matrices Ak and the system noise covariance matrices Cw

k are
known by all nodes, which leads to the requirement that they
must not change depending on the input (or else, information
about the change would have to be sent to all nodes). Second,
the assumption that it must be possible to write the combined
input ûk,glob as a linear combination of the inputs at the
individual sensors also applies when modeling the inputs
implicitly. If an input is encoded in the state vector, then
the input may only affect the system linearly according to
the system matrix Ak. Nonlinear combinations would only be
possible if Ak depended on the actual inputs, which is not
allowed when using the DKF.

Lemma 2. Using

ŷp
k+1,s

= Yp
k+1,glob

(
Ak(Y

e
k,glob)

−1ŷe
k,s

+Bk,sûk,s

)
,

we can ensure that property (4) holds after the prediction
step. This means that (4) holds for the ŷp

k+1,s
, given that

the condition is fulfilled for the ŷe
k,s

. Since each node only
requires its own input ûk,s, it is possible to use the formula in
a distributed manner.

Proof: First, we need to be able to calculate Yp
k+1,glob. As

described in Sec. IV-B, we have Ye
k,glob at our disposal from

the previous update step. As required by the assumptions of
the IDKF, all matrices needed to update the covariance, namely
Ak and Cw

k , are available at all nodes. Thus, each node can
calculate Yp

k+1,glob from Ye
k,glob according to

Yp
k+1,glob =

(
Ak(Y

e
k,glob)

−1AT
k +Cw

k,

)−1
.

As the main part of the proof, we simply perform algebraic
reformulations and use our base case. We can write

ŷp
k+1,glob

= Yp
k+1,glob x̂

p
k+1,glob

= Yp
k+1,glob

(
Akx̂

e
k,glob +

N∑
s=1

Bk,sûk,s

)

= Yp
k+1,glob

(
Ak(Y

e
k,glob)

−1ŷe
k,glob

+

N∑
s=1

Bk,sûk,s

)
and use the base case to obtain

ŷp
k+1,glob

= Yp
k+1,glob

(
Ak(Y

e
k,glob)

−1
N∑
s=1

ŷe
k,s

+

N∑
s=1

Bk,sûk,s

)

= Yp
k+1,glob

( N∑
s=1

Ak(Y
e
k,glob)

−1ŷe
k,s

+

N∑
s=1

Bk,sûk,s

)

=

N∑
s=1

(
Yp

k+1,glob

(
Ak(Y

e
k,glob)

−1ŷe
k,s

+Bk,sûk,s

))

=

N∑
s=1

ŷp
k+1,s

.

Thus, we have proven that the property (4) holds for the
resulting ŷp

k+1,s
.

V. PROPERTIES OF THE IDKF

Now that we have shown how both the update and prediction
steps can be performed while maintaining the property (4),
both parts of the induction step have been proven. Thus, we
have proven that when performing the initialization as well as
prediction and update steps according to the IDKF formulae,
the optimal information vector as calculated by a centralized
Kalman filter ŷ

k,glob
can be obtained using the sum of the

individual information vectors ŷ
k,s

of all sensors, as illustrated
in Table I. Thus, even if no communication has occurred
before, the globally optimal estimate x̂k,glob can be derived at
an arbitrary time step when a node has received all ŷ

k,s
. The

essential formulae to use the IDKF in practice are summed up
in Table II.

An important insight that is facilitated by the novel prediction
formulae explicitly respecting the system inputs is that it must
be possible to write the total effect of all inputs as a linear
combination of the effects of the inputs at the individual nodes.
Furthermore, how they are combined must not depend on the
actual inputs. However, as long as the system covariance matrix
Cw

k is not influenced by the input of a node, the node is free



Table I
TABLE SHOWING THE EVOLUTION OF THE INDIVIDUAL ŷ

k,s
AT ALL SENSOR NODES IF EACH NODE KEEPS TRACK OF A FRACTION OF THE PRIOR. THE

SUM ALWAYS YIELDS THE GLOBALLY OPTIMAL INFORMATION VECTOR THAT CAN BE USED TO DERIVE THE ESTIMATE THAT A CENTRALIZED KALMAN
FILTER WOULD PROVIDE.

Step Initialization Filter Prediction Filter Prediction Filter · · ·

Node 1 1
N
ŷp
0,glob

ŷe
0,1

ŷp
1,1

ŷe
1,1

ŷp
2,1

ŷe
2,1

· · ·

Node 2 1
N
ŷp
0,glob

ŷe
0,2

ŷp
1,2

ŷe
1,2

ŷp
2,2

ŷe
2,2

· · ·

...
...

...
...

...
...

... · · ·

Node N 1
N
ŷp
0,glob

ŷe
0,N

ŷp
1,N

ŷe
1,N

ŷp
2,N

ŷe
2,N

· · ·

Σ ŷp
0,glob

ŷe
0,glob

ŷp
1,glob

ŷe
1,glob

ŷp
2,glob

ŷe
2,glob

· · ·

Table II
TABLE SUMMARIZING THE FORMULAE FOR THE ESSENTIAL OPERATIONS OF THE IDKF WHEN EACH NODE KEEPS TRACK OF A FRACTION OF THE PRIOR.

Information vector Information matrix

Initialization ŷp
0,s

= 1
n

(Cp
0)−1x̂p

0 Yp
0,glob = (Cp

0)−1

Filter step ŷe
k,s

= ŷp
k,s

+ HT
k,s(Cv

k,s)−1ẑk,s Ye
k,glob = Yp

k,glob +
∑N

s=1 H
T
k,s(Cv

k,s)−1Hk,s

Prediction step ŷp
k+1,s

= Yp
k+1,glob

(
Ak(Ye

k,glob)−1ŷe
k,s

+ Bk,sûk,s

)
Yp

k+1,glob =
(
Ak(Ye

k,glob)−1AT
k + Cw

k,

)−1

Deriving optimal
x̂k = Y−1

k,glob
∑N

s=1 ŷ
e
k,s

Ck,glob = Y−1
k,globestimate

to use arbitrary inputs without voiding the optimality of the
distributed estimation. Thus, even when independent controllers
are running on the individual nodes, it is possible to obtain
the optimal estimate if all knowledge for the application of the
IDKF is known by all nodes.

Moreover, there are a variety of other properties of the DKF
that are evident from the IDKF formulation. First, the IDKF
formulae cannot be used to directly obtain locally optimal
estimates. However, if we have local system models that can
be used for the individual nodes (note that the IDKF only
requires the model a centralized Kalman filter would use), then
it is easy to obtain the locally optimal result by simply letting
a second locally optimal Kalman filter run beside the IDKF.
Using compatible system models, the local Kalman filters can
be reinitialized using the globally optimal information whenever
it can be derived by the respective node. When using a local
controller, the output of the local Kalman filter could even
be used to determine an appropriate input without voiding
the optimality of the estimation result obtained via the IDKF
formulae.

Using the equivalence of the results of the IDKF to those
of a centralized Kalman filter, we can state a second useful
property. The IDKF inherits all properties of the Kalman filter
and is thus the LMMSE estimator when the noise terms are
uncorrelated and the MMSE estimator when the state and the
noise are jointly Gaussian distributed [1, Ch. 13].

Another interesting property is how the combination of the
information represented by the ŷ

k,s
can be performed in state

space. As the optimal mean in state space can be obtained via

x̂k,glob = (Yk,glob)
−1ŷ

k,glob
=

N∑
s=1

(Yk,glob)
−1ŷ

k,s
,

we can use the state space vector

x̂k,s = (Yk,glob)
−1ŷ

k,s

to represent the information that is contained in the information
vector ŷ

k,s
of the respective node in state space. It is also

possible to transmit this vector instead of ŷ
k,s

. As

x̂k,glob =

N∑
s=1

(Yk,glob)
−1ŷ

k,s
=

N∑
s=1

x̂k,s

holds, the vectors must also be combined using a sum in state
space, which may seem a bit counterintuitive.

The fourth interesting property is that no designated fusion
center is required. Any node that obtains all ŷ

k,s
can pro-

duce the information vector representing the globally optimal
estimate. Furthermore, if the information is transferred along
multiple hops and no prediction and update steps are performed
before the end of the transmissions, individual nodes can
accumulate information using a summation before sending
it to the next node. Obviously, it must be ensured that no
information vector ŷ

k,s
is added twice in the sum. This needs

to be enforced, e.g., by also sending the IDs of all sensors whose
information is included in the transmitted information vector.
As can be seen in the following example, this property can be
used to significantly reduce the communication overhead.
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Figure 2. Sensor network in the example. The IDs of the nodes are shown
in white. The information that each node keeps track of is marked in black
at the node. To derive the globally optimal estimate at node 3, only the five
vectors indicated in blue at the edges need to be transferred.

Example 3. In our example, we have a sensor network with
six nodes as shown in Fig. 2. Let us assume no update
and prediction steps are performed during the following
communication events. First, the nodes with the IDs 1 and
2 send their ŷ

k,s
to the node 3. Likewise, the nodes 4 and

5 send their information to the node with ID 6. Up to now,
a total of four vectors have been transferred. Afterward, if
the node 3 sends the sum of its own information and the
information obtained from the nodes 1 and 2 to the node 6,
then the node 6 is able to derive the globally optimal result.
Alternatively, the node 6 could send its own information and
the information of the nodes 4 and 5 to the node 3. Then, the
node 3 is able to derive the globally optimal estimate. Thus,
for N = 6 sensor nodes, only N − 1 = 5 vectors need to
be transferred to obtain the globally optimal result at node 3
or 6. By transferring 5 vectors more, the optimal result can
be distributed in the entire network (less communication is
required if multicasts or broadcasts can be sent). If the network
topology is known, accumulation of the information can be
used in real-world applications, e.g., by ensuring that the node 3
delays the transmission of its information until the information
of the nodes 1 and 2 have been received. Regardless of how
the information vectors are transferred, there is never a need
to transfer any information matrices as all nodes keep track of
the same matrix Yk,glob.

For a known topology and fully reliable links, the IDKF
can be combined with minimum spanning trees to allow a
single node to derive the optimal estimate at the lowest costs
possible. To achieve this minimal cost, each node has to know
from which nodes it will receive data and to which node the
data needs to be transferred. As the optimal estimate can be
distributed in the whole network at the same cost, all nodes
can obtain the optimal estimate at twice the cost required to
attain the optimal estimate at one node.

It should be noted that while this approach yields the cheapest
way to obtain the optimal estimate, it is generally not the fastest

if the time is measured, e.g., in hops. Furthermore, if the links
are unreliable, the transmission rules may cease to work and
the accumulated data may not reach the desired node. When
dealing with unreliable links or if only simple transmission
rules can be used by the individual nodes, other approaches
such as distributed measurement fusion [24] may be more
suitable to the scenario at hand.

VI. CONCLUSION

In this paper, we have provided a variant of the DKF in
information form called the IDKF that allows modeling inputs
explicitly. Explicit inputs can improve the comprehensibility
of the models and lower computational efforts. Semantically,
the IDKF works like a centralized Kalman filter, just with
summands distributed among the sensor nodes. The optimal
result as obtained by a centralized Kalman filter can be attained
using a simple summation of the terms distributed among the
nodes. Using induction, we have shown that this property can
be maintained when using the formulae provided to perform
update steps and prediction steps with explicit inputs. By taking
a close look at explicit and implicit inputs in the context of the
DKF, we have derived properties that need to be fulfilled for
the inputs to be compatible with the DKF framework. Finally,
we have presented further interesting properties of the DKF
that are naturally obtained using the IDKF formulation.

An important area of future research is to investigate how
the idea of the distributed Kalman filter can be applied, at least
to a certain degree, to nonlinear filtering and data-dependent
algorithms [25]. Another area of future work is to analyze
how the DKF can be used to save communication in networks
with broadcast functionality or unreliable links. Future work
will entail to take a closer look at generalizations, such as
in the field of combined stochastic and set-membership state
estimation [26], [27]. First work to integrate set-membership
uncertainties in a distributed filter that minimizes the stochastic
uncertainty is given in [28]. In future work, we plan to work
on improving criteria that respect both stochastic and set-
membership uncertainties (as has been regarded in [29] for
centralized applications) in a distributed filter.
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