
Stochastic Integration Filter: Theoretical and
Implementation Aspects

Jindřich Havlı́k
Department of Cybernetics
University of West Bohemia

Plzen, Czech Republic
havlikj@ntis.zcu.cz
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Abstract— The paper focuses on state estimation of discrete-
time nonlinear stochastic dynamic systems with a special focus
on the stochastic integration filter. The filter is an representative
of the Gaussian filter and computes the state and measurement
predictive moments by making use of a stochastic integration
rule. As a result, the calculated values of the moments are
random variables and exhibit favorable asymptotic properties.
The paper analyzes theoretical consequences of using stochastic
integration rules and proposes several modifications that improve
the performance of the stochastic integration filter. As the filter
requires multiple iterations of the stochastic rule, its computa-
tional costs are higher in comparison with other Gaussian filters.
To reduce the costs, several modifications are proposed in the
paper, which are also concerned with numerical stability issues.
The proposed modifications are illustrated using both static and
dynamic numerical examples used in target tracking.

Index Terms—state estimation, Gaussian filter, stochastic inte-
gration rule

I. INTRODUCTION

Nonlinear state estimation of discrete-time stochastic dy-
namic systems is a broad field of study, which has attracted
significant attention in the last decades. It plays a crucial role
in many areas such as signal processing [1], target tracking
[2], satellite navigation [3], fault detection and isolation [4],
and optimal and predictive control problems [5]. The state
estimation problem is generally solved by the Bayesian recur-
sive relations (BRRs) [6]. They provide the state estimate in
the form of a conditional probability density function (PDF)
of the state conditioned by the measurement. The conditional
PDF provides full information about the unknown state. Due
to intractability of the BRRs for nonlinear or non-Gaussian
systems, the closed form solution to the problem often relies
on appropriate approximations.

Methods providing approximate conditional PDFs capturing
the complexity of the conditional PDF with high fidelity are
called global methods. They are represented, e.g., by the
Gaussian sum method [7], the point-mass method [8], and the
particle filter [9]. Their practical use is limited especially due
to their excessive computational complexity.

By assuming a Gaussian joint PDF of the state and measure-
ment, the BRRs lead to the methods known as Gaussian filters
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(GFs) [10] or local Bayesian methods [11]. The GFs possess
the same structure of the algorithm, where the particular GF
is given by the approximations used for evaluating integrals
involved in state and measurement moments computation
constituting the GF algorithm core. The GFs are represented
namely by the quadrature Kalman filter [12] employing a
quadrature rule, the cubature Kalman filter [11] employing a
cubature rule, the cubature quadrature Kalman filter [13], the
sparse-grid quadrature filter [14], the smart sampling Kalman
filter [15], or the stochastic integration filter (SIF) [16], which
utilizes a stochastic integration rule (SIR) [17].

The SIR is based on an iterative evaluation of randomized
spherical and radial rules. As a consequence, the SIR estimates
the integral values by random quantities instead of determin-
istic quantities and has an advantage compared to the other
numerical rules as it provides an integral value error estimate.
The original SIF algorithm proposed in [16] merely combines
the GF algorithm and the SIR. However, a detailed analysis of
implications of using random quantities approximating integral
values is not available. Also, nice asymptotic properties of
the random integral evaluations hold for a large number of
iterations, which may be infeasible in many SIF applications.

The goal of the paper is twofold. First, the paper focuses
on theoretical aspects of using random integral values in the
algorithm of the GF. Second, the paper treats implementation
aspects with a focus to lowering computational demands while
maintaining numerical stability of the SIF.

The rest of the paper is organized as follows: Section 2 is
devoted to a brief introduction to the nonlinear state estimation
and its solution by the GFs, especially the SIF. Section 3
reveals the consequences of random integral values occurring
in the algorithm of the GF. Section 4 proposes possible mod-
ifications of the SIF algorithm in order to deliver results with
lower computational demands. In Section 5, comprehensive
numerical illustrations are used to picture the properties of the
proposed theoretical and implementation modifications and the
paper is concluded by Section 6.

II. PROBLEM FORMULATION AND STOCHASTIC
INTEGRATION FILTER

This section formulates the nonlinear state estimation prob-
lem, presents its GF solution, and describes the SIF.



A. Formulation of the Nonlinear State Estimation Problem
Let a discrete-time nonlinear stochastic dynamic model be

considered in the following state-space form

xk+1 = fk(xk) + wk, k = 0, 1, 2, . . . , (1)
zk = hk(xk) + vk, k = 0, 1, 2, . . . , (2)

where the vectors xk ∈ Rnx and zk ∈ Rnz represent the
state and the measurement at time instant k, respectively,
fk : Rnx → Rnx and hk : Rnx → Rnz are known vector
functions, and wk ∈ Rnx and vk ∈ Rnz are mutually inde-
pendent state and measurement white noises. The PDFs1 of the
noises are Gaussian with zero means and known covariance
matrices2 (CMs) Σw

k and Σv
k , respectively, i.e., p(wk) =

N{wk; 0nx×1,Σ
w
k } and p(vk) = N{vk; 0nz×1,Σ

v
k}, where

0a×b denotes an a × b matrix of zeros. The PDF of the
initial state is Gaussian and known as well, i.e., p(x0) =
N{x0; x̂0,P0}. The initial state is independent of the noises.

The state estimation aims at searching for the state xk based
on the measurements up to the time instant `, which will
be denoted as z`

4
= [zT0 , z

T
1 , . . . , z

T
` ]T . Due to the stochastic

nature of the system, the state estimate is described by the
conditional PDF p(xk|z`). In this paper, the filtering (` = k)
and the one-step prediction (` = k − 1) problems will be
considered only. To find the filtering estimate p(xk|zk), the
Bayesian approach uses the following BRRs providing the
solution [6]

p(xk|zk) =
p(xk|zk−1)p(zk|xk)∫
p(xk|zk−1)p(zk|xk) dxk

, (3)

where the one-step prediction PDF is

p(xk|zk−1) =

∫
p(xk−1|zk−1)p(xk|xk−1) dxk−1, (4)

with p(xk|xk−1) = pwk−1
(xk− fk−1(xk−1)) and p(zk|xk) =

pvk(zk − hk(xk)).
An analytic solution to (3) and (4) is an intricate functional-

domain problem, which can be computed for a few special
cases only. Such a case is, for example, given by linear
functions fk and hk in the model equations (1) and (2). For a
nonlinear system approximate solutions are typically sought.

Principal approximations are of two types. The first type of
approximations involves numerical solutions to the BRRs. The
point-mass method [8] or the particle filter [9] are significant
representatives of the numerical approximate methods.

The second type of approximations is based on an analytic
solution. This can be achieved by more restrictive approxi-
mations or assumptions. For example, by approximating the
PDFs by a Gaussian mixture PDF, the Gaussian sum method
[7] is obtained. The Gaussian mixture representation maintains
a global validity of the results. However, simpler methods,
assuming Gaussian PDFs are more popular. Such filters are
denoted as Gaussian filters [10].

1For the sake of simplicity all PDFs will be given by their argument, if not
stated otherwise, i.e., p(wk) = pwk (wk).

2Through the paper, symbols E,V,C are used for mean, variance and cross-
covariance, respectively, i.e., C[x,y] = E[(x− E[x])(y− E[y])T ], V[x] =
C[x,x], whereas the term CM can mean both variance and cross-covariance.

B. Gaussian Filters

In addition to assuming Gaussianity of states and mea-
surements, the GFs also assume the joint predictive PDF
p(zk,xk|zk−1) being Gaussian at each time instant [11]

p(zk,xk|zk−1) = N
{

[ zkxk ];
[
ẑk|k−1

x̂k|k−1

]
,

[
Pzz
k|k−1 PxzT

k|k−1

Pxz
k|k−1 Pxx

k|k−1

]}
. (5)

By adopting these Gaussian assumptions, the filtering PDF
p(xk|zk) and the one-step predictive PDF p(xk|zk−1) are also
Gaussian

p(xk|zk) = N{xk; x̂k|k,P
xx
k|k}, (6)

p(xk|zk−1) = N{xk; x̂k|k−1,P
xx
k|k−1}. (7)

Since only Gaussian distributions (5) are considered, calcula-
tion of the first two moments of (5) is sufficient.

The algorithm of the GF is described in the Algorithm 1.

Algorithm 1: Gaussian Filter

Step 1: (initialization) Set the time step k = 0 and define a
priori initial condition by its first two moments

x̂0|−1 , E[x0] = x̂0, (8)

Pxx
0|−1 , V[x0] = P0. (9)

Step 2: (filtering, measurement update) The filtering mean
x̂k|k and CM Pxx

k|k are computed by means of

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1), (10)

Pxx
k|k = Pxx

k|k−1 −KkP
zz
k|k−1K

T
k , (11)

where
Kk = Pxz

k|k−1(Pzz
k|k−1)−1 (12)

is the filter gain and the measurement prediction ẑk|k−1 is
given by

ẑk|k−1 = E[zk|zk−1] = E
[
hk(xk)|zk−1

]
. (13)

The predictive CMs Pxz
k|k−1 and Pzz

k|k−1 are computed as

Pzz
k|k−1 = E[(zk − ẑk|k−1)(zk − ẑk|k−1)T |zk−1]

= E[(hk(xk)− ẑk|k−1)(·)T |zk−1] + Σv
k (14)

= V
[
hk(xk)|zk−1

]
+ Σv

k ,

Pxz
k|k−1 = E[(xk − x̂k|k−1)(zk − ẑk|k−1)T |zk−1]

= E[(xk − x̂k|k−1)(hk(xk)− ẑk|k−1)T |zk−1] (15)

= C
[
xk,hk(xk)|zk−1

]
.

Step 3: (prediction, time update) The predictive mean x̂k+1|k
and CM Pxx

k+1|k are given by

x̂k+1|k = E[xk+1|zk] = E[fk(xk)|zk], (16)

Pxx
k+1|k = E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T |zk]

= E[(fk(xk)− x̂k+1|k)(·)T |zk] + Σw
k (17)

= V
[
fk(xk)|zk

]
+ Σw

k .

Let k = k + 1. The algorithm then continues by Step 2.



The moments (13) – (17) can be expressed in the following
general form of Gaussian weighted integral

Iγ , E[γ(x)] =

∫
γ(x)N{x; m,P}dx , (18)

where γ : Rnx → Rnγ is a vector function (for example
fk(x)), m = E[x] is the mean, and P = V[x] is the CM of
x ∈ Rnx .

The particular GFs vary in the way they evaluate the
Gaussian PDF weighted integral (18). The GFs employ de-
terministic or stochastic numerical integration rules.

The rules approximate the integral by a sum of weighted
points3 transformed through γ. The points and corresponding
weights are specifically selected such that the approximate sum
is exact for polynomial functions γ(x) up to a certain degree.
The particular filters are known as the quadrature Kalman filter
[12], the cubature Kalman filter [11], the cubature quadrature
Kalman filter [13], the sparse-grid quadrature filter [14], or the
SIF [16], or the smart sampling Kalman filter [15], which is
approximate and derived via distance measures.

C. Stochastic Integration Filter

The SIF [16] employs the SIR [17] for evaluating integrals
of the form (18) arising in the algorithm of the GF. The main
advantage of the SIR is that it guarantees asymptotically exact
evaluation of the integrals.

The Algorithm 2 illustrates the degree 3 SIR, which is exact
for degree 3 polynomials, for computing an approximate value
of Iγ in (18).

Algorithm 2 Degree 3 Stochastic Integration Rule

Step 1: Select a maximum number of iterations N or an error
tolerance ε.

Step 2: Set the current iteration number i = 0, initial value of
the integral Ī0

γ = 0nγ×1 and initial square error of the integral
V0

γ = 0nγ×nγ .

Step 3: Repeat (until i = N or ||V̄i
γ ||2 < ε)

a) Set i = i+ 1.

b) Generate a uniformly random orthogonal matrix [18] Qi

of dimension nx × nx and a random number ρi from the
Chi distribution with (nx+2) degrees of freedom, i.e., ρi ∼
Chi(nx + 2).

c) Compute a set of points {xij}
2nx
j=0 and appropriate weights

{ωij}
2nx
j=0 according to

xi0 = m, ωi0 = 1− nx
(ρi)2

, (19)

xi1,...,2nx = m± ρiSQiξj , ωi1,...,2nx =
1

2(ρi)2
, (20)

where j = 1, 2, . . . , nx, ξj is the j-th column of the nx ×
nx identity matrix, and S is a decomposition of matrix P

3Weighted points will be denoted as sigma-points, even though this term
is usually reserved for weighted points of the UKF.

such that P = SST , e.g, Cholesky decomposition for lower
triangular S.

d) Compute the following relations for the approximation of
the integral value at current iteration Iiγ , the updated integral
value Īi, and the corresponding mean square error estimate
V̄i, i.e.,

Iiγ(Qi, ρi) =

2nx∑
j=0

ωijγ(xij), (21)

D =
Iiγ(Qi, ρi)− Īi−1

γ

i
, (22)

Īiγ = Īi−1
γ + D, (23)

V̄i
γ =

i− 2

i
V̄i−1

γ + DDT . (24)

Step 4: Once the stopping condition is fulfilled, the approxi-
mate value of the integral Iγ is Īiγ with corresponding mean
square error estimate V̄i

γ .

Note that the SIR is a combination of stochastic radial and
spherical rules, where ρ corresponds to the radial rule and Q
to the spherical rule.

The relation (21) represents a single iteration of the integral
evaluation. The total approximate value of the integral is then
given by an average over all N iterations

ĪNγ =
1

N

N∑
i=1

Iiγ(ρi,Qi) =
1

N

N∑
i=1

2nx∑
j=0

ωijγ(xij), (25)

where ωij is the weight of the j-th point xij at the i-th iteration,
where both ωij and xij depend on the samples ρi, and Qi of
ρ and Q generated at the i-th iteration.

The Algorithm 2 also computes an estimate V̄N
γ of the

variance of the integral value error ĨNγ , Iγ − ĪNγ . The error
has zero mean

E
[
ĨNγ

]
= 0 (26)

and its CM is

E
[
ĨNγ (ĨNγ )T

]
= V

[
ĨNγ

]
= V

[
ĪNγ
]
. (27)

The SIR estimates the CM by (24) as

V
[
ĪNγ
]
≈ V̄N

γ ,
1

N
svar(I1:N

γ ), (28)

where svar(I1:N
γ ) is the sample variance over I1

γ , ..., I
N
γ as

V̄N
γ =

1

N

1

N − 1

N∑
i=1

(
Iiγ − ĪNγ

)(
Iiγ − ĪNγ

)T
. (29)

D. Problem formulation

Due to the nature of the SIR, the integral value Iγ is
approximated by a random variable ĪNγ which has mean equal
to Iγ and the CM given by V

[
ĪNγ
]

is approximated by V̄N
γ .

First, the SIF algorithm should properly reflect the fact that
the moments (13) – (17) are computed using random integral



values. Up to now, no analysis of this fact and its influence on
the SIF algorithm was made. The analysis should be primarily
concerned with bias aspects of the computed moments.

Second, the implementation aspects should be investigated.
It is well known that the Monte Carlo techniques are compu-
tationally demanding. Even thought the SIR converges faster
than perfect Monte Carlo [17], its properties are likewise
derived for N → ∞. The principal source of computational
demands is the propagation of large quantities of sigma-points,
which goes hand in hand with generating samples of ρ and
random orthogonal matrices Q. This is quite impractical,
therefore there is a strong demand for reducing the number
of iterations N as much as possible.

III. THEORETICAL ASPECTS

Now, the influence of random evaluations of the integrals
in the SIF algorithm will be analyzed. For convenience, the
following notation further distinguishes variants of the general
moment integral (18), in particular γ(x) = g(x),γ(x) =
g(x)gT(x), and γ(x) = xgT(x) for evaluating mean, second
non-central moment, and cross-covariance will be used, i.e.,

Ig ,
∫

g(x)N{x; m,P} dx, (30)

Igg ,
∫

g(x)gT(x)N{x; m,P} dx, (31)

Ixg ,
∫

xgT(x)N{x; m,P} dx. (32)

A further extension of this notation leads to the degree 3
SIR estimate Īg of Ig with its integral error estimate V̄g,
degree 3 SIR estimate Īgg of Igg with its integral error
estimate V̄gg, and degree 3 SIR estimate Īxg of Ixg with
its integral error estimate V̄xg. Note that the superscript N
denoting the number of iterations is omitted for convenience.

A. Stochastic Integration for Moment Transform

Now, an analysis of moments of a transformed random
variable computed via SIR will be made. Note that in the
algorithm of the SIF, three types of moments have to be
calculated, in particular:

• The mean value integrals of (13) and (16) in the form of
E[g(x)], where g(x) = hk(xk) or g(x) = fk(xk).

• the variance integrals (14) and (17) in the form of the in-
tegral V[g(x)], where g(x) = hk(xk) or g(x) = fk(xk).

• the cross-covariance integral (15) in the form of the
integral C[x,g(x)], where g(x) = hk(xk).

The analysis will deal with moments E[y],V[y], and C[x,y]
of the transformed variable y = g(x) for x ∼ N{x; m,P}.

1) The Mean Value: The mean value of the transformed
variable y is defined as E[y] = Ig =

∫
g(x)N{x; m,P} dx,

which is approximated by the SIR as

E[y] ≈ Ê[y] = Ê[g(x)] = Īg. (33)

The SIR is constructed in such way that the estimates are un-
biased E

[
Ẽ[g(x)]

]
= 0, where Ẽ[g(x)] , E[g(x)]− Ê[g(x)].

Hence, it holds

E
[
Ê[y]

]
= E

[
Ê[g(x)]

]
= Ig = E[y]. (34)

2) The Variance: The CM of the transformed variable y is
defined as

V[y]= E
[
(y − E[y])(y − E[y])T

]
= Igg − IgITg , (35)

which can be approximated by the SIR as

V[y]≈ V̂[y]= V̂[g(x)]= ̂E[g(x)gT(x)]− Ê[g(x)]Ê[g(x)]
T
.

Now, the unbiasedness of V̂[y] will be analyzed:

E
[
V̂[y]

]
= E

[
̂E[g(x)gT(x)]

]
− E

[(
Ê[g(x)]− E[g(x)]︸ ︷︷ ︸

Ẽ[g(x)]

+E[g(x)]
)(
·
)T]

= E
[
g(x)gT(x)

]
− E[g(x)]E[g(x)]T − E

[
Ẽ[g(x)]Ẽ[g(x)]

T
]

= Igg − IgITg −Vg, (36)

i.e., by comparing (35) and (36), the estimate V̂[y] is biased
by Vg.

The unbiased SIR estimate of V[y] denoted as V̂[y]
∗

should
thus be computed by

V̂[y]
∗

= ̂E[g(x)gT(x)]− Ê[g(x)]Ê[g(x)]
T

+ V̄g

= Īgg − ĪgĪTg + V̄g. (37)

3) The Cross-Covariance: The cross-covariance matrix of
the random variables x and y is defined as

C[x,y]= E
[
(x− E[x])(y − E[y])T

]
= Ixg −mITg , (38)

which can be approximated by the SIR as

C[x,y]≈ Ĉ[x,y]= ̂C[x,g(x)]= ̂E[xgT(x)]− E[x]Ê[g(x)]
T

= Īxg −mĪTg . (39)

To analyze unbiasedness of (39), the mean value of Ĉ[x,y] is
computed as

E
[
Ĉ[x,y]

]
= E

[
̂E[xgT(x)]

]
− E

[
E[x]Ê[g(x)])T

]
(40)

= E
[
xgT(x)

]
− E[x]E[g(x)]T = Ixg −mITg ,

The SIR estimate (39) is an unbiased estimate of C[x,y].

B. SIF Innovation Sequence Properties

Now, the properties of the innovation sequence z̃k|k−1 ,
zk − ẑk|k−1 appearing in (10) and especially its variance in
(14) will be analyzed. For convenience, the time indices are
omitted in the analysis. The mean value of z̃ is

E[z̃]= E[z− ẑ]= E[z]− E[z]= 0, (41)



whereas the variance of z̃ is

V[z̃]= E
[
(z̃− E[z̃])(z̃− E[z̃])T

]
= E

[
z̃z̃T

]
= E

[
(z− ẑ)(z− ẑ)T

]
= E

[
zzT

]
− E[ẑ]E[ẑ]T

= E
[
zzT

]
− E[z]E[z]T = Pzz. (42)

Now, the innovation sequence of the SIF, where the moment
ẑ is calculated according to (33) and denoted as Ê[z] will be
analyzed. The mean value of the innovation z− Ê[z] is

E
[
E
[
z− Ê[z]

]]
= E[z]− E[z]= 0, (43)

but this time the variance of the innovation sequence is

V
[
z− Ê[z]

]
= E

[
(z− Ê[z])(z− Ê[z])T

]
= E

[
zzT

]
− E

[
z Ê[z]

T
]
− E

[
Ê[z]zT

]
+ E

[
Ê[z]Ê[z]

T
]

= E
[
zzT

]
− 2E[z]E[z]T + E

[
Ê[z]
]
E
[
Ê[z]
]
T + V

[
Ê[z]
]

= E
[
zzT

]
− E[z]E[z]T + V

[
Ê[z]
]

= Pzz + V
[
Ê[z]
]
. (44)

Thus, the variance of the innovation sequence of the SIF (44)
is by term V

[
Ê[z]
]

higher compared to innovation sequence
variance of the GF (42). This should be reflected by the
Kalman gain and Kk in (12) should be replaced in the SIF by

K∗k= ̂C[xk, zk|zk−1]
(

̂V[zk|zk−1]+ V
[

̂E[zk|zk−1]
])−1

. (45)

IV. IMPLEMENTATION ASPECTS

This section deals with implementation aspects, where in
particular a truncated radial rule will be proposed and sev-
eral ways to reduce computational costs of the SIF will be
discussed.

Recall that the moments (13) – (17) can be calculated using
the SIR and the results derived in Sec. III as follows.

The measurement update moments are approximated by

ẑk|k−1 ≈ Īhk , (46)

Pxz
k|k−1 ≈ Īxhk − x̂k|k−1Ī

T
hk
, (47)

Pzz
k|k−1 ≈ Īhkhk − Īhk Ī

T
hk

+ 2V̄hk , (48)

where term (48) stems from (36) and (44).
The time update moments are approximated by

x̂k+1|k ≈ Īfk , (49)

Pxx
k+1|k ≈ Īfkfk − Īfk Ī

T
fk

+ V̄fk . (50)

Note that approximated second moments (47), (48) and (50)
can also be calculated directly as central moments, e.g.,

Īxhk − x̂k|k−1Ī
T
hk

= Ī(x−x̂k|k−1)(hk−Īhk ), (51)

Īhkhk − Īhk Ī
T
hk

= Ī(hk−Īhk )(hk−Īhk ). (52)

A. Truncated Radial Rule

In the SIF, three types of integrals are evaluated to obtain
state and measurement predictive moments:
The mean value integrals (46) and (49), the values are nx×

1 or nz × 1 vectors.
The cross-covariance integral (47), the values are nx × nz

matrices.
The variance integrals (48) and (50), the values are nx×nx

or nz × nz matrices.
While the mean value and cross-covariance integrals can
attain arbitrary values, the variance integrals must be positive
definite. This is critical especially when using small number of
iterations N as the integral error variance Vgg could be large
for such N and the approximate variance (37) may be negative
definite. The numerical rules do not generally guarantee the
positive definiteness of variance integrals for finite N . By
rearranging the variance computation in accordance with (52)
the pitfall becomes obvious. The positive definiteness of the
approximate variance integral depends on the weighting by ω.
In fact, in case of the degree 3 SIR it depends on the central
sigma-point weighting ωi0.

Note that similar problem arises in the UKF, which can
be viewed as a single iteration of the SIF with Q being the
identity matrix and fixed ρ =

√
nx + κ [16]. The problem is

usually solved by restricting κ = max(0, 3 − nx), i. e., by
guaranteeing non-negativeness of ω0 [19], [20].

Hence, a similar approach is proposed: i) to calculate the
variance integral directly as central moment (52) and ii) to
constrain the parameter ρ ∼ Chid with d = nx + 2 degrees of
freedom to avoid negative ω0. Note that ρ corresponds to the
radial rule of the SIR.

The equation (19) and the condition ω0 ≥ 0 imply that
ρ ≥ √nx. Thus, ρ should be generated from a truncated Chi
distribution preserving the mean of the Chi distribution. Thus,
we propose a truncated Chi distribution to generate the radial
rule parameter ρ, where the lower bound is given by ρ =

√
nx

and the upper bound ρ can be easily inferred from∫ ∞
−∞

xfd(x)dx =
1

Fd(ρ)− Fd(ρ)

∫ ρ

ρ

xfd(x)dx,

where fd(x) is the PDF and Fd(·) is the cumulative density
function of Chid distribution with d degrees of freedom.

The generation is described in Algorithm 3.

Algorithm 3 Generating a sample from the Truncated Chi
distribution ChiTd (ρ)

Step 1: Find ρ from Fd(ρ)− Fd(ρ) = Fd+1(ρ)− Fd+1(ρ).

Step 2: Generate a uniformly random u ∼ U(Fd(ρ), Fd(ρ)).

Step 3: Using inverse Chi distribution function, transform u
into desired truncated Chi distribution ρ = F−1

d (u). Then,
ρ ∼ ChiTd (ρ).

To illustrate the properties of the truncated Chi distribution
with three degrees of freedom (nx = 1), Fig. 1 is presented.



Fig. 1. Chi and truncated Chi PDFs with three degrees of freedom.

B. Reduction of Computational Costs

The SIF employing the SIR is computationally demanding,
therefore efforts to reduce the costs are important. There are
several simple approaches.

First, a trivial approach is to reduce the number of iterations
N . However a combination of small N and a highly nonlinear
function may lead to negative definite approximate variance
integral. A technique to avoid such negative definiteness has
been introduced in the previous section.

Second, generating random orthogonal matrices Q is very
costly, thus generating these matrices and random ρ can be
performed off-line.

Third, separate computation of the moments (13), (14), and
(15) at a measurement update step requires three runs of
Algorithm 2. The computation of the integrals in a single
run of the SIR with shared sigma-points xij and weights
ωij will significantly reduce the costs as the propagation of
sigma-points through nonlinear function is usually the most
computationally demanding operation. The same idea can be
applied for (16) and (17) at a time update step.

V. NUMERICAL ILLUSTRATIONS

The numerical illustrations consist of three examples illus-
trating performance of the SIF with modifications proposed
in Sections III and IV. Particularly, the first static exam-
ple involving functions used for modeling sensors in target
tracking demonstrates improvements of the SIR with small
N by using the truncated Chi distribution. The second static
example of mapping polar to Cartesian coordinates illustrates
usage of the truncated Chi distribution for the SIR (denoted as
truncated SIR) with small N and reduction of computational
costs by using shared sigma-points for the SIR with large N .
Finally, the improved performance of the SIF implementing
the recommendations proposed in Sec. IV will be illustrated
using a dynamic example of bearings-only tracking.

A. Static Examples of Sensor Models

In this example, we illustrate instability of the SIR for a
very small number of iterations N and stability improvement
induced by the truncated distribution. For the illustration, three
functions appearing in sensor models for target tracking were
selected. These are in particular: range, bearing, and received
signal strength.

In three test scenarios, a random variable with Gaussian
distribution N{x; m,P} is propagated through the selected
nonlinear functions y = g(x). The nonlinear function g(x)
and a priori information m and P are defined in the Table I.

TABLE I
RESULTS OF THE STATIC TESTS.

Filter E[V̂[y]] mean squared error of V̂[y]
Scenario 1
m = [3, 0]T ,P = diag(10, 100), y =

√
x21 + x22

Ground truth 31.0
Unscented transform 43.6
106 × SIRstandard(N = 10) 31.4 131.4
106 × SIRtruncated(N = 10) 38.6 78.2
Scenario 2
m = [3, 0]T ,P = diag(10, 1), y = arctan(x1, x2)
Ground truth 1.32
Unscented transform 1.46
106 × SIRstandard(N = 10) 1.33 0.046
106 × SIRtruncated(N = 10) 1.47 0.033
Scenario 3
m = [0.1, 0.1]T ,P = diag(0.1, 0.1), y = 10− 20 log10(x

2
1 + x22)

Ground truth 123.7
Unscented transform 129.6
106 × SIRstandard(N = 10) 129.0 9291
106 × SIRtruncated(N = 10) 154.9 1389

Fig. 2. Static examples of sensor models; histograms of variance integral
estimates for different nonlinearities.

In each scenario, the standard SIR and the truncated SIR were
employed, both with N = 10. To obtain an idea of their
estimate statistics, both rules were tested in 106 independent
Monte Carlo runs. Also, the perfect Monte Carlo transform
(with 5 · 107 iterations) to obtain the ground truth and the
unscented transform (with κ = 1) for a comparison with a
simpler transform were performed. The results are summarized
in Table I and Figure 2.

A biasedness of the truncated SIR is obvious, but especially
in scenarios 1 and 3, the standard SIR provides negative
approximate variance integral values (0.72 % of variance
estimates in test scenario 1 and in test scenario 3 even 1.62 %



of variance estimates). In addition, in all cases the mean
squared error of the estimates is significantly higher for the
standard SIR compared to the truncated SIR.

B. Mapping from Polar to Cartesian Coordinates

The conversion from polar to Cartesian coordinates [21] is
a ubiquitous nonlinearity appearing in radar sensors or laser
range finders and is given by[

x
y

]
=

[
r cos(θ)
r sin(θ)

]
. (53)

We compared the performance of the standard SIR and the
truncated SIR for N = 5 and performance of the standard SIR
with and without shared sigma-points for N = 50. Both test
cases were made for 100 different a priori moments. The 10
different positions on a spiral in polar coordinates were chosen
as input mean mi = [ri, θi]. For each mean 10 different input
CMs P = diag([σ2

r , σ
2
θ,j ]) were assigned. Standard deviation

of range was σr = 0.5 m and azimuth standard deviations
were uniformly placed in the interval σ2

θ,j ∈ [6◦, 33◦] for j =
1, .., 10. Figure 3 depicts the input means in polar coordinates.
As a measure of agreement between the approximate moments
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Fig. 3. Input means are placed on a spiral. For each input mean mi = [riθi]
(blue cross) the radius variance is fixed at σr = 0.5m and 10 different
azimuth variances are considered so that σθ ∈ [6◦, 33◦].

(Ê[y], V̂[y]) and the ground truth moments (E[y],V[y]) we
used the symmetrized Kullback-Leibler divergence (SKL) of
the Gaussian densities given by

SKL =
1

4

[
(E[y]− Ê[y])TV[y]−1(E[y]− Ê[y])

+ (Ê[y]− E[y])T V̂[y]
−1

(Ê[y]− E[y])

+ tr(V[y]−1V̂[y]
−1

+ tr(V̂[y]
−1

V[y]−1)− 2ny

]
. (54)

The ground truth transformed mean and CM were computed
using the Monte Carlo method with 107 samples. The SKL
scores were grouped in two ways; over means and over
azimuth variances. The comparison of the standard SIR and
the truncated SIR for N = 5 is depicted in Fig. 4. The results
are shown in the form of a box plot from 2 · 104 independent
Monte Carlo simulations. The superior performance of the
truncated SIR compared to the standard SIR is obvious,
because the outliers of the standard SIR i) reach negative
SKL implying negative variance estimates or ii) reach SKL

0

500

1000

S
K

L
 s

c
o
re

s

standard SIR

r

8 1
6

2
4

3
1

3
9

4
7

5
5

6
3

7
1

7
9

0

2

4

6

S
K

L
 s

c
o
re

s

truncated SIR

r

8 1
6

2
4

3
1

3
9

4
7

5
5

6
3

7
1

7
9

0

500

1000

S
K

L
 s

c
o
re

s

standard SIR

2

6 9 1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

0

2

4

6

S
K

L
 s

c
o
re

s

truncated SIR

2

6 9 1
2

1
5

1
8

2
1

2
4

2
7

3
0

3
3

Fig. 4. Mapping polar to Cartesian Coordinates, standard SIR vs. truncated
SIR for N = 5.
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Fig. 5. Mapping polar to Cartesian Coordinates, standard SIR vs. SIR with
shared sigma-points for computation of moments for N = 50.

higher in order of two magnitudes. The comparison of the
standard SIR for computing moments and the SIR with shared
sigma-points for N = 50 is depicted in Fig. 5. The results are
illustrated in the form of a box plot from 2 · 103 independent
Monte Carlo simulations. It can be seen that, there is no
significant difference between the SIR with shared sigma-
points for computation of moments and the standard SIR. The
computation demands of two separate algorithms of the SIR
are approximately twice compared to the shared sigma-point
SIR algorithm.

C. Bearings-Only Tracking

In this example [22], the state of the object will be given
by its position in the xy-plane. The object will move along
a line parallel to the x axis with its speed proportional to its
x position, i.e., xk+1 = [ 0.9 0

0 1 ]xk + wk with CM of the state



TABLE II
RESULTS OF THE DYNAMIC TEST.

% of median median
Filter failures of MSE of ANEES
Standard SIF 0.085 0.9102 2.3264
Standard SIF with corrections 0.026 0.9102 2.3250
Truncated SIF with corrections 0 0.9080 2.3163

noise Σw
k = [ 0.1 0.01

0.01 0.1 ]. The platform moves along a unit circle
centered at the origin in order to make the problem observable.
The bearing from the platform to the object is measured, i.e.,
zk = arctan(x2,k − sin(k), x1,k − cos(k)), the translational
noises are neglected and the variance of the measurement noise
is Σvθ = 0.025. The initial condition x0 is given by p(x0) =
N{x0; [20, 5]T ,diag([0.1, 0.1])} and the motion of the object
was simulated for k = 0, 1, ..., 50.

In Table II, the results of 105 independent Monte Carlo
simulations of the standard SIF, the standard SIF with cor-
rection suggested in Sec. III, and the truncated SIF with the
corrections both for N = 10 are given.

First, as the first column of Table II suggests, the standard
SIF diverged in several Monte Carlo simulations due to
negative definiteness of either P zzk|k−1 or Pxx

k|k. The same
inconvenient behavior was observed for the standard SIF with
the corrections, but at a lower rate. As expected, the truncated
SIF with corrections always delivered the desired result.

Second, albeit further analysis might be redundant due to
divergence of the standard SIFs, the following approach was
adopted. For each trajectory, the mean square error (MSE)
and the average normalized estimation error squared (ANEES)
were computed. Median value of the MSE and the ANEES are
given in Tab. II. The results show that the corrections from
Sec. III slightly improve the robustness and the performance
in terms of ANEES of the SIF. The truncated SIF (applied
results from Sec. III and Sec. IV) was proven to deliver robust
results with better performance in terms of MSE and ANEES.

D. Summary of Numerical Illustrations

First, the truncated SIR helps securing positive definiteness
of variance integral estimates, thus improving the quality of
estimates for a small number N of SIR iterations.

Second, for large N computational demands can be signifi-
cantly lowered by using common sigma-points for all moments
at given time/measurement update step of the SIF.

Third, improved variance integral estimates and respecting
increased variance of the innovation sequence connected with
the use of the SIR leads to better estimates. Note that this
technique is useful for a small number of SIR iterations and the
influence of this improvement diminishes with N increasing.

VI. CONCLUSION

The paper dealt with state estimation of discrete-time dy-
namic stochastic systems by the stochastic integration filter.
A special attention was paid to computational and theoretical
aspects tied with the fact that the filter uses a stochastic

integration rule to calculate state and measurement predictive
moments. The nice theoretical property of the rule, which is
asymptotically exact result, is paid by high computational costs
in comparison with deterministic integration rules. The costs
can be reduced by using only a small number of iterations of
the rule. For such cases, the theoretical analysis revealed that
the computation of the variances should take into account the
uncertainty in the computed mean. Also, a technique based on
a truncated radial parameter was proposed to ensure positive
definite variances computed by the rule with a small number of
iterations. If, on the other hand, a large number of iterations is
used, a technique based on sharing the sigma-points to reduce
the costs was proposed in the paper. Improved performance of
the rule and, in consequence, of the filter was demonstrated
using static and dynamic examples.
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