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Abstract—In this paper, we present a novel approach to
perform simultaneous localization and mapping (SLAM) for
planar motions based on stochastic filtering with dual quaternion
particles using low-cost range and gyro sensor data. Here, SE(2)
states are represented by unit dual quaternions and further get
stochastically modeled by a distribution from directional statistics
such that particles can be generated by random sampling. To
build the full SLAM system, a novel dual quaternion particle
filter based on Rao–Blackwellization is proposed for the tracking
block, which is further integrated with an occupancy grid
mapping block. Unlike previously proposed filtering approaches,
our method can perform tracking in the presence of multi-modal
noise in unknown environments while giving reasonable mapping
results. The approach is further evaluated using a walking robot
with on-board ultrasonic sensors and an IMU sensor navigating
in an unknown environment in both simulated and real-world
scenarios.

Keywords—simultaneous localization and mapping, stochastic
filtering, directional statistics, Rao–Blackwellized particle filtering,
low-cost range and gyro sensors

I. INTRODUCTION

Simultaneous Localization and Mapping denotes the tech-
nique of constructing or updating a map of unknown sur-
roundings while at the same time tracking an agent’s location.
It plays a key role in a variety of applications such as
extended object tracking [1], autonomous driving [2] and robotic
perception [3], localization [4] as well as navigation [5] in
unknown environments. Over recent years, an extensive number
of approaches have been proposed to solve this problem, among
which the stochastic methods are most popular. For instance,
the tracking problems are typically solved by some stochastic
filtering approaches, such as the well-known Kalman Filter
(KF), Extended Kalman Filter (EKF), Unscented Kalman Filter
(UKF) [6] or the Particle Filter (PF) [7]. However, the mapping
technique normally depends on the application scenario and the
employed sensors. For example, in autonomous driving tasks
it is always appealing to maintain a sufficiently detailed map
where only the interested object features should be dynamically
perceived. In some visual-based perception applications where
dense reconstruction is required, some numerical approaches
should be applied and techniques such as bundle adjustment
should be used to enforce a globally consistent map. In this
paper, we focus on a specific application scenario where
simultaneous robotic localization and mapping is performed
based on some low-cost sensors, such as ultrasonic and gyro
sensors, whose measurement performance may suffer from
high noise level. The following issues can make solving such
a SLAM problem challenging.

Figure 1: Dual quaternion particles of SE(2) states propa-
gating through system dynamics of different noise levels and
getting updated based on importance sampling with simulated
likelihoods. The simulation is given by a single run with 1000
particles.

First, the planar rigid body motions mathematically belong
to the Special Euclidean Group SE(2), which incorporates both
orientation and position and have a highly nonlinear structure
due to the underlying manifold. There has been continuing effort
in adapting the tracking problem from the nonlinear manifold
to an approximated linearized local domain, e.g., with EKF and
UKF. However, the linearization operations in these tracking
methods have typically the assumption of slow motions as well
as low noise level and distributions used in conventional Kalman
filter family lack probabilistic interpretation of the nonlinear
manifold as well as the correlation between orientation and
position. For handling these issues, dual quaternions can be used
to represent SE(2) states due to their advantages compared
to other representation methods such as better numerical
stability (compared with homogeneous transformation matrix),
less ambiguity (compared to Euler angles where a gimbal
lock can occur). Moreover, they can represent the orientation
and position simultaneously in the same domain. In order to
model uncertain dual quaternions, some specific distributions
from the field of directional statistics are proposed, e.g.,
the Projected-Gaussian Distribution (PGD) [8] or Partially-
Conditioned Gaussian (PCG) [9], but they either lack the
probabilistic interpretation of the correlation between the real
and dual parts or still rely on local linearization. In [10]
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and [11], a new distribution from the exponential family of
probability density function is proposed to model uncertain
dual quaternions and a UKF-like filtering scheme is developed.
However, its assumed measurement model is restricted to be
identity thus not suitable to be directly used for SLAM.

Second, states noise can be multi-modal, especially in real-
world scenarios. This can be solved, e.g., by adapting the
proposed distribution to mixture models as in [12] and [13].
However, they typically rely on an approximation in the
Bayesian update step and are hard to be integrated into a
probabilistic mapping block. Fig. 1 further gives an illustration
of this issue. The depicted results are from a dual quaternion-
based PF for overall 5 steps, where the magenta quivers and
green curve indicate ground truth orientations and trajectory
respectively. During each step, the dual quaternion particles are
first translated by t = [15, 15]T then rotated by θ = 30◦ respect
to the last pose. Then they are propagated with uncertainty
according to the distribution proposed in [10]. The system
noise is zero-centered and a larger absolute diagonal entry in
the parameter matrix Cw indicates a lower noise level. The
simulated measurement noise has two independently distributed
components, where the orientation part follows a zero-centered
wrapped normal distribution [14] and the position measurement
noise is Gaussian-distributed. Particles after update based on
importance sampling are denoted by the red quivers. It is
intuitive to see that the state particles tend to be multi-modal
under higher system noise which can make the approximation
to a uni-modal distribution risky during the update step.

Third, a SLAM system typically relies on multi-sensor
fusion and possesses nonlinearity especially to the measurement
model. This can be cleverly solved by using a progressive
update approach [15] to the Bayesian update step as we
proposed in [16], but it still relies on the sampling and
re-approximation scheme and not suitable for multi-modal
noise and mapping. Moreover, for our specific application
scenarios where range and gyro sensors are employed, the
typical probabilistic mapping approach is to use occupancy
grid maps. The Monte Carlo localization approach can be
further incorporated for handling the underlying nonlinearity
as proposed in FastSLAM [17] where Rao–Blackwellization
is used to reduce the high uncertainty space dimension.
But conventional PF-based SLAM systems [17], [18] lack
consideration of the nonlinear structure of the underlying
manifold.

In this paper, we introduce a novel scheme of simultaneous
localization and mapping for planar motions using low-cost
range and gyro sensors. The SLAM system takes the idea of the
grid-based FastSLAM [7] technique. Unlike the conventional PF
where a Gaussian distribution is assumed to model the uncertain
position and orientation angle, we use dual quaternions to
represent SE(2) states and further use a Bingham-like distri-
bution to stochastically model them for particle generation and
propagation. An occupancy grid map is hereby employed for the
mapping part. In order to handle the potential high-dimensional
uncertainty domain during Bayesian inference, we use Rao-
Blackwellization for dimension reduction. Here, each dual
quaternion is assigned with its own occupancy grid map and
gets resampled during the update step given the likelihood of its
observation. Our approach inherently considers the nonlinear
structure of the SE(2), allows multi-modal state noise and

enables flexible sensor fusion for particle update, which shows
promising potential for real-world SLAM scenarios.

In Sec. II, preliminaries such as pose representation using
dual quaternions and the applied distribution from directional
statistics are introduced. The core part is introduced in Sec. III
including particle propagation and update as well as grid-
based mapping. In Sec. IV, evaluation with both simulation
and experiments are presented. The work is concluded and
discussed finally in Sec. V.

II. BACKGROUND

The theory of dual quaternions is essentially the combination
of quaternions and dual theory, which was first introduced by
Clifford [19]. For dual quaternion arithmetics, the readers can
refer to [20] and [16]. Unit dual quaternions, which are dual
quaternions of unit length, provide a convenient method for pose
representation as well as manipulation in a similar manner as
the unit quaternions do for orientation. In this section, we focus
on introducing unit dual quaternions in the context of planar
motions and further the Bingham-like distribution from the
exponential family of density function for modeling uncertain
planar dual quaternions.

A. Unit Dual Quaternions and Planar Motion

Without loss of generality, poses belonging to SE(2) can
be assumed to incorporate orientations around z-axis of angle
θ and positions t in (x, y)-coordinates. Thus, the orientation
quaternion can be represented by the following quaternion

xq = cos

(
θ

2

)
+ k sin

(
θ

2

)
. (1)

Here, k denotes the unit vector along z-axis, such that xq can
be ensured to be of unit length via

xq � x∗q

=

(
cos

(
θ

2

)
+ k sin

(
θ

2

))
�

(
cos

(
θ

2

)
− k sin

(
θ

2

))
=

(
cos

(
θ

2

))2

+

(
sin

(
θ

2

))2

= 1 ,

with � denoting the Hamilton product [21] and x∗q the conjugate
of xq . Given a unit quaternion representing the aforementioned
rotation angle and axis, a vector v ∈ R2 can be rotated to
v′ accordingly through v′ = xq � v � x∗q . Moreover, unit
quaternions representing planar orientations belong to the unit
circle S1 in Euclidean space.

The dual quaternions are essentially two paired quaternions.
In order to represent both positions and orientations, dual
quaternions are defined as

x = xq + εxp , (2)

with xq as in (1) representing the orientation part. Here ε
denotes the dual unit with ε2 = 0 and the dual part, i.e., the
translation quaternion, is defined as

xp =
1

2
t� xq =

1

2
Qq · t , (3)

which is half the product of position and orientation quaternion.
Furthermore, there are overall three kinds of conjugate defined

2018 21st International Conference on Information Fusion (FUSION)

1681



for dual quaternions as introduced in Appendix A. The Hamilton
product here can be also realized with the normal matrix-vector
multiplication with

Qq =

(
xq,1 xq,2
−xq,2 xq,1

)
∈ SO(2) , (4)

which is a two-dimensional rotation matrix. A proof can be
found in Appendix B. With real and dual part defined as in (1)
and (3) respectively, the dual quaternions in (2) are inherently
guaranteed to be of unit length. A vector v ∈ R2 can also be
transformed to v′ by getting first rotated by xq then translated
by t via

v′ = x� v � x◦ , (5)

with x◦ = diag(1,−1, 1, 1) · x denoting the full conjugate
of the dual quaternion x. The unit dual quaternions give a
convenient method for performing planar transformation in
a similar manner as unit quaternions do for planar rotation.
Corresponding proofs are presented in Appendix C and D
respectively. The manifold of unit dual quaternions representing
planar motions is thus the Cartesian product of the unit circle
and the two-dimensional Euclidean space and it is embedded
in the four-dimensional Euclidean space, namely

x =

[
xq

xp

]
∈ S1 × R2 ⊂ R4 , (6)

Furthermore, two antipodal unit dual quaternions, namely x
and −x denote the same planar rigid body motion.

B. Stochastic Modeling of Uncertain Dual Quaternions

In order to generate unit dual quaternion particles for our
SLAM system, a distribution proposed in [10] and [22] is
employed. It belongs to the exponential family, inherently
incorporates the underlying nonlinear structure of SE(2)
states and gives further consideration of correlation between
orientation and position. The proposed distribution is defined
as

f(x) =
1

N(C)
exp(xTCx) , (7)

with x denoting dual quaternions of SE(2) states in (5). The
parameter matrix C is defined as

C =

(
C1 CT

2
C2 C3

)
, (8)

with Ci ∈ R2×2, symmetric C1, arbitrary C2 and symmetric
negative definite C3. It also determines the normalization con-
stant N(C) [10]. The distribution can be further decomposed
as
f(x) = fxq (xq)fxp|xq

(xp|xq)

=
1

N(C)
exp(xT

q T1xq + (xp −T2xq)
TC3(xp −T2xq)) ,

with T1 = C1−CT
2 C
−1
3 C2 and T2 = C−13 C2. Thus, it can be

viewed as the product of a Bingham distribution [23] modeling
the orientation part and a Gaussian distribution modeling the
translation part conditioned on each individual orientation, i.e.,

xq ∼ B(T1), xp|xq ∼ N (T2xq,−0.5C−13 ) . (9)

The distribution is antipodally symmetric since f(x) = f(−x).
Some detailed probabilistic interpretation of the applied distri-
bution can also be found in [16].

III. GRID-BASED SLAM USING
DUAL QUATERNION PARTICLE FILTER

In this paper, we specify our application scenario to be
planar SLAM using on-board range and gyro sensors with robot
pose represented by unit dual quaternions. From a probabilistic
viewpoint, a full SLAM problem is formalized as estimating
the posterior of both the poses x and mapM of all time steps,
i.e.,

p(x0:k,M|z1:k,u1:k) . (10)

Here x0:k ∈ S1×R2 denote overall robot pose chain, z1:k and
u1:k are the measurements and system input up to the current
time step k respectively.

We propose a recursive estimation scheme for pose tracking
and use grid-based occupancy maps for mapping. In order to
handle the potential case of multi-modal noise, we use an
approach based on particle filtering with dual quaternion states.
The particles are generated according to the distribution in (7)
and get propagated through

xk+1 = a(xk,uk)�wk , (11)

with a(·, ·) denoting the system equation and wk ∈ S1 × R2

the dynamics noise. Due to the advantages discussed in II-B,
the system noise is assumed to follow also the aforementioned
distribution in (7) . Each particle gives a hypothesis of the robot
pose and has its own estimated map based on its observation
given the measurement model

zk = h(xk)⊗ vk , (12)

with function h(·) mapping the dual quaternion state to the
measurement domain. Here, the measurement noise vk can
be either additive or non-additive (denoted by ⊗, which is
invertible) and it can be of arbitrary measurement domain. The
dual quaternion particles are then resampled according to its
observation likelihood and the global map also gets updated
correspondingly. A grid-based mapping approach is used here
by which the map is discretized into

M = {mi}i=1:m , (13)

with mi denoting the map grid cell indexed by i.

In this section, we focus on presenting the central blocks
of our proposed SLAM scheme including the tracking method
based on particle filtering using dual quaternions as well as the
mapping technique based on occupancy grid maps.

A. Rao-Blackwellization for Grid-based SLAM

Since our approach is PF-based, directly sampling in the
posterior domain formalized in (10) typically suffers from the
curse of dimensionality. We thus decompose the full SLAM
posterior based on Rao-Blackwellization [7] into, i.e.,

p(x0:k,M|z1:k,u1:k) =

p(x0:k|z1:k,u1:k) · p(M|x1:k, z1:k,u1:k) ,
(14)

where the first part denotes the trajectory posterior and
the second part denotes the map posterior. However, direct

2018 21st International Conference on Information Fusion (FUSION)

1682



estimation of the map posterior for each single particle can also
be intractable especially in the case of large-scale mapping, as
the posterior is actually the joint probability of all the grid cells
mi. A typical solution used in grid-based SLAM is to assume
each of the cell occupancy to be independently distributed such
that the map posterior can be approximated as the product of
all the marginals

p(M|z1:k,u1:k) =
m∏
i=1

p(mi|z1:k,u1:k) , (15)

with p(mi|z1:k,u1:k) denoting the probability that cell mi is
occupied. With the assumption in (14) and (15), a tractable
grid-based SLAM formalization can be derived as

p(x0:k,M|z1:k,u1:k) =

p(x0:k|z1:k,u1:k) ·
m∏
i=1

p(mi|x1:k, z1:k) .
(16)

B. Occupancy Grid Mapping

Mapping with low-cost sensors, e.g., ultrasonic sensors, can
suffer from the common issue of high measurement noise level
as well as very sparse measurement resolution. One of the most
popular mapping approaches for range sensor perception is to
use an occupancy grid map, where the map gets discretized
into grid cells assigned to the occupancy probabilities, namely
the probability of a cell being occupied or obstacle-free. For
better numerical stability, the posterior occupancy probability
of the ith cell in (15) is typically represented in its log odds
form, namely

lk,i = log

(
p(mi|x1:k, z1:k)

1− p(mi|x1:k, z1:k)

)
.

Since the occupancy probability of each cell is typically
initialized to be 0.5, we have the log odds

l0,i = log(0.5/(1− 0.5)) = 0 .

At each recursive estimation step, the sensor takes a new
measurement and the occupancy map should also be updated,
for which the inverse sensor model is typically applied, i.e.,

g(mi,xk, zk) = log

(
p(mi|xk, zk)

1− p(mi|xk, zk)

)
. (17)

Compared to the forward sensor model p(zk|xk,mi), the
inverse sensor model gives occupancy probability hypothesis
based on the measurement. Regarding the ultrasonic sensors,
for instance, the inverse sensor model represents the functional
principle of a measurement by means of creating a cone with
a filling that has the probability of being free and endpoints
with a probability of being occupied [7, Table 9.2]. The log
odds occupancy of cell i can thus be updated using the binary
Bayes filter [7, Table 4.2] according to

lk,i = lk−1,i + g(mi,xk, zk)− l0,i , (18)

where lk,i and lk−1,i denote the log odds occupancy of the
current and the last time step respectively. The posterior

occupancy probability of cell mi after updating with the current
measurement can then be computed as

p(mi|z1:k,x1:k) = 1− 1

1 + exp(lk,i)
.

A detailed algorithm for updating the occupancy grid maps
of all dual quaternion particles {xk,j}j=1:n given the current
measurement zk is introduced in Alg. 1. The function in line
4 updates each cell of the old map Mk−1,j with the newly
calculated occupancy log odds.

Algorithm 1 Occupancy Grid Map Update
procedure updateMap (zk, {(xk,j ,Mk−1,j)}j=1:n)

1: for j = 1 to n do
2: for i = 1 to m do
3: lk,i ← lk−1,i + g(mk−1,j,i,xk,j , zk)− l0,i;
4: Mk,j ← updateCellOccupancy (Mk−1,j , lk,i);
5: end for
6: end for
7: return {Mk,j}j=1:n

end procedure

C. Particle Generation

Dual quaternion particles are generated by random sampling
on the manifold S1 × R2 in a manner according to the
conditional probability introduced in (9). First, we randomly
sample the rotation quaternions from the Bingham part [24].
Second, conditioned on each orientation quaternion particle we
sample from the Gaussian for the translation quaternion part. In
the end we give the dual quaternion particles by concatenating
the two sets. The detailed sampling scheme is introduced in
Alg. 2.

Algorithm 2 Particle Generation
procedure sampleRandom (C, n)

1: T1 ← C1 −CT
2 C
−1
3 C2;

2: T2 ← −C−13 C2;
3: {xq,j}j=1··· ,n ←sampleRandomBingham (T1);
4: {xp,j}j=1··· ,n ←sampleRandomGaussian (0,−0.5C−13 );
5: for j = 1 to n do
6: xp,j ← T2xq,j + xp,j ;
7: xj ← [xT

q,j ,x
T
p,j ]

T ;
8: end for
9: return {xj}j=1:n

end procedure

D. Particle Prediction

For each recursive step, the dual quaternion particles
estimated from last step {xe

k−1,j}j=1:n are propagated through
the system equation a(·, ·) and further propagated with uncertain
noise terms that are also randomly sampled from the system
noise distribution characterized by Cw. The detailed approach
is introduced in Alg. 3.
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Algorithm 3 Particle Prediction
procedure predictParticles (uk, {xe

k−1,j}j=1:n)
1: {xw,j}j=1:n ←sampleRandom (Cw);
2: for j = 1 to n do
3: xp

k,j ← a(xe
k−1,j ,uk)� xw,j ;

4: end for
5: return {xp

k,j}j=1:n

end procedure

E. Particle Update

In general, the update step follows the same idea of the Rao-
Blackwellized particle filter based on the occupancy grid map.
Here, dual quaternion particles are resampled according to their
likelihoods. More specifically, given the measurement model
(for both additive and non-additive noise) in (12), the likelihood
for a dual quaternion particle given the current measurement
zk can be computed using Bayes’ theorem as follows

f(zk|xk,j)

=

∫
Z
f(zk,vk|xk,j)dvk,j

=

∫
Z
f(zk|vk,j ,xk,j)f(vk,j)dvk,j

=

∫
Z
δ(vk,j − (hMj

(xk,j))
−1 ⊗ zk)f(vk,j)dvk,j

= fv((hMj
(xk,j))

−1 ⊗ zk) ,

(19)

with Z denoting the measurement domain and fv the mea-
surement noise distribution. As mentioned in (12), the function
hMj

(·) : S1 × R2 7→ Z gives a measurement hypothesis for
each dual quaternion particle xj .

For our application scenario where range sensors are
employed, this function is implemented based on the likelihood
field model [7, Chapter 6.4], in which the range measurement
hypothesis is given by calculating its Euclidean distance to
the nearest occupied cell of the estimated grid map assigned
to the particle xk,j . If no obstacle cell is found by xj , its
likelihood is directly assigned to a value indicating the uniform
distribution, i.e., f(zk|xk,j) = 1/dmax, with dmax denoting the
maximum range. The dual quaternion particles can then be
resampled based on selective sampling given their likelihoods,
in which we first calculate the normalized Effective Sample
Size (ESS) [25] defined as

1

ESS
= n ·

n∑
j=1

wj ,

with n denoting particle size. And the importance sampling is
only performed when the ESS is less than a given threshold,
e.g., 0.5. The scheme for updating particles can be found in
Alg. 4.

F. SLAM Using Dual Quaternion Particles

The full scheme of the proposed SLAM approach comprises
the aforementioned mapping and particle filtering components.
For each recursive step, as shown in Alg. 5, we first propagate
the dual quaternion particles according to the system equation
and the assumed noise distribution, then update the occupancy

Algorithm 4 Particle Update
procedure updateParticles ({(xp

k,j ,Me
k,j)}j=1:n, zk)

1: {(xe
k,j , wk,j)}j=1:n ← ∅;

2: for j = 1 to n do
3: wk,j ← fv((hMe

k,j
(xp

k,j))
−1 ⊗ zk);

4: end for
5: {xe

k,j}j=1:n ←selectiveResample ({xp
k,j}j=1:n, wk,j);

6: return {(xe
k,j , wk,j)}j=1:n

end procedure

grid map and finally update the particles based on selective
resampling according to the likelihood field. In order to
visualize a globally consistent map after each recursive step,
each grid cell is given a log odds occupancy by the particle
with the largest weight.

Algorithm 5 SLAM with Dual Quaternion Particles
procedure DQPFSLAM ({(xe

k−1,j ,Me
k−1,j)}j=1:n,uk, zk)

1: {xp
k,j}j=1:n ← predictParticles (uk, {xe

k−1,j}j=1:n);
2: {Me

k,j}j=1:n ← updateMap (zk, {(xp
k,j ,Me

k−1,j)}j=1:n);
3: {(xe

k,j , wk,j)}j=1:n ← updateParticles (
4: {(xp

k,j ,Me
k,j)}j=1:n, zk);

5: return {(xe
k,j ,Me

k,j)}j=1:n

end procedure

IV. EVALUATION

In this section, the proposed SLAM approach is evaluated
with a miniature walking robot (shown in Fig. 2) performing
planar rigid body motions in a static and unknown environment.
The robot aims to estimate its own poses and simultaneously
map the unknown surroundings using low-cost on-board
sensors, which are four ultrasonic sensors and an IMU. The
evaluation is performed in both simulated and real-world
experiment scenarios.

For each step of movement, the robot is given a dual
quaternion input uk ∈ S1 × R2 following a dynamics model

xk+1 = xk � uk �wk , (20)

with the noise term wk ∈ S1 × R2 following the distribution
introduced in (7) characterized by a parameter matrix Cw =
diag(−1,−100,−100,−100) indicating zero-centered noise.
The measurement domain Z = S1 × R4, which comprises the
orientation measurement qk ∈ S1 from the IMU and four range
measurements dk = [d1k, d

2
k, d

3
k, d

4
k]

T ∈ R4 from the ultrasonic
sensors. The IMU measurement is assumed to have a non-
additive and zero-centered noise that is Bingham-distributed
characterized by Cort = diag(0,−50). The noise of each range
measurement is assumed to be additive and Gaussian-distributed
as vd ∼ N (0, 2). We further assume that all of the measurement
noises are independently distributed, thus the likelihood of
particle xk,j during the update step can be calculated by simply
taking the product of each, i.e.,

f(zk|xk,j)

= fvq (x
−1
k,q � qk)

4∏
r=1

fvd
(drk − srMk,j

(xk,j)) ,
(21)
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Figure 2: Sketches of a walking robot equipped with four
ultrasonic sensors and an IMU performing planar rigid body
motions in static obstacles.

Figure 3: Estimated map and trajectory using our proposed
SLAM approach. The red and blue curve denote the ground
truth and estimated trajectory respectively and the mapping
ground truth is shown with red dot curve.

where the function srMk,j
(·) gives the expected distance

measurement based on the occupancy grid map assigned to the
particle. In the case of unknown areas, the likelihood for single
range measurement is assumed to be uniformly distributed, i.e.,
fvd

= 1/dmax, with maximum detection range dmax = 50 cm,
as discussed in III-E.

The evaluations are performed as follows. First, simulations
are carried out with an emphasis of showing the possibility
of employing our proposed SLAM approach for simultaneous
tracking and mapping. Second, a real-world scenario is designed
in which the previously mentioned robot navigates in an
unknown environment and the tracking accuracy is evaluated
for both orientation and position based on multiple Monte
Carlo runs. In both simulation and experiment, the ultrasonic
sensor has a beam angle αus = 15◦ and an effective detection
range of 2 cm ∼ 65 cm. And the robot is able to move for
about 1.6 cm in each direction and rotate for 16◦ per step.
The implementation of our proposed SLAM approach is based
on [26].

Figure 4: Robot navigating in the experimental setup. Using
our proposed SLAM approach, the robot aims to estimate itself
for both orientation and position in an unknown environment
with surrounding cardboard obstacles.

A. Simulation Scenario

During the simulation run, the robot is ordered to move step-
wise in an environment of similar shape as in Fig. 2 without
predefined map information. The map has an approximated
area of 7800 cm2. Fig. 3 shows the tracking result as well as
the result of grid-based mapping. The estimated occupancy
map is visualized by directly taking the log odds of each cell
as a grayscale pixel, with a larger intensity indicating a higher
probability of being occupied by obstacles, e.g., the black
pixels. Despite of the high-level noise and sparse perception
of the ultrasonic sensors, our approach is still able to give a
reasonable reconstruction of the map and a good estimation of
the trajectory. We get the result from a single simulation run
with 200 dual quaternion particles.

B. Experiment Scenario

For the first time, filtering approaches based on the proposed
distribution in [10] are evaluated in a real-world scenario. Here
we set up an environment with static obstacles shown in Fig. 4,
which is unknown for the robot. During the controlled and step-
wise movements in the map, the robot aims to localize itself by
using the on-board four ultrasonic sensors and IMU. For this
specific test case, both of the system and measurement noise
level can be very high, partially due to the fact that, e.g., the
robot is likely to slip, the low-cost ultrasonic sensors can give
unreliable measurements, and the potential multiple reflection
among the walls as well as the drift issue of IMU cannot be
ignored. The ground truth of robot’s pose is measured by using
a ceiling camera from above. Due to the aforementioned issues,
only tracking accuracy is evaluated.

We compare the tracking accuracy of our proposed SLAM
system based on dual quaternion particles with the SLAM
systems based on the ordinary particle filter as well as the
progressive dual quaternion filter [16]. In order to have the
same noise level of system dynamics between the ordinary
PF and the dual quaternion-based filters, we approximate the
Gaussian distribution of the ordinary PF from dual quaternion
samples randomly drawn from the distribution in (20). And we
apply the same Bingham-distributed orientation noise for all
the filters. The evaluation is performed based on 100 Monte
Carlo runs of one single recorded dataset and the result is
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depicted in Fig. 5. Because all of the filtering approaches use
roughly the same orientation distribution for system noise, the
orientation RMS errors of the three approaches are on the same
level. However, our proposed dual quaternion particle filter
outperforms the others for position estimation. This is mainly
because our proposed approach gives better consideration of
the nonlinearity underlying the structure of SE(2) compared
to the ordinary PF and is able to handle the multi-modal noise
compared to the progressive dual quaternion filter where the
noise is assumed to be uni-modal.

V. CONCLUSION AND OUTLOOK

In this paper, we presented a novel SLAM approach using
range and gyro sensors based on a dual quaternion particle
filter. This approach incorporates a better understanding of the
nonlinear structures of SE(2) by using unit dual quaternions
for pose representation and the proposed distribution introduced
in II-B to propagate system uncertainty. Moreover, the particle-
based filtering approach is able to handle multi-modal noise
distribution, which theoretically outperforms the approaches
based on uni-modal noise distribution, e.g., [22] and [16]. The
proposed filtering approach using dual quaternion particles is
further integrated with grid-based mapping methods into a full
SLAM scheme based on Rao-Blackwellization. The proposed
SLAM system is able to give reasonable mapping results and
outperforms the typical uni-modal-assumed filters as well as
ordinary PF for pose estimation in real-world scenarios.

There are still a few corresponding extensions that can be
made in the future. For example, the proposed filter is only for
performing tracking on a plane. It would be appealing to extend
this filtering approach to general spatial movements, namely
the group SE(3). Second, the aforementioned SLAM system
is designed for range sensor-based perception scenarios where
the occupancy grid map is employed. It should be possible to
further integrate this dual quaternion particle-based approach
into some more generic SLAM scenarios, e.g., some visual-
based perception or SLAM systems. Third, efficiency issue is
not discussed in this paper. However, it should be investigated
later for its employment in practical applications.

APPENDIX

A. Dual Quaternion Conjugates

For an arbitrary dual quaternion defined as in (2), whose
vector form x ∈ R8, it has overall three kinds of conjugates
as follows. First, the dual conjugate takes the conjugate of the
dual unit ε and can be written as

x• = diag(1, 1, 1, 1,−1,−1,−1,−1) · x .

Second, the classical conjugate only conjugates each individual
quaternion, namely

x∗ = diag(1,−1,−1,−1, 1,−1,−1,−1) · x .

Third, the full conjugate combines the former two conjugations
as

x◦ = (x•)∗ = diag(1,−1,−1,−1,−1, 1, 1, 1) · x .

B. Proof 1

Since xq ∈ S1, it can be proven that

QqQ
T
q =

(
xq,1 xq,2
−xq,2 xq,1

)(
xq,1 −xq,2
xq,2 xq,1

)
= I2×2 .

Similarly we also have QT
q Qq = I2×2. Moreover, we have

det(Qq) = ||xq|| = 1 ,

thus it belongs to the two-dimensional rotation matrix group,
i.e., Qq ∈ SO(2).

C. Proof 2

With the real and dual part of a dual quaternion defined as
(1) and (3), the norm of it can be computed as follows

x� x∗ = (xq + εxp)� (x∗q + εx∗p)

= xq � x∗q + ε (xq � x∗p + xp � x∗q)

= xq � x∗q +
ε

2
(xq � x∗q � t∗ + t� xq � x∗q)

= xq � x∗q +
ε

2
(t∗ + t)

= xq � x∗q = 1 .

Here ε2 = 0 and the conjugate of vector t in quaternion
form is simply its opposite. Moreover, x∗ denotes the classical
conjugate of the dual quaternion x where each of its composing
quaternion is conjugated.

D. Proof 3

Given a unit dual quaternion defined in (6) for planar
motions, a vector v ∈ R2 can get transformed according to

v′ = x� v � x◦

= (xq +
ε

2
t� xq)� (1 + εv)� (xq +

ε

2
t⊗ xq)

◦

= (xq + εxq � v +
ε

2
t� xq)� (x∗q −

ε

2
� x∗q ⊗ t∗)

= xq � x∗q + εxq � v ⊗ x∗q+
ε

2
(t� xq ⊗ x∗q − xq � x∗q � t∗)

= 1 + ε (xq � v � x∗q + t) ,

where v first gets rotated by rotation quaternion xq then
translated by t.
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