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Abstract—In a surveillance environment with high clutter,
finding the correct measurement to track associations becomes
extremely important for efficient target tracking. This study
offers a novel algorithm to retrodict the data association probabil-
ities at any past time instant, when the batch set of measurements
is kept in memory. For the retrodiction procedure, the batch
association cost is first written explicitly as a binary integer
optimization problem with a quadratic cost function and it is
shown that the relaxed form of the problem is convex. From the
relaxed problem, a lower bound for the optimal association cost
is derived, and this lower bound is used as the data association
probabilities pertaining to that selected time instant in the past.
Due to its consideration of the batch set of data in a retrospective
manner, we will call this algorithm as Retrodictive Probabilistic
Data Association, RPDA. For simplification of the mathematical
analysis, a single point target with no missing measurements, i.e.
PD = 1, is taken into account.

Index Terms—target tracking, measurement-to-track associa-
tion, convex optimization.

I. INTRODUCTION

A fundamental problem of target tracking is the
measurement-to-track association [1]. This study introduces
a novel approach for tracking targets accurately under the
presence of sensor noise and heavy clutter. There is a vast
literature on the subject and there has been a number of un-
conventional solutions offered such as sampling based methods
[5], incorporation of machine learning ideas [6] or random
finite set approaches where the association problem is solved
using set-valued observations [2]–[4]. Yet still, conventional
solutions to the data association problem can be characterized
under recursive and batch tracking methods [7].

Recursive trackers associate the measurements with the
track considering only the instantaneous measurement set.
The simplest approach is the Nearest Neighbour Algorithm
(NN), where only one measurement is considered for the
measurement update and this measurement is selected using
the maximum likelihood principle [8]. Robust tracking results
can be achieved by using probabilistic approaches, where the
track is updated considering all viable measurements with
different weights. The Probabilistic Data Association (PDA)
based on the minimum mean square theory is the most
frequently used association algorithm of this kind [9]. Many
different versions of PDA can be found in literature [10], [11].

Batch estimation methods take measurement sets from con-
secutive time steps into account. A decision given at any

point depends not only on the elapsed measurements, but also
on the future measurements, which tends to a delay in the
decision. The advantage is that future measurements are also
used to resolve the data association ambiguities. The optimal
solution here would be the enumeration and evaluation of all
association decision sequences which is known as Multiple
Hypothesis Tracking (MHT) [12], [13]. Yet, due to the compu-
tational complexity of the problem, sub-optimal solutions have
been offered such as relaxing the single measurement-to-track
association constraint [14], [15], considering two consecutive
scans together [16] or using a smoothing procedure to find the
data association probabilities [17], [18].

This paper presents a novel approach to this batch smooth-
ing procedure. As an alternative to traversing a decision tree,
first the batch association cost function is written explicitly in
terms of the decision variables for the whole time horizon. This
cost function is then used to form a binary integer optimiza-
tion problem with a quadratic cost function. As the solution
method, continuous relaxation of the decision variables will be
considered, which is a well-known technique used for planning
problems such as data association [15], [16], [19], [20] and
sensor management [21], [22]. It will be formally proven that
the relaxed optimization problem is convex.

In a former paper [23], the same batch association cost
function was minimized by using rollout algorithms [24].
There, the first branches of the decision tree, which correspond
to the the near-future costs, were traversed and the far-future
costs from the further branches were calculated by using a
heuristic policy. This heuristic policy provides an upper bound
for the association cost which was then used to decide on the
past decision variable. In this novel formulation, the aim is
to retrodict the data association probabilities. For this, similar
to the former approach, the first branches of the decision tree
are traversed. The cost calculated from the first branches are
directly proportional to the data association probabilities used
by the PDA algorithm. Then, a relaxed binary integer problem
is formulated for a respective horizon to find a lower bound
for the association costs. Finally, for the calculation of the data
association probabilities, this overall cost will be used instead
of the cost of the first branches. For this reason, we saw it fit
to call this novel approach as Retrodictive Probabilistic Data
Association. As the formulated relaxed problem is convex,
there are polynomial time algorithms for the calculation of



the optimal solution [25], [26].
This paper is formulated as follows. In Section II, the

measurement-to-track association problem in case of batch
measurements and the respective cost function will be intro-
duced. In Section III, the convex optimization problem will
be formulated and the aforementioned solution to the data
association problem will be explained in detail. In Section IV,
the simulation results will be given. Section V will conclude
the paper.

II. PROBLEM FORMULATION

The measurement-to-track association problem described in
this study is analyzed for discrete-time linear Gaussian models.
The target extension is not taken into account and it is assumed
that there is at most one measurement coming from each target
at each time instant. For simplification of the mathematical
formulation, potential missed detections are omitted, but this
can also be incorporated into the problem. The system model
of the target is given by

xk = Akxk−1 + wk−1. (1)

The measurement model is given as below:

zk = Hkxk + vk, (2)

where k = 0, 1, . . . is the discrete time index, both Ak

and Hk are time-variant matrices, and wk ∼ N (0,Cw
k ).

vk ∼ N (0,Cv
k) denote the process and measurement noises,

respectively, where N (m,P ) denotes normal probability dis-
tribution with mean m and covariance P . The initial system
state is also given by x0 ∼ N (x̂0,C0).

We assume that the measurements start arriving at time
k = 1. A measurement value zk is a realization of the
random vector zk. Yet at every time step, a measurement
set Zk = {z1

k, . . . , z
mk

k } is received by the sensor where
mk is the number of measurements available at time k. Note
that, the measurements either arrive from clutter or the target
itself. Therefore, in a single target scenario with probability
of detection PD = 1, the association decision at each time k
becomes

θk = i =⇒ (zik is from target) ∧ (Zk \ zik is clutter) (3)

where i ∈ {1, . . . ,mk}. Now, define Zk−1 = {Z1, . . . ,Zk−1}
as the sets of measurements and Θk−1 = (θ1, . . . , θk−1) as the
association decision sequence up to k− 1. Then we can write

p(xk|Zk−1,Θk−1) = N (xk; x̂pk(Θk−1),Cp
k) (4)

and x̂pk(Θk−1) and Cp
k refer to the predicted mean and

covariance of the state conditioned on the measurements up
to k − 1, respectively. When a linear system with Gaussian
noise with PD = 1 is considered, the Kalman filter Cp

k can be
calculated independent of the value of the measurements, thus
Cp
k is not function of Θk−1. After the instant measurement

set Zk is taken and the association decision θk is given, the
updated probability distribution

p(xk|Zk,Θk) = N (xk; x̂ek(Θk),Ce
k), (5)

can be found where x̂ek(Θk) and Ce
k refer to the estimated

mean and covariance of the state conditioned on the mea-
surements up to k. Similar to Cp

k, Ce
k can be calculated

independent of Θk. When the sequence of measurement-
to-target associations for all times are known, the optimal
estimator for the system state in maximum likelihood and
linear minimum mean square sense is given by (4) and (5).

When the association decisions are not given, the problem
changes fundamentally. Assume that all measurements up to
time N are collected. As it is not possible to know which ΘN

is correct, we need to calculate how probable each hypothesis
is. Using Bayes’ rule, the posterior probability distribution for
any association decision sequence can be written as follows;

p(ΘN |ZN ) =
p(ZN |ΘN ) · P (ΘN )

P (ZN )
(6)

∝ p(ZN |ΘN ), (7)

assuming that there is no prior information about any of
the ΘN . To calculate p(ZN |ΘN ), we need to also take into
account the distribution of the clutter as can be seen from
from (3). To simplify the calculations, we will assume that
the clutter is uniformly and independently distributed in the
measurement space V . The number of clutter detections, mc,
within a region of volume V is assumed to have a Poisson
distribution:

p(zik|zik is clutter) =
1

V
(8)

mc ∼ Poisson(βFAV ), (9)

where βFA is the clutter density per unit volume. Now define
x0:N = {x0, . . . ,xN} as the augmented set of states, we can
write,

p(ΘN |ZN ) ∝
∫
p(ZN ,x0:N |ΘN ) dx0:N (10)

=

∫ ( N∏
k=1

p(Zk|xk,Zk−1,ΘN )

p(xk|x0:k−1,Zk−1,ΘN )

)
p(x0) dx0:N (11)

=

∫
· · ·
∫ ( N∏

k=1

p(zθkk |xk)p(xk|xk−1)

)
p(x0) dx0:N

(12)

=

N∏
k=1

N (zθkk ;Hkx̂
p
k(Θk−1),Sk) (13)

where Sk = HkC
p
kH
′
k+Cv

k is the innovation covariance. This
likelihood function measures how good the data is fitting to
the innovation (residual) process. In (12), we have used the
uniform and independent distribution assumption for the clut-
ter. For the single target case, the term p(Zk|xk,Zk−1,ΘN ),
can be written as a product of likelihoods where zθkk is coming
from the target and from (8), the measurements coming from
clutter can be cancelled out.

Our aim is to find the association decision sequence with the
highest posterior probability. This is equivalent to finding the



maximum value of (13). Taking the negative logarithm of (13)
and getting rid of the constant terms, the objective function
that must be minimized can be written as:

J(ΘN ; x̂p1,ZN ) =

N∑
k=1

c(θk; x̂pk(Θk−1),Zk), (14)

c(θk;x,Zk) = (zθkk −Hkx)′S−1
k (zθkk −Hkx). (15)

Note that the innovation covariances are not dependent on
the association history due to the formulation of the problem.
Note that when k = 1, we can write x̂pk(Θk−1) = x̂p1 in
(13); therefore the overall cost at left-hand side of (14) can
be defined as a function of x̂p1. Finally, the immediate cost
function in (15) is defined for the generic value of x while for
every different selection of Θk−1, we arrive at a different x̂pk.

III. SOLUTION METHOD

A. Formulation of the constrained optimization problem
To be able to use the matrix vector notation efficiently,

we will first define the overall cost function given in (14)
as a binary integer problem. Define the binary variables
γik ∈ {0, 1} , 1 ≤ i ≤ mk and

∑mk

i=1 γ
i
k = 1. For these

binary variables, we can write

θk = i =⇒ γik = 1 ∧ γjk = 0, ∀j 6= i. (16)

Now, define the binary variable vector Γk =
[γ1
k γ

2
k . . . γmk

k ]′ ∈ {0, 1}mk and the measurement matrix
Zk = [ẑ1

k ẑ
2
k . . . ẑmk

k ]. Clearly, zθkk = ZkΓk. Putting this into
the immediate cost function at (15), we arrive at

c(Γk;x,Zk) = (ZkΓk −Hkx)′S−1
k (ZkΓk −Hkx). (17)

Using this quadratic cost in (17), we want to define a quadratic
function for the overall cost. First, note that x̂pk+1, the mean
of the predicted state estimate at time k+1, can be calculated
when the initial state estimate x̂p1 and the association decisions
up to and including time k are known. Therefore, if we define
the column vector Γk = [Γ′1 Γ′2 . . .Γ

′
k]′, we can write

x̂pk+1 = Mk
xx̂

p
1 + Mk

zΓk, (18)

where the derivation of the matrices Mk
x and Mk

z in (18) are
given in Appendix A. Using this result, the overall cost can
be written as

J(ΓN ; x̂p1,ZN ) = (ΓN )′Lz,zΓ
N + (x̂p1)′Lx,zΓ

N + f(x̂p1),
(19)

where the derivation of the matrices Lz,z and Lx,z in (19)
are given in Appendix B. The right hand side of (19) contains
a term dependent only on x̂p1 which has no impact on the
association decision sequence ΓN . Using (19), the problem
setting can be formulated as the constrained optimization
problem such as

ΓN∗ = argmin
ΓN

J(ΓN ; x̂p1,ZN ) (20)

s.t. 1′ · Γk = 1, 1 ≤ k ≤ N
Γk ∈ {0, 1}mk , 1 ≤ k ≤ N

where 1 is a vector of appropriate size composed of ones.

B. Convex relaxation
Notice that (20) is a binary integer problem with a quadratic

cost function. The exact solution can only be found by an
exhaustive search of all possible branches which is NP-hard.
The convex relaxation of (20) can be achieved by

Γ̃
N

∗ = argmin
ΓN

J(ΓN ; x̂p1,ZN ) (21)

s.t. 1′ · Γk = 1, 1 ≤ k ≤ N
Γk ∈ [0, 1]mk , 1 ≤ k ≤ N

where the binary constraints are replaced with the affine ones.
The following lemmas show that (21) is convex.

Lemma III.1. Lz,z is a positive semi-definite matrix.

Proof. In (17), we know that c(Γk;x,Zk) ≥ 0 for all values
of Γk and x as Sk > 0. As (14) is the sum of incremental
costs, we can also write J(ΓN ;x,ZN ) ≥ 0 for all values
of x and ΓN . Fixing x = 0, we arrive at J(ΓN ; 0,ZN ) =
(ΓN )′Lz,zΓ

N ≥ 0 for all values of ΓN .

Note that x̂p1 is a constant value in (19). Then the addend
(x̂p1)′Lx,zΓ

N in (19) is a linear function of ΓN and therefore
it is convex. We will provide the following lemma without
proof for the sake of completeness.

Lemma III.2. Sum of two convex functions is a convex
function [27].

Lemma III.3. By relaxing the problem as in (21), the objective
function becomes convex in terms of ΓN .

Proof. The optimization problem in (21) is convex if the
objective function and inequality constraints are convex and
the equality constraints are affine. It is trivial to see that the
constraints satisfy the requirements. As we know that J(.)
is a quadratic function and Lz,z is a positive semi-definite
matrix, it is possible to deduce that the function J(.) is also
convex.

Using these lemmas, we can assert that the relaxed version
of the cost function is convex with a unique minimum value.
There are efficient methods for solving the convex relaxation
problems that typically require only a few tens of iterations
for calculating the optimal solution even for large problem
sizes [27]. However, the solution of the convex problem only
approximates the optimal solution of the data association
problem given in (20). That is to say, Γ̃

N

∗ is not composed
of binary variables and the value of J(Γ̃

N

∗ ; x̂p1,ZN ) is only
a lower bound for J(ΓN∗ ; x̂p1,ZN ). There are many methods
like sampling or swapping that can be used to recover a binary
solution for the problem and give an upper bound for the
optimal solution. Moreover, to find the optimal solution to
the constrained optimization, it is still necessary to utilize a
further search technique, such as branch and bound, and visit
the branches of the search tree [21]. However, it is possible
to utilize the solution of the relaxed problem to retrodict the
data association probabilities in a former time step as will be
explained in the following section.



C. Approximate Stochastic Optimization

To emphasise the dependency of the optimal value function
to the binary decision variable vector Γ1, we can write the
overall cost function in the following form:

J(ΓN ; x̂p1,ZN ) = c(Γ1; x̂p1,Z1) + J(Γ2:N ; x̂p2(Γ1),Z2:N )
(22)

where Γ2:N = [Γ′2 . . .Γ
′
N ]′ and Z2:N = {Z2, . . . ,ZN}.

Clearly, the solution of (22) can be achieved by fixing the
decision variable vector Γ1 to any of the possible m1 values,
calculating the first addend on the right hand side of (22) and
then repeating the calculations for J(Γ2:N ; x̂p2(Γ1),Z2:N ) in
a similar manner. As calculating the optimal cost function in
(22) is NP-hard, a computationally affordable approximation
of the second addend in (22) is necessary. Instead, we will use
the following approximation;

V (Γ1; x̂p1,ZN ) = c(Γ1; x̂p1,Z1) + J(Γ̃
2:N

∗ ; x̂p2(Γ1),Z2:N ),
(23)

where Γ̃
2:N

∗ is the solution of the relaxed optimization problem
in (21) and has a unique value. This way, a lower bound for
the overall cost (23) can be calculated for any discrete value
of Γ1. This lower bound can then be used as the retrodicted
data association probabilities as

p(Γ1|ZN ) ∝ exp−V (Γ1;x̂p
1 ,Z

N ), (24)

where Γ1 is any of the feasible binary integer solutions. If
(23) is calculated for m1 different values of Γ1, they can
be used as the posterior association decision probability after
normalization. Recalling our initial notation, we can write

p(Θ1 = i|ZN ) = p(Γ1 = ei|ZN ) (25)

where ei is a unit vector with a 1 in the ith position.

D. Using receding horizons

Although it is possible to use the applied strategy for
any given horizon N , the dependency of a former asso-
ciation decision to the future decisions decreases at ev-
ery time step. Therefore, we will use the proposed algo-
rithm with a receding horizon. Assume that the associa-
tion decisions are given until time k, that is, xk+1 ∼
N (x̂pk+1(Γk),Cp

k+1). Similar to (19), we can write the over-
all cost function as J(Γk+1:k+N ; x̂pk+1,Zk+1:k+N ) where
Γk+1:k+N and Zk+1:k+N are the binary decision variables and
the set of measurements from time k+1 to k+N , respectively.
Therefore, the aim of the algorithm is to retrodict the data
association probabilities at time k + 1 by considering all of
the measurement history up to Zk+N .

IV. SIMULATIONS

A. Problem definition

We consider the problem of tracking a single target under
clutter in two dimensions x, y ∈ [0, 3000]m. The state vector
is x = [px vx py vy]′. As we want to consider the effect of

data association ambiguity, there is no model mismatch for
this problem. Both the target and the tracker use a constant
velocity model as defined below,

xk =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

xk−1 +


T 2/2 0
T 0
0 T 2/2
0 T

wk−1,

y
k

=

[
1 0 0 0
0 0 1 0

]
xk + vk,

where T = 1s is the sampling time. wk ∼ N
([

0
0

]
, I2×2

)
and vk ∼ N

([
0
0

]
, σ2I2×2

)
. The algorithm is tested for 100

Monte Carlo runs for different values of measurement noise
standard deviation σ ∈ {20, 40}m, and the clutter density,
βFA ∈ {10−5, 2×10−5}m−2. The volume of the surveillance
region, V , in Equation (9) is 9 × 106m2. The time lag for
giving an association decision, N , is taken as 5 dwell times
[28]. The simulation environment and the tracker codes were
written in MATLAB environment using a standard desktop
computer (Intel Core i7-6700 3.4GHz 16GB RAM).

B. Implementation issues

Although the model parameters are taken to be the same,
there are some important issues to be pointed out about
the experimental setup about the false track formation and
measurement gating. Recall that the problem formulation in
Section II was given for a single target with no missed
detections. However, when a high clutter environment is taken
into consideration, the formation of false tracks is inevitable.
As we want to see the performance of the proposed algorithm
for a generic scenario, the proposed idea will be used for
multi-target tracking where all tracks are handled independent
from each other with the proposed approach. To avoid false
track formation, track initiation is handled by the M/N
logic with high values in each phase of the algorithm (9/4
logic) [8]. Moreover, as there are no missed detections and
model mismatch, we will delete the tracks after the first no
measurement update. Therefore there is no prior information
used about the track besides the fact that there are no missed
detections.

The probability of gating is another important parameter
of the experimental procedure. Recall that in the problem
formulation, we have assumed that there are no missing
measurements; PD = 1. Gating probability is taken, PG ≈ 1,
due to two reasons. First, when calculating the overall cost
function in (14), we assume that the original measurement
from the target is always available for the tracker to update
the track. Second, this is also important for a fair comparison
of the algorithms. For instance, for every association instance,
PDA-based algorithms give some probability mass to no
association by assuming all the measurements that pass the
gating procedure are clutter. If PG ≈ 1, this probability mass
will approach to zero, which will force all algorithms to use



any available measurement to perform the measurement update
step. Yet under high clutter for a practical tracking algorithm,
it is too costly to take into account all possible measurement-
to-track associations due to both the number of computations
and also the possible number of false tracks. Therefore, we
have selected PG = 1 − 10−7 to make sure that the original
measurement falls inside the measurement gate.

We would also like to discuss the gating proce-
dure for the given algorithm. Through the calculation of
J(Γk+1:k+N ; x̂pk+1,Zk+1:k+N ) in (19), no explicit state esti-
mates are calculated that can be used for the gating procedure
throughout the horizon N . Hence, before starting the calcula-
tion of (19), a subset of the measurements are selected by,

Z̃k+n = {zik+n| p(zik+n|Zk,Γ
k) > pG}, 1 ≤ n ≤ N (26)

where pG is a predefined threshold to satisfy the probability
of gating value [29]. If there is any time instant n such that
Z̃k+n = ∅, the tracker performs a no measurement update at
time k + 1.

C. Comparisons

The comparisons are performed between RPDA, recursive
estimation algorithms NN, PDA and their rollout counterparts
(NNR, PDAR) which were presented in [23]. The same
sequential cost function given in (22) is computed using a
different approach. The authors offer using a base policy
for approximating J(Γ2:N ; x̂p2(Γ1),Z2:N ) for every different
value of Γ1. This base policy can be any suboptimal data
association algorithm and regarding the performance of the
selected base policy, the quality of the final solution changes.
The reader can refer to [23] for further details.

In this paper, there is a major difference compared to [23]
considering the selection of the base policy for the rollout
algorithms. In a high clutter environment, we have realized that
the main computational burden of the algorithms was due to
the consideration of all possible partitions of the measurement
set. That is to say, when there is more than one target in the
surveillance region and if these targets share some of their
measurements, multi-target tracking algorithms such as GNN
or JPDA need to account for how the shared measurements
will be utilized mainly to avoid track coalescence. Yet we
have observed that, when we utilize single target tracking
algorithms (PDA and NN) as the rollout policy, it is possible to
reduce the computational burden of the algorithm drastically
without a major degradation at the performance. For a fair
comparison, batch estimation algorithms such as K-best MHT
should also be included in the comparison. However, in
[23], it was discussed that the rollout versions for NN and
PDA outperform the K-best version of the MHT algorithm.
Therefore, it was seen sufficient to do the comparison with
the aforementioned algorithms.

The average performance measures obtained in the MC
runs are shown in Tables. Tables I and II show the effect
of increasing clutter density, while Table I and III show the
impact of increasing the measurement noise under moderate
clutter. The final column of each table shows the results when

there is no clutter in the scenario, which can be seen as a lower
bound for the RMSE results. The performance measures used
in this study are taken from [30] with a few exceptions. The
used measures can be given as follows;

• Number of Valid Tracks (NVT): A track is validated
if it is assigned to the target. Track assignment is
made if (x̂ek − xk)′(Ce

k)−1(x̂ek − xk) ≤ γG for γG =
chi2inv(PG, 4) where xk is the real state of the target. In
ideal case, there should be only one track for each target.

• Number of False Tracks (NFT): A track is detected as
a false one if it is not assigned to the target. A smaller
quantity is better.

• Root Mean Squared Error (RMSE): If for any time instant
a target is associated to the track, the l2 distance between
them are calculated. A smaller quantity is better.

• Target Coverage (TCvr): Target coverage shows in what
percentage of the scenario, a track is assigned to the true
target. This is not defined in [30]. A bigger quantity is
better.

• Total Execution Time (TET): The runtime of different al-
gorithms are measured for the same set of measurements.
A smaller quantity is better.

• Rate of False Alarm (RFA): The average number of false
tracks at each time instant of the scenario. A smaller
quantity is better.

TABLE I: Performance measures for 100 trials with σ = 20m,
βFA = 10−5m−2 and N = 5

NN PDA NNR PDAR RPDA βFA = 0
NVT 1 1 1 1 1 1
NFT 2.167 2.167 2.167 2.167 2.200 0
RMSE 14.45 14.21 13.81 13.87 13.61 13.97
TCvr 0.98 0.98 0.98 0.98 0.98 0.98
TET 1.49 1.47 1.83 1.84 1.97 0.04
RFA 0.108 0.108 0.091 0.091 0.087 0

TABLE II: Performance measures for 100 trials with σ =
20m, βFA = 2× 10−5m−2 and N = 5

NN PDA NNR PDAR RPDA βFA = 0
NVT 1.360 1.080 1.080 1.140 1.120 1.000
NFT 89.7 87.9 87.1 87.2 95.1 0
RMSE 16.63 17.81 15.24 15.45 14.71 13.23
TCvr 0.82 0.87 0.88 0.88 0.87 1
TET 5.68 5.75 8.14 8.07 6.91 0.04
RFA 5.78 6.00 6.23 6.27 4.07 0

TABLE III: Performance measures for 100 trials with σ =
40m, βFA = 10−5m−2 and N = 5

NN PDA NNR PDAR RPDA βFA = 0
NVT 1 1.03 1.06 1.06 1.03 1
NFT 93.35 84.3 84.23 84.06 100.51 0
RMSE 23.28 22.69 22.41 22.04 21.65 22.39
TCvr 0.95 0.99 0.98 0.98 0.98 0.98
TET 3.02 3.05 12.91 14.44 10.39 0.042
RFA 8.47 9.08 10.33 10.36 6.75 0

It can be seen from Table I that under moderate clutter,
the performance of different algorithms are similar. There
is always a track associated to the target. The number of



false tracks created by each scenario and the rate of false
alarms are almost the same. This can be explained in the
following way; due to low clutter density, there is almost no
data ambiguity. Therefore each algorithm is basically able to
find the correct measurement and perform the measurement
update. This is also visible from the total execution time of
the algorithms. When the data ambiguity is low, the update
steps are performing the same operations, resulting is similar
execution time results. One careful observation here would be
about the RMSE performance of the proposed algorithm. Note
that, the final result is even better in average compared to the
error results when no clutter exists. This is due to the following
fact; the real lower bound in this case should be the error of the
Kalman smoother. However, as the data association ambiguity
is not resolved for the time steps k + 1 to k + N , it is not
possible to directly use the Kalman smoother results. We are
using the proposed algorithm to smooth the data association
probabilities at time k. Therefore, we find it fair to provide
the results of the Kalman filter as the lower bound.

When βFA is increased as given in Table II, it can be seen
that the a huge number of false tracks are created and at
each time step there is an average of almost 6 false tracks.
It should also be noted that the target coverage decreases for
all of the scenarios due to the number of high clutter that
should be processed at every time step. The difference between
the RMSE results for different algorithms become evident for
this case. While algorithms using recursive estimation, namely
NN and PDA, give the worst results, the rollout algorithms
also suffer from the hard decision process involved in their
calculation. The novel algorithm RPDA can result in a lower
RMSE with a similar target coverage rate due to the soft
decision process. Moreover, the computational advantage of
convex optimization to the rollout strategy is evident from the
total execution time results. Computation of the matrices for
the overall cost given in (19) is the computational drawback
of the RPDA algorithm but then the computation of the
overall cost function is straightforward. For the rollout based
algorithms, it is necessary to use the base policy at each
time step to give an association decision which turns out to
have a higher cost compared to solving the relaxed convex
optimization problem.

Finally, the effect of increasing the measurement noise can
be seen from Table III. Even when the clutter level is moderate,
the number of false tracks is higher compared to Table II
as the tracker also takes into account a higher measurement
noise. The target is totally covered almost for every scenario.
It should be noticed that the algorithms using the current
information for inference of the past data association prob-
abilities become more susceptible to false tracks. This is an
expected but unwanted trade-off of the proposed algorithm.
Not only more false tracks are created but also the created
tracks become resilient as the false alarm rates are investigated.
The RMSE results have increased in general due to increasing
measurement noise, yet the proposed algorithm is able to attain
the best results.

V. CONCLUSIONS

In this paper, we have dealt with the single target tracking
problem under clutter with no missed detections. To avoid
track loss in such a scenario, a common approach is to wait
for a predefined horizon to give the association decisions. Yet,
number of possible association decision sequences increase
exponentially with time and finding the optimal solution is an
NP-hard problem.

The main contribution of this paper its formulation of the
data association problem in case of batch measurements. It
is shown that finding the optimal data association sequence
is equivalent to solving a constrained optimization problem
with a quadratic cost function. As this is a costly operation,
the convex relaxation of this optimization problem is solved
which gives a lower bound for the data association costs.
This lower bound is then used for the retrodiction of the data
association probabilities in a past time step. It was shown
by the experiments that the computational requirements are
almost equivalent to recursive estimation methods with a
remarkable gain in the RMSE.

APPENDIX A
DERIVATION OF (18)

It is possible to write,

x̂pk+1 = Ak+1x̂
e
k (27)

= Dkx̂
p
k + Ak+1KkZkΓk (28)

= Mk
xx̂

p
1 +

k∑
i=1

Mk
z,iΓi (29)

where

Di = Ai+1(I −KiHi) (30)

Mk
z,i =

k−i∏
j=1

Dk−j

Ai+1KiZi (31)

Mk
x =

k−1∏
i=0

Dk−i (32)

Although not mentioned in the formulas, the means of the
state estimates x̂pk+1 and x̂ek are dependent on the association
decision sequence Θk. Defining

Mk
z =

[
Mk

z,1 . . . Mk
z,k

]
,

we can write

x̂pk+1 = Mk
xx̂

p
1 + Mk

zΓk. (33)

APPENDIX B
DERIVATION OF (19)

Then instantaneous cost becomes,

c(Γk+1; x̂pk+1,Zk+1)

= (Zk+1Γk+1 −Hk+1x̂
p
k+1)′S−1

k+1(Zk+1Γk+1 −Hk+1x̂
p
k+1)

= (Nk+1
x x̂p1 + Nk+1

z Γk+1)′S−1
k+1(Nk+1

x x̂p1 + Nk+1
z Γk+1)



where Nk+1
x = −HkM

k
x and Nk+1

z =
[
−HkM

k
z Zk+1

]
.

Notice that x̂pk+1 is a function of x̂p1 and Γk. Now defining

Lk+1
x,x = (Nk+1

x )′S−1
k+1(Nk+1

x ) (34)

Lk+1
z,z = (Nk+1

z )′S−1
k+1(Nk+1

z ) (35)

Lk+1
x,z = (Nk+1

x )′S−1
k+1(Nk+1

z ) (36)

we arrive at

c(Γk+1;x̂pk+1,Zk+1) = (x̂p1)′Lk+1
x,x x̂

p
1

+ 2(x̂p1)′Lk+1
x,z Γk+1 + (Γk+1)′Lk+1

z,z Γk+1 (37)

The matrices given in the overall cost function (19) can be
found by using (37). Assuming that the state vector xk has
a dimension of nx and the measurement vector zk has a
dimension of nz , define matrices Lz,z ∈ RNnz×Nnz and
Lx,z ∈ RNnx×Nnz and write,

(ΓN )′Lz,zΓ
N =

N∑
k=1

(Γk)′Lkz,zΓ
k

(x̂p1)′Lx,zΓ
N =

N∑
k=1

(x̂p1)′Lkx,zΓ
k

and finally

J(ΓN ; x̂p1,ZN ) = (ΓN )′Lz,zΓ
N + (x̂p1)′Lx,zΓ

N + f(x̂p1)
(38)
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