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Abstract—In this paper, we present a new approach for solving
the SLAM problem using the Ensemble Kalman Filter (EnKF).
In contrast to other Kalman filter based approaches, the EnKF
uses a small set of ensemble members to represent the state, thus
circumventing the computation of the large covariance matrix
traditionally used with Kalman filters, making this approach a
viable application in high-dimensional state spaces. Our approach
adapts techniques from the geoscientific community such as
localization to the SLAM problem domain as well as using
the Optimal Subpattern Assignment (OSPA) metric for data
association. We then compare the results of our algorithm with an
extended Kalman filter (EKF) and FastSLAM, showing that our
approach yields a more robust, accurate, and computationally
less demanding solution than the EKF and similar results to
FastSLAM.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) describes
the problem of creating a map of an unknown environment
while simultaneously tracking a robot’s position within the
map. Tasks such as navigation in autonomous driving need
a detailed map of the surroundings to provide an accurate
localization. However, detailed knowledge about the current
position is needed to build a map with newly discovered
features, which makes the nature of the SLAM problem a
“chicken-and-egg-problem”.

Combining the state of the robot and the map into a
single state makes this application suitable for state estima-
tion solutions. Traditional approaches use techniques such as
the extended Kalman filter (EKF) [1] or particle filters [2].
However, as the discovered map grows, so does the number
of observed landmarks and therefore the dimension of the state
vector. As approaches such as the EKF need to keep track of
an n × n covariance matrix, they fall short to the curse of
dimensionality and memory constraints.

The ensemble Kalman filter (EnKF) however, developed
in the geosciences, has been mostly unused in the signal
processing community: Typical applications, such as weather
prediction, are extremely high-dimensional state estimation
problems, which produce states with orders of several millions
and are therefore not tangible using traditional state estimation.

Instead of representing the state using mean and covariance
matrix, the EnKF uses ensemble members to represent the
state - not unlike the particles of a particle filter. In the update

step of the filter, the posterior is then obtained using the
ensemble mean and an estimate of the sample covariance from
the ensemble members.

Although being established in the geoscientific community,
the EnKF has only recently received attention from the track-
ing community [3], [4]. In the case of SLAM, the EnKF is
mostly just applied to specific parts of the whole problem.
For example, in [5] the EnKF is used to generate a suitable
proposal distribution for FastSLAM or in [6] the EnKF realizes
the merging operation on two approximate transformations.

In the following, we derive an algorithm to solve the
SLAM problem based on the ensemble Kalman filter. We
implement and discuss several techniques for improving the
performance of the EnKF that are common in the geoscientific
community. Furthermore, we show our use of the Optimal
Subpattern Assignment (OSPA) metric [7] to achieve reliable
data association. We then present our results in comparison to
an EKF and FastSLAM.

In the remainder of this paper, we will first introduce the
EnKF idea as well as derive the nature and challenges of
the SLAM problem in Section 2. We will then discuss our
algorithm in detail in Section 3. The following section shows
the results from our simulations. Section 5 will give our
conclusions and an outlook on future work.

II. THE ENSEMBLE KALMAN FILTER

The ensemble Kalman filter can be seen as a Monte Carlo
implementation of the traditional Kalman filter or even as
a Kalman filter version of a particle filter: As the Kalman
filter represents the state estimation at time step k by its
first moments, the mean x̂k and covariance matrix Σk, the
Kalman filter is not applicable to high-dimensional states as
the computation and storage of a n × n covariance matrix
becomes computationally very hard.

We begin with a closer look at the Kalman filter for linear
systems.

The Kalman filter algorithm consists of two steps:

1) In the prediction-step, we use the process model equa-
tion to predict the next state

x̃k+1 = Fxk + wk with wk ∼ Nn(0,Q) , (1)



where xk denotes the previous state, x̃k+1 the prediction,
F the state transition model and wk the state noise. We
assume wk to be normally distributed with zero mean
and covariance matrix Q.

2) In the update step, we use information obtained in form
of measurements to correct the prediction x̃k+1

zk = Hxk + vk with vk ∼ Nm(0,R) , (2)
x̂k+1 = x̃k+1 + Kk+1(zk+1 −Hx̃k+1) , (3)

where zk denotes the m-dimensional measurement, H
the measurement model, vk the measurement noise, and
Kk+1 the Kalman gain. We assume vk to be normally
distributed with zero mean and covariance matrix R. The
Kalman gain is computed via

Kk = ΣkHT (HΣkHT + R)−1 . (4)

The general idea of the EnKF is to propagate a set of N �
n ensemble members of the ensemble X = {x(1)

k , . . . , x
(N)
k }

instead of the state x̂k and the covariance Σk, such that the
mean of the ensemble members xk approximates the true
state x̂k and the sample covariance Σk approximates the true
covariance matrix Σk

xk =
1

N

N∑
i=1

x
(i)
k ≈ x̂k , (5)

Σk =
1

N − 1

N∑
i=1

(x
(i)
k − xk)(x

(i)
k − xk)T ≈ Σk . (6)

Therefore, in the prediction-step of the Kalman filter we
can simply propagate each ensemble member x(1)

k , . . . , x
(N)
k

through the process model and in the update step we update
each ensemble member with a simulated measurement

x̃
(i)
k+1 = Fx(i)

k + wik ∀i ∈ {1, . . . , N} , (7)

z̃
(i)
k+1 = zk+1 + vik+1 , (8)

x̂
(i)
k+1 = x̃

(i)
k+1 + Kk+1(z̃k+1 −Hx̃(i)

k+1) , (9)

where an approximation of the Kalman gain is computed using
the sample covariance Σk

Kk+1 = ΣkHT (HΣkHT + R)−1 . (10)

When dealing with non-linear relationships, we use a non-
linear state transition function f to predict the state of each
ensemble member and we use a non-linear measurement func-
tion h to transform each ensemble member into measurement
space

x̃
(i)
k+1 = f(x

(i)
k ) + wik ∀i ∈ {1, . . . , N} , (11)

x̂
(i)
k+1 = x̃

(i)
k+1 + Kk+1(z̃k+1 − h(x̃

(i)
k+1)) . (12)

However, as we want to circumvent the computation of a n×n
covariance matrix or even its approximation in (10), we instead
use the sample deviation X and the measurement deviation Z

X =
1

N − 1

[
x̃

(1)
k+1 − x, . . . , x̃

(N)
k+1 − x

]
, (13a)

Z =
1

N − 1

[
z

(1)
k+1 − z, . . . , z

(N)
k+1 − z

]
, (13b)

where

z
(i)
k+1 = h(x̃

(i)
k+1) , and (14)

z =
1

N

N∑
i=1

h(x̃
(i)
k+1) . (15)

Time subscripts have been omitted for simplicity. This means,
we can now compute the Kalman gain as in [8]

K = ΣHT (HΣHT + R)−1

= (XXT )HT
(

H(XXT )H + R
)−1

= X(HX)T
(

HX(HX)T + R
)−1

= XZT
(

ZZT + R
)−1

.

(16)

The distinct advantage here is that we do not need to
compute a matrix of size n × n: X is of size n × N
and, as we use range-bearing-measurements, Z is of size
2 ×M , with M the number of measurements. As N � n,
this reduces the complexity of the Kalman gain computation
immensely and sets the EnKF with O(NMn) between the
EKF with O(n2M) and FastSLAM with O(N log n), where
the advantage of FastSLAM stems from the special tree
structure for the landmarks. However, EKF and EnKF pro-
cess all measurements at once, while FastSLAM updates the
measurements sequentially. Therefore, for M measurements
FastSLAM requires O(NM log n), which is still a bit faster
than the EnKF approach.

III. ENKF-SLAM

A. Problem Formulation

SLAM describes the problem of simultaneously creating a
map of the environment while localizing the robot in this map.
To be able to achieve this at the same time, the state that we
are estimating with the EnKF must represent the state of the
robot as well as the entire map

xk =

[
R
M

]
.

Let the state of the robotR be represented by its position in the

Euclidean plane
[
rx
ry

]
∈ R2 and its heading rh ∈ [0, 2π]. Let

the mapM consist of the positions of the observed landmarks

L(j) =

[
L(j),x

L(j),y

]
∈ R2, j = 1, . . . , |landmarks|.

The idea to tackle the SLAM problem then is to append
each newly observed landmark to the current state estimate,
producing a large state vector.

When estimating this state using an EKF, in every update
step we can use the measurement zk to correct the prediction
of the robot state R and of the according landmark position
L(j).

However, any solution using the EKF quickly becomes
intractable due to the curse of dimensionality, which is why
state-of-the-art approaches such as FastSLAM use multiple
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Fig. 1. When there are more measurements than observed landmarks, the
OSPA metric is able to assign each measurement to a landmark whilst
minimizing the distances. This will leave new measurements such in this
example without associaton.
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Fig. 2. However, once there are previously observed measurements, that
where not observed with a measurement in this current time step, the OSPA
metric will fail to recognize the new landmark and will assign it as a noisy
measurement.

EKFs to track landmarks individually and use particle filters
to track the robot’s state [2].

The goal of our approach is to develop a robust, feasible
approach to solving the SLAM problem using the EnKF.

B. Robot & World Model

To simulate an environment to which SLAM is applicable,
we used a velocity-based motion system for the robot and
range-bearing measurements:

• The control input for the state transition function f
consists of the velocity v and the turning angle α relative
to the robots heading.

• Measurements are given as range, i.e., Euclidean distance
to the landmark, and bearing, i.e., angle relative to the
robots heading rh.

C. Challenges

Previous research has shown that the EnKF does not con-
verge to the true solution for nonlinear cases in general [9].
Therefore we need to investigate whether our solution does
converge to the correct result.

Furthermore, considering a linear case, the result does
converge when N → ∞. However, we want to focus on
the case N � n, i.e., we only want to use a small number
of ensemble members. One of the problems of the EnKF
is its tendency to underestimate the covariance when using
few ensemble members. As our covariance estimatior Σk

is the sample covariance, it can at most have rank N − 1.
This leads to spurious correlations within Σk. In addition
to that, an underestimated covariance leads to an unrealistic
confidence in the predicted state, so that the measurements
incorporated in the update step will have insufficient impact
on the update [10].

Typically, this is solved using covariance inflation and
localization [11], [12]. The covariance can either be inflated
using a constant factor ϑ or can be tapered using a localization
matrix τ , and define Σtap := τ ◦ Σ, where ◦ is the entry-
wise or Hadamard product. The general idea is to eliminate
spurious correlations in Σ based on the distance between two
observations (landmarks far away from each other should not
be correlated). However, as above, we want to avoid computing
n × n matrices. As the Hadamard product is not distributive
under multiplication, we cannot use this approach to local-
ization in (16). Other approaches of directly manipulating the
estimation of the covariance matrix, for example, leaving out
landmarks that are far away from each other only seemed to
deteriorate the results, at least for the world sizes we used.

Covariance inflation however can be used directly. To inflate
the uncertainty, we sample the initial ensemble distribution
from x

(i)
0 ∼ N (0,Σinit) and, in the prediction step, add

white noise ρ(i)
Lj
∼ N (0, ρ) to the j-th landmark of the i-th

ensemble member. Currently, we choose these parameters by
hand, depending on measurement and control noise. For more
realistic scenarios, with unclear or changing noises it might
also be handy, to estimate the parameters for inflation, along
with the state as described in [13].

Thereby we artificially inflate the uncertainty during the
prediction so that the impact of each measurement zk is
meaningful.

D. Data Association

As the EnKF comes with no tools to achieve data associ-
ation from noisy measurements, we will adapt the Optimal
Subpattern Assignment (OSPA) metric [7] to our algorithm.



Algorithm 1: The prediction step of EnKF-SLAM.
Data: u = (v, α), Q, ρ

1 for x̂(i)
k ∈ X do

2 Draw wk+1,i ∼
∣∣∣∣Qρ
∣∣∣∣

3 x̃
(i)
k+1 = f(x̂

(i)
k , wk+1,i)

4 end
5 xk|k+1 = mean(X )

This is similar to our previous work [14], where an EnKF
and the OSPA metric were used to better match ensemble
members to their according tracks. It can be used to find an
optimal “global nearest neighbor” association between mea-
surements and landmarks, as it aims to find the permutation
over the unassociated measurements that minimizes

d(x̃
(i)
k , zk) = min

π∈ΠM

L∑
j=1

‖h(x̃
(i)
k , j)− zk,π(j)‖2 . (17)

Here, ΠM denotes all permutations of lengths M , the
number of measurements. Computationally speaking, we can
set up a matrix Dj,m, where Dj,m = ‖h(x̃

(i)
k , j)−zk,m‖2 is the

distance between the j-th landmark and the m-th measurement
and find the optimal permutation using the Hungarian method.

However, this metric is only partially applicable to the
SLAM problem: It is very robust in finding the optimal match-
ing between measurements and previously observed landmarks
- yet the metric is not able to detect new measurements.

Fig. 1 and Fig. 2 highlights this problem: Once a measure-
ment for a new landmark is recorded and there are previously
observed landmarks that were not observed via a measurement,
e.g., through sensor range, the OSPA metric will try to find
an assignment that minimizes all distances, as can be seen in
Fig. 2. The newly discovered landmark will be assigned to the
closest previously discovered landmark.

To detect new landmarks, we use the Mahalanobis distance

Dm(h(x̃
(i)
k , j), zk)

=

√
(h(x̃

(i)
k , j)− zk)TR−1(h(x̃

(i)
k , j)− zk) ,

(18)

where R denotes measurement noise covariance matrix.
The result Dm(h(x̃

(i)
k , j), zk) gives us the distance between

a measurement and the expected measurement of an ensemble
member with respect to the covariance matrix R.

As we assume all of our noise to be Gaussian distributed
around the true value, i.e., the true position of the landmark,
by the given covariance, we can now assume a confidence
interval: Under the Chi-squared distribution we assume a
95% confidence interval around the true value, i.e., if for a
measurement zk

Dm(h(x̃
(i)
k , j), zk) > 5.991 ∀ j ,

Algorithm 2: The update step of EnKF-SLAM
Data: zk, R, γ

1 new zk, obs zk = assign_measurements(zk,X )
2 for zi ∈ new zk do
3 for x̃(i)

k+1 ∈ X̃ do
4 Add landmark to x̃(i)

k+1 via zi
5 end
6 end
7 for zi ∈ obs zk do
8 ε = findNearbyLandmarks(γ)
9 Compute X and Y using ε

10 Compute K = XYT (YYT + R)−1

11 for x̃(i)
k+1 ∈ X̃ do

12 x̂
(i)
k+1 = x̃

(i)
k+1 + K(zi − h(x̃

(i)
k+1))

13 end
14 end
15 xk+1 = mean(X )

it will be declared a new measurement, as it is not in the
confidence interval around any landmark. This is similar to
other common gating techniques.

If now 3N
4 ensemble members label a measurement as new,

our algorithm will treat it as a new measurement.
After identifying the measurements from newly discovered

landmarks, we can use (17) to compute the optimal match-
ing between the remaining measurements and the previously
discovered landmarks.

This might lead to extreme outliers being detected as
new landmarks. To avoid this problem, we will introduce
the cut-off parameter γ: When outliers, i.e., extremely noisy
measurements, are detected as new landmarks, we will observe
few measurements that correspond to this new landmark, even
though it might be in the sensor range. Therefore we will
remove landmarks that have not been seen since γ time steps
although they should have been observed. In a similar way,
false detections can be handled up to a certain degree.

E. EnKF-SLAM

The resulting prediction and update algorithms are described
in Alg. 1 and Alg. 2 respectively.

The prediction step for the EnKF is easy to implement
and furthermore easy to parallelize. It is important to note
the addition of the white noise vector ρ to further inflate the
uncertainty, as Q only refers to the information in the state
vector concerning the robot, i.e., R.

In the update step, we use the procedure for data association
introduced in Sec. III-D. After successful association, all new
landmarks are linked to the state vector. As the measurements
zi are range-bearing measurements, the position of the land-
mark must be computed relative to the individual position of
each ensemble member. This directly introduces an uncertainty
for the new landmarks.
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(a) The results for solving SLAM using an EKF
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(b) The results of our algorithm using an EnKF
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(c) The results using FastSLAM 2.0

Fig. 5. Our simulation depicts a circular walk through an environment with randomly placed landmarks. Overall, there are |l| = 150 landmarks in this world.
Noisy robot controls are given to the filters in the prediction-step and noisy measurements are given in the update-step. We implied a sensor range of r = 30
Euclidean units, wherefore not all landmarks have yet been observed. We used N = 75 ensemble members for EnKF-SLAM and N = 75 particles for
FastSLAM 2.0. We can clearly see, that the EnKF-SLAM outperforms the EKF in accuracy for the robots position as well as in terms of landmark predictions
and shows similar results to those of FastSLAM 2.0.
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Fig. 6. Visualization of the state vector size for a random walk of 200
steps in a world with 50 landmarks. Each t = 10 steps, a random, wrong
measurement is generated in addition to the normally observed measurements.
When beginning walking, the robot has not yet found all landmarks, wherefore
measurements are identified as new landmarks. Later on, the false measure-
ments will first be noted as a new landmark but will be discarded after γ
steps, as there have been no further observations. This shows the robustness
of our approach to false measurements as well as loop closing.

After finding nearby landmarks, we use the approximation
of Σ and K shown in (16).

IV. EVALUATION

To evaluate the performance of our approach, we set up
a simulation in a square part of the Euclidean plane. The
control inputs uk used to move the robot as well as the

recorded measurements zk at each time step k are given to
the algorithms with added Gaussian noise.

Both approaches, EKF and EnKF, use the presented al-
gorithm for data association introduced in Sec. III-D. Addi-
tionally, we used the FastSLAM 2.0 implementation [15] for
comparison.

Fig. 5 shows the result for a circular walk in our simulation.
We use N = 75 ensemble members and |l| = 150 landmarks.
The state transition noise and the measurement noise are
defined as

Q =

1.0 0. 0.0
0.0 1.0 0.0
0.0 0.0 0.01

 , R =

[
1.0 0.0
0.0 0.01

]
.

We simulate a sensor with a certain range rmax = 30,
i.e., only landmarks within this range of the robot produce
measurements.

Fig. 5a, Fig. 5b, and Fig. 5c show the results of EKF-
SLAM, EnKF-SLAM, and FastSLAM 2.0, respectively. Due
to the limited number of observations and the linearization,
EKF-SLAM produces high errors while EnKF-SLAM and
FastSLAM 2.0 achieve similar, better, results. Due to the
limitied sensor range, some landmarks in the middle of the
circle have not been observed by the robot.

Fig. 7 depicts the average error of the landmark predictions
for all three algorithm over 100 runs with the same parameters
as above. The variance for the single runs is very large for
the EKF and similar for EnKF and FastSLAM 2.0. Over
all runs, our EnKF-SLAM shows a similar performance as
FastSLAM2.0.

However, the performance is directly linked to the noise
incorporated into the system. Tab. I and Tab. II depict the
average error on the landmark prediction for the three algo-
rithms w.r.t. to different covariances Q and R. Here, we see an



TABLE I
AN OVERVIEW OVER THE PERFORMANCE OF EKF-SLAM, ENKF-SLAM AND FASTSLAM IN A SIMULATION WITH L = 200 LANDMARKS AND 600

STEPS. FOR EACH ALGORITHM, THE MSE εR W.R.T. THE ROBOTS TRUE POSITION AND THE MSE εL OVER ALL LANDMARK ESTIMATES IS LISTED. THE
RESULTS ARE AVERAGED OVER A TOTAL OF K = 50 SIMULATIONS. THE CONTROL NOISE IS A FIXED σv = 0.1 FOR THE VELOCITY AND σα = 0.001

FOR THE TURNING ANGLE. THE NOISE FOR THE MEASURED RANGE σr AND FOR THE MEASURED BEARING σγ IS INCREASED.

Q
σv 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

σα 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

R
σr 0.1 0.25 0.5 0.75 1.0 1.25 1.5 1.75

σγ 0.001 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175

EKF-SLAM εP 0.261 1.893 1.438 5.239 5.530 6.172 6.459 7.354

EKF-SLAM εL 0.282 1.925 1.623 5.055 5.264 5.41 5.632 6.091

EnKF-SLAM εP 0.239 0.786 1.046 1.637 1.747 2.53 3.563 4.109

EnKF-SLAM εL 0.250 0.646 0.911 1.623 2.112 2.46 3.810 4.89

FastSLAM εP 0.197 0.536 1.036 1.419 1.881 1.662 2.032 3.017

FastSLAM εL 0.122 0.727 0.833 1.233 1.696 1.592 2.862 3.642

TABLE II
AN OVERVIEW OVER THE PERFORMANCE OF EKF-SLAM, ENKF-SLAM AND FASTSLAM IN A SIMULATION WITH L = 200 LANDMARKS AND 600

STEPS. FOR EACH ALGORITHM, THE MSE εR W.R.T. THE ROBOTS TRUE POSITION AND THE MSE εL OVER ALL LANDMARK ESTIMATES IS LISTED. THE
RESULTS ARE AVERAGED OVER A TOTAL OF 50 SIMULATIONS. THE MEASUREMENT NOISE IS A FIXED σr = 0.1 FOR THE RANGE AND σγ = 0.001 FOR

THE BEARING. THE NOISE FOR THE VELOCITY σv AND FOR THE TURNING ANGLE σα IS INCREASED.

Q
σv 0.1 0.25 0.5 0.75 1.0 1.25 1.5 1.75

σα 0.001 0.0025 0.005 0.0075 0.01 0.0125 0.015 0.0175

R
σr 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

σγ 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

EKF-SLAM εP 0.261 1.390 5.251 6.817 9.812 11.234 15.345 15.211

EKF-SLAM εL 0.282 1.339 5.160 6.828 9.810 13.132 15.664 18.233

EnKF-SLAM εP 0.239 0.505 0.387 1.507 2.360 3.212 5.983 6.129

EnKF-SLAM εL 0.250 0.417 0.332 1.367 2.313 2.931 4.325 6.745

FastSLAM εP 0.197 0.485 1.295 3.330 4.859 5.477 6.567 8.001

FastSLAM εL 0.122 0.337 1.289 3.279 5.284 5.456 7.312 8.120

increase in the error related to increased noise. While the EKF-
SLAM performance suffers strongly, both FastSLAM 2.0 and
our EnKF-SLAM sustain a smaller increase in the observed
error.

In Tab. I, the control noise is fixed and the measurement
noise is increased in each scenario. In this case, FastSLAM
2.0 outperforms the EnKF by a small margin. Results for
the switched scenario, with fixed measurement noise and an
increasing control noise, can be seen in Tab. II. Here, the EnKF
produces notably smaller errors. This might be a consequence
of the assumption that FastSLAM makes on the path. In
order for the landmarks to be uncorrelated, it requires good
knowledge of the robot path. Hence, estimates become worse
for growing control noises faster than for the EnKF, which
makes no assumption on the robot path.

Furthermore, Fig. 6 highlights the performance of our data
association. In an environment with 50 landmarks, we perform
a random walk of 200 steps. In addition to the already noisy

measurements, we add a false measurement every 5 steps. The
figure shows the total amount of observed features in the state
vector: In the beginning, more and more features are found.
Yet later, when converging to the true number of landmarks,
incoming measurements are correctly associated with the
already observed landmarks. Extremely noisy measurements
or false measurements lead to the temporary discovery of a
new landmark which are dropped after γ steps due to no more
incoming measurements. Although we add false measurements
every five steps, the total amount of landmarks in the state
vector hardly rises over 55. This shows that our data associa-
tion approach is capable of dealing with false measurements.
Additionally, this also tackles the problem of loop closure:
Through our gating approach, incoming measurements are first
matched against previously discovered measurements and we
are therefore able to detect a closed loop.
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Fig. 7. The average error of all three approaches sampled over 100 runs.
We used |l| = 150 randomly placed landmarks and a sensor range of 30.
While the EnKF-SLAM and FastSLAM 2.0 show an almost constant error,
the EKF-SLAM shows a wider error range.

V. CONCLUSION & OUTLOOK

Our work has shown that the Ensemble Kalman Filter
serves as a viable approach for tackling the SLAM problem.
Adapting various techniques from other research focused on
the improvement of the EnKF itself. We were able to improve
the performance of the filter in our conducted simulations. The
presented solution outperforms the traditional algorithm using
an EKF and achieves similar, and in some cases even better
results, to those of the state-of-the-art algorithm FastSLAM
2.0.

Our approach for data association for the Ensemble Kalman
Filter in the context of SLAM has shown to be reliable and
also robust to false measurements as well as being able to deal
with loop closure.

We would like to focus future work on a detailed analysis on
different possible scenarios and evaluate the performance of
FastSLAM 2.0 and our EnKF-SLAM w.r.t. the specified noise
to provide a detailed overview of the strength and weaknesses
of both approaches.
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