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Abstract—Source localization is of great importance for wire-
less sensor network applications. Locating emission sources using
received signal strength (RSS) measurements is investigated in
this paper. As RSS localization is a non-convex optimization
problem, it is difficult to achieve global optima. Many opti-
mization methods have been proposed to relax it to a convex
optimization problem. Unlike these methods, we propose a convex
combination scheme. By introducing a highly accurate linear
approximation of a logarithmic function, the source location is
represented by a convex combination of a set of virtual anchors.
Then the original problem is relaxed to be a convex optimization
problem of finding the optimal combination coefficients, which
can be solved efficiently using constrained least squares. To
obtain the virtual nodes, we construct parallel lines and use
their intersections to form a convex polygon, which covers the
source location with certain probability. The vertices of the
polygon are taken as the virtual nodes. Numerical examples verify
the performance of the proposed method in both localization
accuracy and computational efficiency.

Index Terms—Received signal strength (RSS), Source localiza-
tion, Convex combination, Virtual nodes

I. INTRODUCTION

Wireless localization has gained much attention in recent
years [1-2]. Most current localization techniques for wireless
networks are based on measurements of different physical
characteristics of a radio signal. These characteristics include
time of arrival (TOA), time difference of arrival (TDOA), angle
of arrival (AOA), and received signal strength (RSS) [3-5].
Among these, RSS-based localization has been widely used
in many applications, such as emergency communications,
public safety, and intelligent transportation [6-8]. It benefits
from the easy availability of RSS measurements since many
wireless devices can conveniently measure signal strength
during normal communication, such as smart phones, laptops,
and tablets. In addition, RSS measurements have a low cost
[9-10].

To determine a stationary source position based on the RSS
measurements is a parameter estimation problem. Many RSS
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localization methods have been proposed in the literature [11-
17]. They include maximum likelihood (ML) and least-squares
(LS) estimators. The ML estimator for the RSS model needs
to deal with a non-convex problem. This is difficult because
common iterative algorithms, such as gradient descent, can
hardly obtain the globally optimal solution due to its sen-
sitivity to initialization [18]. To tackle this problem, other
approaches have been studied. The semidefinite programming
(SDP) approach relaxes the original non-convex problem to a
convex problem via semidefinite programming. By a special
rearrangement, the linear LS method transforms the nonlinear
RSS model into a linear model and then obtains the LS
solution. In [15] and [16], two SDP and LS methods have been
proposed for RSS localization with an unknown transmission
power. For the SDP method, it transforms the nonconvex ML
cost function to a convex one by using proper approximations
and relaxations. It also linearizes the measurement model and
applies the LS solution to the linearized model. Inspired by
this, we have proposed SDP and constrained LS methods for
RSS localization coupled with sensor registration [19]. As
the constrained LS method exploits more information, it can
provide better performance than the unconstrained LS method.
Other RSS localization approaches have been studied as well,
such as fingerprinting localization [14] and device-free local-
ization [17]. The former first constructs an RSS fingerprint
database in the training phase and then estimates the location
by matching the user’s reported fingerprints in the database in
the localization phase. In the latter method, the target is not
equipped with any electronic tag for communicating with the
localization system. It estimates a target’s location by fusing
the changes in the RSS measurement of the wireless links.

Unlike the above methods, this work proposes a convex-
combination based RSS-localization (CCRL) method for
source localization. This convex combination idea was first
proposed for the AOA localization [20]. We extend it to RSS
localization. It differs from the geometric approach in AOA
localization. Here, the position of the source is estimated in
several steps: First, determine a convex hull that covers a
small neighborhood of the source with a certain probability.
Meanwhile, generate the vertices of the convex hull, named
virtual nodes. Then represent the source position as a con-
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vex combination of these coarse estimates, with non-negative
combination coefficients that sum up to one. The RSS at each
sensor can be regarded as the same combination of the ones
emitted from the virtual nodes. This approximation is justified
because its error is a higher-order infinitesimal than the radius
of the minimum bounding ball of the convex hull. Thus, we
have converted the nonlinear term in the optimization to a
linear convex combination, so the optimization problem can
be solved efficiently by a constrained LS method. In summary,
the key to our CCRL method is to find the virtual nodes and
compute the combination coefficients.

This paper is organized as follows. Section II introduces the
RSS model and analyzes the disadvantage of the ML method.
Section III presents the basic idea of convex combination
based RSS localization. Section IV addresses the generation
of the virtual nodes. In Section V, the performance of the pro-
posed methods is demonstrated through numerical examples.
Section VI concludes the paper.

II. PROBLEM FORMULATION

Consider the RSS-based source localization in a wireless
network of n sensors with coordinates xi =

[
xi, yi

]T
, i =

1, 2, ..., n. Let xs =
[
xs, ys

]T
be the source location to be

estimated. The RSS Pi (in dBm) at the ith sensor under the
log-distance path loss and log-normal shadowing model is [21]

Pi = P0 − 10β log10

di
d0

+ ni, i = 1, 2, ..., n (1)

where P0 is a reference power at distance d0 (d0 = 1m
usually) from the source, di = ‖xs − xi‖2 is the distance
between the source and the ith sensor, β is the path loss
exponent, and the noise ni’s are (modeled as) independent and
identically distributed zero-mean Gaussian random variables
with variance σ2.

Thus, the ML or LS estimator of the source position based
on the measurements of the n sensors can be formulated as
the following minimization problem

x̂ = arg min
xs

n∑
i=1

‖Pi − φ (xs,xi)‖2 (2)

where φ (xs,xi) = P0 − 10β log10
di
d0
. It is generally hard to

find the globally optimal solution due to the non-convexity of
the objective function. This leads us to employing a suboptimal
method, presented in detail next.

III. CONVEXIFICATION

Definition 1 The convex hull of a given set C is the set of
all convex combinations of points in C [22].

This leads to the following property. It can be illustrated
easily.

Property 1 Any point in a convex polygon can be repre-
sented as a combination of the vertices of the polygon.

Suppose we can find a convex polygon that covers a small
neighborhood around the actual source position. Let vi be the
location of the ith vertex and V = [v1, v2, .., vm] be the matrix
of the polygon vertices. We regard these vertices as virtual

Fig. 1. Illustration of the approximation of RSS measurement

(source) nodes. Then, we can represent the location of the
source by a linear combination of the virtual nodes

xs = Vw (3)

where w = [w1, w2, ..., wm]T , wj ≥ 0 for all j = 1, 2, ...,m,

and ‖w‖1 =
m∑
j=1

wj = 1. As such, we have converted the

original optimization problem (2) to

w∗=arg min
w

n∑
i=1

‖Pi − φ (Vw,xi) ‖2, s.t. ‖w‖1 = 1,w ≥ 0

(4)
Notice that function φ (·, ·) is nonlinear, which renders the
optimization problem (4) nonconvex. However, we can ap-
proximate it by a linear form based on Theorem 1 next. The
approximation accuracy can be guaranteed under some proper
conditions.

Theorem 1 Given a set of points S = {v1, v2, ..., vm} ⊂
RL(L-dimension real space) and C ⊂ RL a convex set cov-
ering S. For an arbitrary point xs ∈ C, define a point
set V (ρ) , {v1(ρ), v2(ρ), ..., vm(ρ)}, where vk(ρ) =
(1− ρ)xs + ρvk and ρ ∈ [0, 1]. Let r (ρ) be the radius of
the bounding ball B (V (ρ)) of V (ρ), and z∞ ∈ RL be a
point outside C. Then for any finite integer m ≥ 2 and all
possible points xs and z∞ and points set V (ρ), we have

lim
ρ→0

m∑
k=1

wkφ (vk(ρ), z∞)− φ
(

m∑
k=1

wkvk(ρ), z∞

)
r (ρ)

= 0 (5)

where
m∑
k=1

wk = 1, wk ∈ [0, 1].

Proof: See Appendix.
Theorem 1 was inspired by [20]. From it, we have the

following approximation

φ (Vw,xi) = φ

 m∑
j=1

wjvj ,xi

 ≈ m∑
j=1

wjφ (vj ,xi) = (Φw)i

(6)
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where Φ =


φ (v1,x1) φ (v2,x1) · · · φ (vm,x1)
φ (v1,x2) φ (v2,x2) · · · φ (vm,x2)

...
...

. . .
...

φ (v1,xn) φ (v2,xn) · · · φ (vm,xn)

,

(Φw)i is ith component of Φw. When the radius of the bound-
ing ball covering all the virtual nodes is sufficiently small,
the above approximation accuracy can be guaranteed. That is,
for an arbitrary anchor node, the signal strength it receives
from the true source can be regarded as a convex combination
of the ones it receives from the virtual nodes (see Fig. 1).
The locations of the virtual nodes are known because they are
generated by us but the combination coefficients are unknown.
Thus, the original problem of estimating the source location is
converted to a problem of estimating the coefficients. The error
of this approximation, δ = φ(

m∑
j=1

wjvj ,xi) −
m∑
j=1

wjφ (vj ,xi),

is a higher-order infinitesimal than r (B (V)). This is the basis
for our CCRL method.

According to Theorem 1, the non-convex optimization prob-
lem (2) can be approximated as the following constrained LS
problem

w∗=arg min
w
‖P− Φw‖2, s.t. ‖w‖1 = 1,w ≥ 0 (7)

where P = [P1, P2, ..., Pn]
T .

This new optimization problem can be solved easily. Once
we obtain the optimal convex combination coefficients w∗, the
location of the source can be estimated as

x̂ = Vw∗ (8)

So far we have introduced the basic idea of our CCRL
method. But there is one more problem to be solved, i.e., the
generation of the virtual nodes.

IV. VIRTUAL NODES GENERATION

Next we introduce the generation scheme of the virtual
nodes. We want to find some points that can form a convex hull
covering the source location with a high probability. For each
sensor, it can determine a ring-shaped subregion according to
its measurement

ri = {(x, y) | |P0 − Pi − 10β log10 di (x, y)| ≤ ασ} (9)

That is,

10
P0−Pi−ασ

5β ≤ (xi − x)
2

+ (yi − y)
2 ≤ 10

P0−Pi+ασ
5β (10)

where di (x, y) =

√
(xi − x)

2
+ (yi − y)

2, α is a parameter
controlling the width of the ring. For a larger α, the ring
will cover the source with a higher probability but the ring
also becomes wider, which is not desirable since a narrower
ring makes the approximation more accurate by Theorem 1.
As each sensor can generate a ring from its measurement,
the true source is located within the possible region R with
probability

P ((x, y) ∈ R|α, σ) =
∏n

i=1
P ((x, y) ∈ ri) =

∏n

i=1
pi (α)

(11)

where R = ∩ni=1ri is the intersection of all rings and the noise
is assumed to be i.i.d. Gaussian.

However, the intersection of rings is an irregular region,
which is not necessarily convex. To deal with this problem,
we generate a convex region that covers the intersection of
the rings. That is, the convex region covers the source with a
probability that is not less than that of the original one.

Suppose N rings produce an interset. The intersection is
certainly a common region of each pair of rings. To find the
convex region, we construct parallel lines for each pair of
rings such that the intersection of the rings is sandwiched
between the lines. By this, all parallel lines intersect the
desired convex region. However, for N sensors, there are
C2
N

(
Cnm = m!

n!(m−n)!

)
possible pairs of the parallel lines.

Obviously, it is complex to obtain the parallel lines for every
ring pair. To simplify the problem, we choose a reference
sensor node j according to (12) since a smaller width of the
ring indicates smaller noise involved. As a result, it reduces
the number of parallel lines to N − 1. The computational
complexity is then greatly reduced by using

j = arg min
i

r̃i, i = 1, 2, ..., N (12)

where r̃i is the width of the ring ri.
Once the reference sensor is determined, the parallel lines

are generated for the reference ring (sensor) with other rings.
Their intersections will form a convex region if there is only
one region for the intersection. However, the parallel lines may
produce multiple polygon intersections. It indicates that some
lines are generated with large measurement error. Suppose all
parallel lines intersect and produce K polygon intersections
Pi, i = 1, 2, ...,K. Let Pi have qi pairs of lines. We find the
polygon Pi∗ by

i∗ = arg max
i

qi, i = 1, 2, ...,K (13)

That is, we discard the polygons formed by fewer parallel
lines because they are more likely to correspond to larger
measurement errors. Then, the vertices of Pi∗ are regarded
as the virtual nodes. Fig. 2 illustrates generation of the virtual
nodes.

Next, we introduce the construction of the parallel lines.
Consider two rings, we can find two parallel lines so that the
intersection of the two rings is between the lines. Obviously,
it has four cases, as in Fig. 3.

For case (a), the two lines connecting the points, as the
intersections of the inner circle of one ring and the outer circle
of the other ring, are parallel. The intersection of the two rings
are between the parallel lines. However, cases (b), (c), and (d)
are different: Case (b) has one intersection region; case (c)
has no intersections, which may be caused by large noise.
However, these two cases have the same relationship in terms
of inner circle and outer circle (see Fig. 4(b)). Thus we can
unify the construction of parallel lines for cases (b) and (c).
Case (d) has no intersection either. However, the larger ring
contains the other ring. In view of all these cases, we propose a
scheme based on the distance relationship, where we consider
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Fig. 2. Virtual nodes generation using the intersections of
parallel lines

(a) (b)

(c) (d)

Fig. 3. Four cases for the location relationship of two rings

only the inner circle of one ring and the outer circle of the
other ring. They are constituted based on the relative positions
of the two circles (see Fig. 4):

Case I. If two circles have two intersection points, just
connect the two points to generate the line (see Fig. 4(a)).

Case II. If they have no intersection points, we generate a
line that is perpendicular to the line connecting the centers of
the two circles and satisfies (see Figs. 4(b) and (c)):

AB/BC = r/R (14)

In summary, Fig. 4(a) is for case (a), Fig. 4(b) is for cases
(b) and (c), and Fig. 4(c) is for case (d).

The above are the basic idea and a complete procedure for
generating virtual nodes. The CCRL algorithm can now be
summarized:
(1) Choose a reference sensor node and generate the parallel
lines to get the virtual nodes V = [v1, v2, .., vm].
(2) Calculate φi,j = φ (vj ,xi) and let

Φ =


φ1,1 φ1,2 · · · φ1,m
φ2,1 φ2,2 · · · φ2,m

...
...

. . .
...

φn,1 φn,2 · · · φn,m



(a)

(b)

(c)

Fig. 4. Three cases for single line construction

(3) Calculate the optimal convex combination coefficient w =
[w1, w2, ..., wm]T by the constrained LS:

w∗=arg min
w

n∑
i=1

‖Pi − φ (Vw,xi) ‖2, s.t. ‖w‖1 = 1,w ≥ 0

(4) Obtain the final estimate of the source location as

x̂ =
m∑
j=1

wjvj

V. ILLUSTRATIVE EXAMPLE

This section provides some illustrative examples to demon-
strate the performance of the CCRL method. We consider
two scenarios: a rectangular case and a circular case. We
compare the performance of the CCRL method with the SDP
method, the CLS method [19], the ML method and the CRLB,
where ML is implemented numerically and initialized with the
truth, which is unrealistic. The path loss exponent β and the
reference power P0 are set to 3 and −40 [23], respectively.
The estimation performance is evaluated using the root-mean-
square error (RMSE), averaged over 500 Monte Carlo runs.

A. RMSE versus noise deviation in rectangular case

In this scenario, 12 sensors are employed in the wireless
network. They form a rectangle and the source is located
inside or outside the rectangle. The noise standard deviation
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varies from 1 to 20. We set α = 4 (indicating a 4σ region)
to ensure that the probability of each ring covering the source
satisfies P (xs ∈ ri) ≥ 99.9%. We can see from Fig. 5 that
the proposed method (CCRL) performs close to SDP and CLS
methods (referred to the constrained LS methods) in Fig. 5.
In Fig. 6, the proposed method performs better for almost
all tested standard deviations. Fig. 7, however, shows that the
CCRL method does not perform as well as other methods.
Overall, the ML method performs best in all cases. However,
if the ML method is initialized with a random value, it may
have a poor performance since it is likely to achieve a local
optimum instead of the global optimum.
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(a) Scenario
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SDP

LSC
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(b) RMSE of source localization

Fig. 5. The RMSE versus standard deviation of noise

B. RMSE versus noise deviation in circular case

In this scenario, 12 sensors form a circle. Other parameters
are the same as in the rectangular case. Figs. 8, 9, and 10
show similar results as in the rectangular case. Note that our
proposed method performs relatively better when the source is
close to the boundary of the circle. When the source is far from
the sensors or moves to the center of the circle, the relative
performance of our CCRL method becomes worse gradually.
This can be seen in both the rectangular case and the circular
case, indicating that the relative performance of our CCRL
method is scenario dependent. Actually, when the source is
located at the centers of the rectangle and of the circle in Fig.
7 and Fig. 10, there will be more than one sensor which has
a similar (short) distance to the source and receives similar
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Fig. 6. The RMSE versus standard deviation of noise
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Fig. 7. The RMSE versus standard deviation of noise
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RSS measurements. As a result of this, some uncertainty on
choosing the reference sensor node will arise. Then, different
reference sensors may be picked in the same scene for different
Monte Carlo runs.
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Fig. 8. The RMSE versus standard deviation of noise

C. RMSE versus α

The RMSEs of the proposed method versus α in both
scenarios are illustrated in Fig. 11. The standard deviation of
the noise is fixed as 2 and other parameters are the same as in
Fig. 6 and Fig. 9. Generally, the localization RMSE becomes
larger as α increases probably because a larger α results in
a larger ring intersection. Although it may produce a convex
region with a higher probability covering the source, a smaller
convex region is strongly desired. In addition, for a Gaussian
distributed random variable x ∼ N (x, σ), we have

P {|x− x| < σ} = 0.683 P {|x− x| < 2σ} = 0.954

P {|x− x| < 3σ} = 0.997 P {|x− x| < 4σ} = 0.9997
(15)

So if our requirement on the probability is not very high, a
smaller α is preferred because a smaller convex region will be
generated. Generally, α between 2 and 4 is preferred according
to the experiment result.

D. Computational efficiency

To verify the computational efficiency of the proposed
method, we compare the relative running time of the methods
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Fig. 9. The RMSE versus standard deviation of noise
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Fig. 11. The RMSE of localization versus α

considered, average over 500 Monte Carlo runs. The results
are all relative to the CCRL method and given in Table I. It
can be seen that our CCRL method is computationally more
efficient than the others. Here, ML is not included as it depends
on the initialization heavily.

Table I: Average Running Time

Algorithm CCRL SDP LSC

Running time 1 1.438 1.417

VI. CONCLUSION

In this paper, we have proposed a convex combination based
method for source localization. The estimate of the source
location can be represented by a convex combination of virtual
nodes. The transformed problem, a constrained LS problem,
can be solved easily since it is convex. In the generation of
the virtual nodes, the polygon formed by most parallel lines
is used so that fewer measurements errors would be involved.
By selecting a reference sensor, the computational complexity
of generating parallel lines is greatly reduced. In numerical
examples, we considered both rectangular and circular cases
and showed that the proposed method has scenario dependent
performance (relative to other methods) and provides a higher
localization accuracy than our previous methods in some cases.
Also note that a larger α (a parameter controlling probability)

results in a larger RMSE in general. So a smaller α is preferred
when the resulting convex region could cover the source with
a satisfactory probability. In addition, our CCRL method is
computationally more efficient than other methods.

Fig. 12. Two-point case

APPENDIX

We use mathematical induction. First, consider the two-
point case (i.e., m = 2, see Fig. 12).

Suppose that the 2-D plane is spanned by unit vectors rx
and ry . Let xs be at the origin. v1 = −R1rx, v2 = R2rx, R1

and R2 are scalars. vj(ρ) = (1− ρ)xs + ρvj . Thus, xs is in
the hull of V(ρ). The radius of the bounding ball of V(ρ) is
r (ρ) = ρ (R1 +R2)/2. Let v(ρ) = λv1(ρ) + (1− λ) v2(ρ).
We can see that the hull shrinks to xs as ρ → 0. z∞ =
hxrx + hyry = (hx, hy).

Let S(ρ)
j,∞ = S (vj(ρ), z∞) and

S (v1(ρ), z∞) = P0 − 10βlog10

(√
h2
y + (hx + ρR1)

2

)
S (v2(ρ), z∞) = P0 − 10βlog10

(√
h2
y + (hx − ρR2)

2

)
S (v(ρ), z∞) = P0 − 10βlog10

(√
h2
y + (hx − ρR2 + λρ (R1 + R2))

2
)

Clearly,

lim
ρ→0

λS (v1(ρ), z∞) + (1− λ)S (v2(ρ), z∞)− S (v(ρ), z∞) = 0

and lim
ρ→0

r (ρ) = 0. Then, we have

lim
ρ→0

λS(v1(ρ),z∞)+(1−λ)S(v2(ρ),z∞)−S(v(ρ),z∞)
r(ρ)

= lim
ρ→0

∂
∂ρ [λS(v1(ρ),z∞)+(1−λ)S(v2(ρ),z∞)−S(v(ρ),z∞)]

∂(r(ρ))
∂ρ

=

[
−10λβ
ln 10

R1hx
h2x+h2y

+
10(1−λ)β

ln 10
R2hx
h2x+h2y

+ 10β
ln 10

hx(−R2+λR1+λR2)

h2x+h2y

]
R1+R2

2

= 0
(16)

Thus Theorem 1 holds for the two-point case. Next consider
the multiple-point case.

Suppose Theorem 1 holds for m = t ≥ 2, that is,

lim
ρ→0

∑t
j=1 λjS

(ρ)
j,∞ − S(z∞,

∑t
j=1 λjvj(ρ))

r(ρ)
= 0
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For m = t+ 1, we constitute a new point

ṽ1 =
∑t+1

j=2
λ′jvj(ρ)

where λ′j =
λj

1−λ1
=

λj
λ̃1

.

Obviously,
∑t+1
j=2 λ

′
j = 1

1−λ1

∑t+1
j=2 λj = 1. Thus we have

lim
ρ→0

∑t+1
j=2 λ

′
jS

(ρ)
j,∞ − S(z∞,

∑t+1
j=2 λ

′
jvj(ρ))

r′(ρ)
= 0

where r′(ρ) is the minimum radius of H ({v2(ρ), ..., vt+1(ρ)})
(the hull composed by v2(ρ), v3(ρ), ..., vt+1(ρ)).

It is not hard to see that v2(ρ), v3(ρ), ..., vt+1(ρ) all con-
verge to xs as ρ → 0. Thus, r′(ρ) and r(ρ) are infinitesimal
of the same order (ρ→ 0). Then we have

lim
ρ→0

∑t+1
j=2 λ

′
jS

(ρ)
j,∞ − S(z∞,

∑t+1
j=2 λ

′
jvj(ρ))

r(ρ)
= 0

That is,∑t+1

j=2
λ′jS

(ρ)
j,∞ = S(z∞,

∑t+1

j=2
λ′jvj(ρ)) + o [r(ρ)]

where o [r(ρ)] represents a high-order infinitesimal than r(ρ).
Then we have∑t+1

j=1 λjS
(ρ)
j,∞ = λ1S

(ρ)
1,∞ +

∑t+1
j=2 λjS

(ρ)
j,∞

=λ1S
(ρ)
1,∞ +

∑t+1
j=2 λ̃1λ

′
jS

(ρ)
j,∞

=λ1S
(ρ)
1,∞ + λ̃1S

(
z∞,

∑t+1
j=2 λ

′
jvj(ρ)

)
+ λ̃1o [r(ρ)]

=λ1S
(ρ)
1,∞ + λ̃1S (z∞, ṽ1) + λ̃1o [r(ρ)]

From the above, it follows that

lim
ρ→0

∑t+1
j=1 λjS

(ρ)
j,∞−S(z∞,

∑t+1
j=1 λjvj(ρ))

r(ρ)

= lim
ρ→0

λ1S
(ρ)
1,∞+λ̃1S(z∞,ṽ1)+λ̃1o[r(ρ)]−S(z∞,λ1v1(ρ)+

∑t+1
j=2 λjvj(ρ))

r(ρ)

= lim
ρ→0

λ1S
(ρ)
1,∞+λ̃1S(z∞,ṽ1)−S(z∞,λ1v1(ρ)+λ̃1

∑t+1
j=2 λ

′
jvj(ρ))

r(ρ)

+ λ̃1o[r(ρ)]
r(ρ)

= lim
ρ→0

λ1S
(ρ)
1,∞+(1−λ1)S(z∞,ṽ1)−S(z∞,λ1v1(ρ)+(1−λ1)ṽ1)

r(ρ)

+ λ̃1o[r(ρ)]
r(ρ)

= lim
ρ→0

λ1S(z∞,v1(ρ))+(1−λ1)S(z∞,ṽ1)−S(z∞,λ1v1(ρ)+(1−λ1)ṽ1)
r(ρ)

+ λ̃1o[r(ρ)]
r(ρ) (two-point case for v1(ρ) and ṽ1)

= 0

Thus Theorem 1 holds for all finite numbers m. This
completes the proof.

REFERENCES

[1] A. Yassin, Y. Nasser, M. Awad, A. Al-Dubai, R. Liu, C. Yuen, R. Raulefs,
and E. Aboutanios, “Recent advance in indoor localization: a survey on
theoretical approaches and applications,” IEEE Communications Survey
& Tutorials, vol. 19, no. 2, pp. 1327-1346, Second Quarter 2017.

[2] S. Tomic, M. Beko, and R. Dinis, “3-D target localization in wireless
sensor networks using RSS and AoA measurements,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 4, pp. 3197-3210, Apr. 2017.

[3] S. Venkatraman and J. Caffery, “Hybrid TOA/AOA techniques for mobile
location in non-line-of-sight environments,” in Proceedings of 2004
Wireless Communications and Networking Conference, Atlanta, USA,
March 2004, pp. 274-278.

[4] D. C. Popescu and M. Hedley, “Range data correction for improved
localization,” IEEE Wireless Communication Letters, vol. 4, no. 3, pp.
297-300, Jun. 2015.

[5] M. Z. Win, A. Conti, S. Mazuelas, Y. Shen, W. M. Gifford, D. Dardari,
M. Chiani “Network localization and navigation via cooperation,” IEEE
Communications Magazine, vol. 49, no. 5, pp. 56-62, May. 2011.

[6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Communications Magazine, vol. 40, no. 8,
pp. 102-114, Aug. 2002.

[7] P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye and T.-C. Wang, “Semidefinite
programming approaches for sensor network localization with noisy
distance measurements,” IEEE Transactions on Automation Science and
Engineering, vol. 3, no. 4, pp. 360-371, Oct. 2006.

[8] S. Salari, S. Shahbazpanahi and K. Ozdemir, “Mobility-Aided wireless
sensor network localization via semidefinite programming,” IEEE Trans-
actions on Wireless Communication, vol. 12, no. 12, pp. 5966-5978, Dec.
2013.

[9] K. W. Cheung, H. C. So, W.-K. Ma, and Y. T. Chan, “Received signal
strength based mobile positioning via constrained weighted least squares,”
in Proceedings of 2003 IEEE International Conference on Acoustics,
Speech, and Signal Processing, Hong Kong, April 2003, pp. 137-140.

[10] I. Hindmarch, P. Thomas, M. Beach and A. Nix, “Movement model
enhanced RSS localization,” in Proceedings of 2016 International Con-
ference on Localization and GNSS, Barcelona, Spain, June 2016, pp. 1-6.

[11] P. Biswas and Y. Ye, “Semidefinite programming for ad hoc wireless
sensor network localization,” in Proceedings of 3th International Sym-
posium on Information Processing in Sensor Networks, Berkeley, April
2004, pp. 46-54.

[12] P. Biswas, T.-C. Liang, K.-C. Toh, Y. Ye, and T.-C. Wang, “Semidefinite
programming approaches for sensor network localization with noisy
distance measurements,” IEEE Transactions on Automation Science and
Engineering, vol. 3, no. 4, pp. 360-371, October 2006.

[13] S. Tomic, M. Beko, and R. Dinis, “RSS-based localization in wireless
sensor networks using convex relaxation: noncooperative and cooperative
schemes,” IEEE Transactions on Vehicular Technology, vol. 64, no. 5,
pp. 2037-2050, May 2015.

[14] X. H. Tian, M. Wang, W. X. Li, B. Y. Jiang, D. Xu, X. B Wang and
J. Xu, “Improve accuracy of fingerprinting localization with temporal
correlation of the RSS,” IEEE Transactions on Mobile Computing, vol.
17, no. 1, pp. 113-126, January 2018.

[15] R. M. Vaghefi, M. R. Gholami, R. M. Buechrer, and E. G. Ström, “RSS-
based sensor localization with unknown transmit power,” in Proceedings
of 2011 IEEE International Conference on Acoustics, Speech and Signal
Processing, Prague, Czech Republic, May 2011, pp. 2480-2483.

[16] R. M. Vaghefi, M. R. Gholami, R. M. Buechrer, and E. G. Ström, “Co-
operative received signal strength-based sensor localization with unknown
transmit powers,” IEEE Transactions on Signal Processing, vol. 61, no.
6, pp. 1389-1403, March 2013.

[17] B. Song, J. Sun, H. L. Wang, W. D. Xiao, “Convex feasibility problem
based geometric approach for device-free localization,” in Proceedings
of 2017 International Conference on Information Fusion, Xi’an, China,
July 2017, pp. 1140-1146.

[18] X. Sheng and Y.-H. Hu, “Maximum likelihood multiple-source localiza-
tion using acoustic energy measurements with wireless sensor networks,”
IEEE Transactions on Signal Processing, vol. 53, no. 1, pp. 44-53,
Janurary 2005.

[19] Q. Wang, Z. S. Duan, X. R. Li, “Emission source localization and
sensor registration using RSS measurements,” in Proceedings of 2017
International Conference on Information Fusion, Xi’an, China, July 2017,
pp. 43-50.

[20] C. Wang, F. Qi, G. M. Shi, “Convex combination based target lo-
calization with noisy angle of arrival measurements,” IEEE Wireless
Communiations Letters, vol. 3, no. 1, pp. 14-17, February 2014.

[21] N. Patwari, A. O. Hero, M. Perkins, N. S. Correal, R. J. O’Dea, “Relative
location estimation in wireless sensor networks,” IEEE Transactions on
Signal Processing, vol. 51, no. 8, pp. 2137-2148, August 2003.

[22] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[23] T. Rappaport, Wireless Communications Principles and Practice. En-
glewood Cliffs, NJ, USA: Prentice-Hall, 1999.

2018 21st International Conference on Information Fusion (FUSION)

336


