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Abstract—Decentralized data fusion is a challenging task even
for linear estimation problems. Nonlinear estimation renders data
fusion even more difficult as dependencies among the nonlinear
estimates require complicated parameterizations. It is nearly
impossible to reconstruct or keep track of dependencies. There-
fore, conservative approaches have become a popular solution
to nonlinear data fusion. As a generalization of Covariance
Intersection, exponential mixture densities have been widely
applied for nonlinear fusion. However, this approach inherits
the conservativeness of Covariance Intersection. For this reason,
the less conservative fusion rule Inverse Covariance Intersection
is studied in this paper and also generalized to nonlinear data
fusion. This generalization employs a conservative approximation
of the common information shared by the estimates to be fused.
This bound of the common information is subtracted from the
fusion result. In doing so, less conservative fusion results can be
attained as an empirical analysis demonstrates.

Index Terms—inverse covariance intersection, decentralized
data fusion, nonlinear estimation

I . I N T R O D U C T I O N

With the advances in cheap integrated circuits, communi-
cation, and sensor technology, wireless sensor networks have
matured over the last years. To leverage local processing power
and storage capacity, estimation and data fusion algorithms
can be implemented on the nodes of the network. An in-
network processing of the accrued sensor data avoids many
disadvantages associated with completely centralized network
architectures [1], [2] but also comes with additional challenges
that need to be addressed. In particular, the information
acquired on each node is not independent of the other nodes [3].
This renders decentralized data fusion particularly challenging
as dependencies can neither easily be kept track of nor can be
reconstructed efficiently. Although such techniques are being

developed [4]–[6], they often require additional knowledge. In
general, decentralized data fusion forces us to find a trade-off
between optimistic and pessimistic fusion results, i.e., between
inconsistent and conservative results.

A well-known concept in decentralized data fusion is Covari-
ance Intersection (CI) [7], [8], which provides consistent fusion
results irrespective of the underlying correlations. Although
optimality and tightness have been proven [9], [10], CI often
gives too conservative results in typical application scenarios,
which has stimulated further research on alternative approaches.
In [11], a specific parameterization of correlations has been
proposed that is based on unknown common information,
which is assumed to be shared by the estimates to be fused and
is studied further in [12]. By computing a conservative upper
bound on the common information, a consistent estimate can
be obtained. Such a bound has been proposed in [13], which
is tight for all possible candidates of common information.
In particular, this bound corresponds to the intersection of
inverse covariance ellipsoids, which explains its name Inverse
Covariance Intersection (ICI). The ICI fusion rule can also
be formulated in the joint state space as a bound on the
joint error covariance matrix [14], which also proves useful
to derive other possible fusion gains [15]. ICI is a less
conservative fusion rule than CI and is, as such, tailored to
specific correlation structures, which are further studied in [16].
Promising results have already been demonstrated in distributed
tracking applications [17]–[20], indicating that ICI has been
becoming a viable alternative.

In this paper, we shift our focus away from linear decentral-
ized data fusion to nonlinear fusion problems. As indicated in
Fig. 1, we are concerned with the task of fusing two conditional

Fig. 1: Proposed fusion method ( ) applied to arbitrary density functions fA ( ) and fB ( ).
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probability densities (blue and red). This case typically renders
decentralized data fusion far more difficult as a feasible, general
representation and parameterization of dependent information
is missing. It is well known that naı̈ve fusion, i.e., simple
multiplication and renormalization, leads to overoptimistic, er-
roneous fusion results. However, it was early discovered that CI
can be generalized to arbitrary estimates [21], [22], for which
different names have been proposed: Chernoff fusion [23],
normalized weighted geometric mean [24], or exponential
mixture densities (EMD) [25]. The EMD fusion rule has,
for instance, been applied to distributed target tracking [26],
[27]. Typical density representations that have been used for
decentralized processing and fusion are Gaussian mixtures [28]–
[33] or particle representations [34], [35]. As an alternative, a
projection-based method using pseudo-Gaussian densities has
been proposed in [36]. Also, the weighting parameter, which
is required for both CI and EMD, is more challenging to
determine in the nonlinear case [37] than in the linear case.
However, the EMD rule inherits the conservativeness of CI,
i.e., it is often too pessimistic, which is an incentive to study
alternatives in the nonlinear case as well.

Specific types of dependencies in nonlinear estimation have
been considered, for instance, in [38] to treat common process
noise, which encompasses a generalization of the federated
Kalman filter. Also, the channel filter, which is used to keep
track of common information shared by the estimates to be
fused, has been generalized to arbitrary probability densi-
ties [39]–[41] and can also be formulated in the information
form [42] by means of a log-density representation. For the
linear case, the channel filter bears the following relationship
to ICI: While the channel filter explicitly stores common
information and subtracts it from the fusion results to avoid
double counting, ICI computes a conservative but tight bound
on all possible candidates of common information and subtracts
this bound from the fusion results. The goal of this paper is
to generalize ICI in a similar way as the channel filter has
been transferred to the nonlinear case. In doing so, we attain a
conservative fusion rule that can be employed to fuse nonlinear
estimates under unknown dependencies while conservativeness
can be reduced as compared to the EMD fusion rule.

In the following, we briefly review CI and its generalization
in Sec. II. A review of ICI is provided in Sec. III. The
parameterization of the common information used by ICI
is then formulated in terms of the corresponding probability
densities. This representation of a bound on possible common
information is then removed from the naı̈ve fusion result.
Properties of the proposed fusion rule are studied empirically
by means of examples in Sec. IV. In Sec. V, we discuss the
initial results on generalized ICI and present an overview of
the next steps.

N O TAT I O N

An underlined variable x ∈ Rn denotes a real-valued vector.
Lowercase boldface letters x are used for random quantities.
Matrices are written in uppercase boldface letters C ∈ Rn×n,
and C−1 and CT are its inverse and transpose, respectively.

C ≥ C′ implies that the difference C −C′ is positive semi-
definite. The notation (x̂A,CA) is used for an estimate x̂A

of x computed by agent A with the error covariance matrix
CA = E[x̃A x̃T

A ], where x̃A = x − x̂A is the estimation
error. A conditional probability density function for the state
x is denoted as fA(x) = f(x|ZA), where ZA is the set of
measurements processed by agent A. The Gaussian density
function with mean m̂ and covariance matrix C is denoted by
f(x) = N (x; m̂,C).

I I . R E V I E W O F C O VA R I A N C E I N T E R S E C T I O N A N D
I T S G E N E R A L I Z AT I O N

Decentralized data fusion is the key enabler for cooperative
estimation tasks in networks of autonomous systems. With
Covariance Intersection (CI), we already have the most flexible
tool for data fusion that guarantees consistency in any case. In
this section, we provide an overview of CI and its generaliza-
tion to the nonlinear case, which is abbreviated by NCI.

A. Covariance Intersection

Instead of striving for an optimal fusion result, a universal
fusion strategy is to conservatively bound missing or discarded
cross-covariance information; as a consequence, this informa-
tion does not need to be maintained or reconstructed. In this
respect, CI [7], [8] is probably the most well-known example,
which provides the fusion result

x̂CI = CCI

(
ωC−1A x̂A + (1− ω)C−1B x̂B

)
(1a)

= KCI x̂A + LCI x̂B

with covariance matrix

CCI =
(
ωC−1A + (1− ω)CB

)−1
(1b)

and ω ∈ [0, 1] for the estimates (x̂A,CA) and (x̂B,CB). Hence,
the gains in (1a) are given by KCI = (1 − ω)CCIC

−1
A and

LCI = ωCCIC
−1
B . CI provides consistent fusion results, i.e.,

CCI ≥ E[x̃CIx̃
T
CI] with x̃CI = x−x̂CI , given that the estimates

(x̂A,CA) and (x̂B,CB) to be fused are consistent. Consistency
implies that the reported covariance matrix is an upper bound
of the actual error covariance matrix. In order to generalize
CI to the nonlinear case, the estimate (1) is interpreted as the
parameters of a Gaussian density, which is discussed in the
following subsection.

B. Exponential Mixture Densities

The exponential mixture density (EMD) fusion rule has been
derived from the observation that (1) can directly be expressed
in terms of the corresponding probability density functions [21],
[22]. More precisely, the estimates (x̂A,CA) and (x̂B,CB)
given the measurement histories ZA and ZB are seen as the
parameters of the density functions fA(x) = N (x; x̂A,CA)
and fB(x) = N (x; x̂B,CB), respectively. By rewriting (1) in
terms of the corresponding densities, we obtain the EMD

fCI(x) ∝ N (x; x̂A,
1
ωCA) · N (x; x̂B,

1
(1−ω)CB) (2)

∝ N (x; x̂A,CA)
ω · N (x; x̂B,CB)

(1−ω) .



This combination of two densities can directly be generalized
to arbitrary density functions fA and fB according to

fNCI(x) =
fωA (x) · f

(1−ω)
B (x)∫

fωA (x) · f
(1−ω)
B (x) d x

,

which corresponds to naı̈ve fusion applied to the inflated
densities fωA and f

(1−ω)
B . We denote this EMD density as

Nonlinear Covariance Intersection (NCI) in the remainder of
this paper.

While in the linear case a clear understanding of conserva-
tiveness can be developed, conservativeness in the nonlinear
case remains a topic for ongoing research [24], [43]. However,
empirical studies [28] as well as various applications [26], [27]
underpin effectiveness and conservativeness of NCI. Fig. 2
presents an example and gives an impression of conserva-
tiveness—fNCI has less concentrated probability as compared
with fnaı̈ve. It is now to be studied whether a corresponding
generalization can be found for ICI, which is already shown
in selfsame figure. As in the linear case, we strive to reduce
conservatism.

I I I . N O N L I N E A R I N V E R S E C O VA R I A N C E
I N T E R S E C T I O N

The ICI fusion rule has been proposed as an alternative to
CI with the aim of achieving less conservative fusion results.
We first discuss the idea behind ICI and the algorithm. The
employed bound on unknown common information is then
generalized to the nonlinear case, i.e., to arbitrary density
functions. The resulting approximation of common information
is then exploited to define nonlinear ICI, as illustrated in Fig. 2.

A. Inverse Covariance Intersection

Before arbitrary density functions are studied, this section
provides a brief summary of ICI for the linear case. Given two
consistent estimates (x̂A,CA) and (x̂B,CB), Inverse Covari-
ance Intersection (ICI) provides the fusion result (x̂ICI,CICI)
with

x̂ICI = KICI x̂A + LICI x̂B (3a)

and

C−1ICI = C−1A + C−1B −
(
ωCA + (1− ω)CB

)−1
(3b)

for ω ∈ [0, 1]. The gains in (3a) are given by

KICI=CICI ·
(
C−1A − ω(ωCA + (1− ω)CB)

−1) , (4a)

LICI=CICI ·
(
C−1B − (1− ω)(ωCA + (1− ω)CB)

−1) . (4b)

The covariance matrix (3b) is a conservative bound on the
actual error covariance matrix, i.e.,

C̃ICI = E
[
(x̂ICI − x)(x̂ICI − x)T

]
≤ CICI

for each ω ∈ [0, 1]. A simple MATLAB implementation can
be downloaded from https://github.com/KIT-ISAS/ICI.

ICI is a novel approach to treat unknown correlations
between the estimates to be fused. Since ICI is tailored to a spe-
cific correlation structure, less conservative bounds on the fused
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Fig. 2: For the densities fA and fB (dashed) in Fig. 1, the
results of different fusion methods are shown.

error covariance matrix are provided than CI can compute.
More precisely, it has been shown in [13] that (3b) is smaller
than (1b) for each ω ∈ [0, 1], i.e., CICI(ω) ≤ CCI(1 − ω).
The optimization of the weights is, e.g., studied in [44] and
approximate closed-form solutions are provided therein.

In order to reformulate the fusion formulas (3) in terms of
Gaussian densities, we rearrange the formulas by employing
the information form. The ICI estimate can be written as

C−1ICI x̂ICI = C−1A x̂A + C−1B x̂B − Γ−1ICI γ̂ICI
, (5a)

and
C−1ICI = C−1A + C−1B − Γ−1ICI (5b)

in the information form, where γ̂
ICI

and ΓICI are given by

γ̂
ICI

= ω x̂A + (1− ω) x̂B (6a)
and

ΓICI = ωCA + (1− ω)CB , (6b)

respectively. The information form (5) implies that the naı̈ve
fusion result is computed, and the estimate (γ̂

ICI
,ΓICI) is then

subtracted from it. Hence, it encompasses a form of the channel
filter where a bound (γ̂

ICI
,ΓICI) on all possible common

estimates is subtracted from the fusion result to prevent double
counting of information. This bound tightly circumscribes the
set of all possible common estimates shared by (x̂A,CA) and
(x̂B,CB). Details on this bound and tightness can be found
in [13]. In the following, we denote the common estimate to be
removed from the naı̈ve fusion result as common information,
which is not to be confused with the information form.

B. Generalization to the Nonlinear Case

For the nonlinear case, we are going to generalize the
bound (6) on common information to arbitrary densities. If
the common information is known, the optimal result is

ffus(x) = Cfus ·
fA(x) · fB(x)
fA∩B(x)

, (7)

where fA∩B(x) = f(x|ZA ∩ ZB) denotes the common infor-
mation and C−1fus =

∫
ffus(x) d x is the normalization constant.

The intuition behind (7) is that the estimates fA and fB can
be written [45] as

fA(x) ∝ fA\B(x) · fA∩B(x) ,
fB(x) ∝ fB\A(x) · fA∩B(x) ,



which explains why (7) prevents double counting of fA∩B.
For ICI, the density fA∩B will be replaced by a conservative
approximation, denoted by fγ .

1) Proposed Bound on Common Information: In order to
derive a nonlinear variant of ICI, we start with studying the
required bound on common information for the corresponding
Gaussian densities

fA = N
(
x; x̂A,CA

)
, (8a)

fB = N
(
x; x̂B,CB

)
. (8b)

The parameters γ̂
ICI

and ΓICI in (6) correspond to the
sum of the two artificial estimates

(
ω x̂A, ωCA

)
and(

(1− ω) x̂B, (1− ω)CB

)
. Following the considerations in

Sec. II, we strive to express the Gaussian representation
N
(
x, γ̂

ICI
,ΓICI

)
of the common estimate in terms of the Gaus-

sian densities (8). For this purpose, we first compute the den-
sities N

(
x;ω x̂A, ωCA

)
and N

(
x; (1− ω) x̂B, (1− ω)CB

)
from the original densities fA and fB. After that, these densities
are combined into a bound on the common information. The
computations for this are explained in the following paragraph
and are illustrated Fig. 3. On the left side of each figure,
Gaussian densities are shown while, on the right side, the
derived calculations are already applied to Gaussian mixture
densities.

The required transformations [46] of the densities fA and
fB can be carried out in three steps:

a) Contraction: The weighting of the means corresponds
to a contraction of the densities according to

TωfA(x) =
1
|ω|f

(
1
ωx
)
= N

(
x;ω x̂A, ω

2 CA

)
and

T(1−ω)fB(x) =
1

|(1−ω)|f
(

1
(1−ω)x

)
= N

(
x; (1− ω) x̂B, (1− ω)

2
CB

)
,

as shown in Fig. 3(b). It can be seen that the covariance
matrices are modified by the square of the weights. The next
step adjusts the covariance matrices.

b) Inflation: As for NCI, the results are then inflated
according to

Tωf
ω
A (x) = CA ·

(
f
(

1
ωx
))ω

= CA ·
(
N
(
x;ω x̂A, ω

2 CA

))ω
= N

(
x;ω x̂A, ωCA

)
and

T(1−ω)f
(1−ω)
B (x) = CB ·

(
f
(

1
(1−ω)x

))(1−ω)

= N
(
x; (1− ω) x̂B, (1− ω)CB

)
,

where CA and CB are the corresponding renormalization
constants. The results are illustrated in Fig. 3(c). It is worth
noticing that these first two steps are interchangeable.
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(a) Densities fA and fB to be fused.
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(b) Contraction of the densities: TωfA and T(1−ω)fB.
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(c) Inflation of the densities: TωfωA and T(1−ω)f
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(d) Convolution to obtain common information fγ .
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(e) Fusion result fNICI by removing common information.

Fig. 3: Illustration of the steps for the fusion of densities fA ( )
and fB ( ) with NICI and ω = 0.5. Left: fA and fB are
Gaussian densities. Right: fA and fB are Gaussian mixture
densities.

c) Convolution: The final step corresponds to the sum (6).
Hence, the combination of the transformed densities becomes
the convolution

fγ(x) =
(
Tωf

ω
A ∗ T(1−ω)f

(1−ω)
B

)(
x
)

(9)

=

∫
Tωf

ω
A (ξ) · T(1−ω)f

(1−ω)
B (x− ξ) d ξ ,

which yields the proposed bound on common information
shared by fA and fB.

By construction, this result is equivalent to (6) for Gaussian
densities, i.e.,

fγ(x) = N
(
x; γ̂

ICI
,ΓICI

)
,

which corresponds to the density in Fig. 3(d) on the left
side. However, the result (9) generalizes the representation
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(a) Left part of Fig 3(e), i.e., Gaussian densities.
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(b) Right part of Fig 3(e), i.e., Gaussian mixtures.

Fig. 4: The results shown in Fig 3(e) are compared with naı̈ve
fusion and NCI.

of common information to arbitrary densities, as illustrated on
the right side of the figure. By inflating the densities fA and
fB, they are implicitly assumed to be independent, as it is done
for NCI. Here, this assumption of independence is exploited
to compute the bound (9).

2) Nonlinear Inverse Covariance Intersection: In the fol-
lowing, we propose to employ fγ , i.e., the combination (9),
as a bound on common information for arbitrary probability
density functions fA and fB. In doing so, this bound can
directly be exploited to generalize ICI: With the derived density
representation (9) of the bound, Nonlinear Inverse Covariance
Intersection (NICI) can be computed by

fNICI(x) = CNICI ·
fA(x) · fB(x)

fγ(x)
, (10)

where CNICI is the corresponding normalization factor. In the
special case of Gaussian estimates (8), the fusion rule (10) still
reduces to

fNICI(x) = N
(
x; x̂ICI,CICI

)
,

i.e., we obtain mean and covariance matrix of the linear ICI
fusion result (5). Fig. 3(e) shows NICI fusion results for
Gaussian densities on the left side and for Gaussian mixtures
on the right side.

The NICI fusion rule corresponds to (7) where fA∩B has
been replaced by fγ as a conservative substitute for the
unknown common information. As for NCI, the notion of
conservativeness is rather vague and still requires further re-
search. Therefore, we discuss conservativeness by scrutinizing
examples in the following section.

I V. E X A M P L E S F O R N O N L I N E A R I C I

A first example has already been illustrated in Fig. 1 and is
compared with naı̈ve fusion and NCI in Fig. 2. While naı̈ve
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(b) Fusion results. The original densities are indicated by dashed lines.

Fig. 5: Comparison of fusion results.

fusion concentrates probability mass around zero, both NCI
and NICI provide rather flat probability densities. Fig. 4 shows
another comparison, where the results in Fig. 3(e) are plotted
together with the naı̈ve fusion result and the NCI result. In
the Gaussian case, the densities correspond to the estimates (1)
and (3) for CI and ICI, respectively. Fig. 4(a) also shows
that the maximum of fNICI lies slightly above fNCI, which
reveals that NICI is less conservative. In [13], consistency of
ICI with respect to the mean squared error has been proven.
Fig. 4(b) illustrates the fusion results for Gaussian mixture
densities. fNICI differs from fNCI in that it preserves the mode
on the left side, which corresponds to the Gaussian mixture
component with the lowest variance. The weights in these and
the following examples have been set to ω = 0.5. In order to
reveal and discuss specific differences between NCI and NICI,
further examples are studied in the following.

A. Mode Preservation

To analyze properties of NICI, we consider two estimates
fA and fB that share the common information

fA∩B(x) = N (x; 0, 1)

and have the form

fA(x) ∝ fA∩B(x)·
(
0.01 · N (x;−3, 1) + 0.99 · N (x; 3, 1)

)
,

and

fB(x) ∝ fA∩B(x)·
(
0.99 · N (x;−3, 1) + 0.01 · N (x; 3, 1)

)
.

Hence, the exclusive information is a Gaussian mixture with
different weightings. Fig. 5(a) shows the initial densities and
the common information. Also, the NICI bound fγ on common
information is plotted, i.e., NICI replaces fA∩B by fγ which
has lower uncertainty. This underpins the idea of ICI to
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compute the maximum possible information shared by the
estimates. Fig. 5(b) presents the results of the different fusion
methods. It can be seen, that fNICI is close to the optimal
fusion result

fopt(x) = Copt ·
fA(x) · fB(x)
fA∩B(x)

while fNCI does not preserve the modes and rather resembles
the naı̈ve fusion result fnaı̈ve. The following example further
studies the bound on common information employed by NICI.

B. Fusion of Equal Densities

In the following example, we consider the special case that
the densities to be fused are equal. In Fig. 6, the considered
densities

fA(x) = fB(x) = 0.5 · N (x;−4, 1) + 0.5 · N (x; 4, 1.2)

are indicated by the dashed line. Naı̈ve fusion treats these
densities like independent information, which can be far too
overconfident. For NCI, it can easily be seen from (2) that the
result is equal to the input densities, i.e., fNCI(x) = fA(x) =
fB(x). Hence, NCI implicitly assumes that both densities
are reported by the same source and are fully dependent.
Interestingly, NICI still leads to an update but is less confident
than naı̈ve fusion. This is in stark contrast to the linear Gaussian
case, where ICI also leaves equal input estimates unaltered.

The reason for the different behavior of NICI can be seen
in how the common information fγ is determined, which is
also depicted in Fig. 6. The density fγ has its largest values
between the modes of fA(x). The intuition behind this result
is that NICI strives at maximizing the common information
between the estimates. The maximum common information
fγ between the equal densities fA(x) and fB(x) is not the
function itself but a more concentrated density. The effect of
removing fγ becomes more apparent when the same densities

are fused multiple times. Fig. 7 provides the results after
applying the same fusion methods 10 times. Naı̈ve fusion
yields more overconfident results, and NCI still provides the
original density. For NICI, probability between the modes
vanishes as the common information is removed in each of
the multiple fusion steps. As fγ is concentrated around zero,
the modes of fNICI are pushed apart. However, fNICI still
preserves much probability at the modes of fA(x) on the left
and right side; only the between-modes area vanishes. These
properties of the proposed fusion rule are to be further analyzed
in future work.

V. C O N C L U S I O N S

In this paper, we propose a novel method for nonlinear
decentralized data fusion, which encompasses a generalization
of Inverse Covariance Intersection. Key to this concept is the
computation of an approximation of the underlying common
information shared by the estimates to be fused. The derived
common information can then be removed from the fusion
result in order to prevent double counting. In the linear case,
this fusion rule preserves consistency and is less conservative
than CI. However, in the nonlinear case, these properties
are difficult to prove, and conservative fusion is an ongoing
research area [24], [47], [48]. Similarly, the definition of
maximum common information has to be studied in more
detail. While ICI maximizes the common information shared
by the estimates to compute a bound, an adequate notion of
maximum common information still needs to be found for the
nonlinear case. Despite these research questions, we believe
that NICI has the potential for being a viable alternative to
the NCI fusion rule. In particular, the preservation of modes
is an appealing property. Further research will also focus on
defining proper criteria to optimize the weights.
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